1
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Hogstrand C, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Vejdovszky K, Viviani B, Barregård L, Benford D, Dogliotti E, Francesconi K, Gómez Ruiz JÁ, Steinkellner H, Schwerdtle T. Risk assessment of complex organoarsenic species in food. EFSA J 2024; 22:e9112. [PMID: 39655151 PMCID: PMC11626214 DOI: 10.2903/j.efsa.2024.9112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The European Commission asked EFSA for a risk assessment on complex organoarsenic species in food. They are typically found in marine foods and comprise mainly arsenobetaine (AsB), arsenosugars and arsenolipids. For AsB, no reference point (RP) could be derived because of insufficient toxicity data. AsB did not show adverse effects in the two available repeat dose toxicity tests in rodents. It has not shown genotoxicity in in vitro assays. There is no indication of an association with adverse outcomes in human studies. The highest 95th percentile exposure for AsB was observed in 'Toddlers' with an estimate of 12.5 μg As/kg bw per day (AsB expressed as elemental arsenic). There is sufficient evidence to conclude that AsB at current dietary exposure levels does not raise a health concern. For glycerol arsenosugar (AsSugOH) a RP of 0.85 mg As/kg bw per day was derived based on the BMDL10 values for cognitive and motor function in mice. A margin of exposure (MOE) of ≥ 1000 would not raise a health concern. The highest 95th percentile estimate of exposure for AsSugOH (for adult consumers of red seaweed Nori/Laver) was 0.71 μg As/kg bw per day (AsSugOH expressed as elemental arsenic), which results in an MOE > 1000, not raising a health concern. Based on qualitative consideration of all identified uncertainties, it is regarded likely that the dietary exposures to AsB and AsSugOH do not raise a health concern. No conclusions could be drawn regarding other arsenosugars. No risk characterisation could be conducted for arsenolipids, due to the lack of data.
Collapse
|
2
|
Sadee BA, Galali Y, Zebari SMS. Recent developments in speciation and determination of arsenic in marine organisms using different analytical techniques. A review. RSC Adv 2024; 14:21563-21589. [PMID: 38979458 PMCID: PMC11228943 DOI: 10.1039/d4ra03000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Marine organisms play a vital role as the main providers of essential and functional food. Yet they also constitute the primary pathway through which humans are exposed to total arsenic (As) in their diets. Since it is well known that the toxicity of this metalloid ultimately depends on its chemical forms, speciation in As is an important issue. Most relevant articles about arsenic speciation have been investigated. This extended not only from general knowledge about As but also the toxicity and health related issues resulting from exposure to these As species from the food ecosystem. There can be enormous side effects originating from exposure to As species that must be measured quantitatively. Therefore, various convenient approaches have been developed to identify different species of As in marine samples. Different extraction strategies have been utilized based on the As species of interest including water, methanol and mixtures of both, and many other extraction agents have been explained in this article. Furthermore, details of hyphenated techniques which are available for detecting these As species have been documented, especially the most versatile and applied technique including inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Animal Resource, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| |
Collapse
|
3
|
Li C, Chen J, Wang Z, Song B, Cheung KL, Chen J, Li R, Liu X, Jia X, Zhong SY. Speciation analysis and toxicity evaluation of arsenolipids-an overview focusing on sea food. Arch Toxicol 2024; 98:409-424. [PMID: 38099972 DOI: 10.1007/s00204-023-03639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
Arsenic, which can be divided into inorganic and organic arsenic, is a toxic metalloid that has been identified as a human carcinogen. A common source of arsenic exposure in seafood is arsenolipid, which is a complex structure of lipid-soluble organic arsenic compounds. At present, the known arsenolipid species mainly include arsenic-containing fatty acids (AsFAs), arsenic-containing hydrocarbons (AsHCs), arsenic glycophospholipids (AsPLs), and cationic trimethyl fatty alcohols (TMAsFOHs). Furthermore, the toxicity between different species is unique. However, the mechanism underlying arsenolipid toxicity and anabolism remain unclear, as arsenolipids exhibit a complex structure, are present at low quantities, and are difficult to extract and detect. Therefore, the objective of this overview is to summarize the latest research progress on methods to evaluate the toxicity and analyze the main speciation of arsenolipids in seafood. In addition, novel insights are provided to further elucidate the speciation, toxicity, and anabolism of arsenolipids and assess the risks on human health.
Collapse
Affiliation(s)
- Caiyan Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Jing Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Kit-Leong Cheung
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China.
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518108, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
4
|
Xiong C, Glabonjat RA, Al Amin MH, Stiboller M, Yoshinaga J, Francesconi KA. Arsenolipids in salmon are partly converted to thioxo analogs during cooking. J Trace Elem Med Biol 2022; 69:126892. [PMID: 34798512 DOI: 10.1016/j.jtemb.2021.126892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Arsenic hydrocarbons, major arsenolipids occurring naturally in marine fish, have substantial cytotoxicity leading to human health-related studies of their distribution and abundance in foods. These studies have all investigated fresh foods; because most fish are cooked before being consumed, it is both food- and health-relevant to determine the arsenolipids present in cooked fish. METHODS We used HPLC/mass spectrometry to investigate the arsenolipids present in salmon (Salmo salar) before and after cooking by either baking or steaming. RESULTS In raw salmon (total As 2.74 mg kg-1 dry mass, of which 6% was lipid-soluble), major arsenolipids were three arsenic hydrocarbons (oxo-AsHC 332, oxo-AsHC 360, and oxo-AsHC 404, ca 55% of total arsenolipids) and a band of unidentified less-polar arsenolipids (ca 40%), trace amounts of another four arsenic hydrocarbons and two thioxo analogs were also detected. During the cooking process, 28% of the oxo-AsHCs were converted to their thioxo analogs. CONCLUSION Our study shows that arsenic hydrocarbons naturally present in fresh fish are partly converted to their thioxo analogs during cooking by either baking or steaming. The greater lipophilicity of the thioxo analogs could alter the mode of toxicity of arsenic hydrocarbons, and hence future food regulations for arsenic should consider the influence of cooking on the precise type of arsenolipid in fish.
Collapse
Affiliation(s)
- Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria.
| | - Ronald A Glabonjat
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Md Hasan Al Amin
- Faculty of Life Sciences, Toyo University, Gumma, 374-0193, Japan
| | - Michael Stiboller
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria; Institute of Nutritional Science, Food Chemistry, University of Potsdam, 14558, Nuthetal, Germany
| | - Jun Yoshinaga
- Faculty of Life Sciences, Toyo University, Gumma, 374-0193, Japan
| | | |
Collapse
|
5
|
Luvonga C, Rimmer CA, Yu LL, Lee SB. Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations - A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:943-960. [PMID: 31913614 PMCID: PMC7250045 DOI: 10.1021/acs.jafc.9b07532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Diet, especially seafood, is the main source of arsenic exposure for humans. The total arsenic content of a diet offers inadequate information for assessment of the toxicological consequences of arsenic intake, which has impeded progress in the establishment of regulatory limits for arsenic in food. Toxicity assessments are mainly based on inorganic arsenic, a well-characterized carcinogen, and arsenobetaine, the main organoarsenical in seafood. Scarcity of toxicity data for organoarsenicals, and the predominance of arsenobetaine as an organic arsenic species in seafood, has led to the assumption of their nontoxicity. Recent toxicokinetic studies show that some organoarsenicals are bioaccessible and cytotoxic with demonstrated toxicities like that of pernicious trivalent inorganic arsenic, underpinning the need for speciation analysis. The need to investigate and compare the bioavailability, metabolic transformation, and elimination from the body of organoarsenicals to the well-established physiological consequences of inorganic arsenic and arsenobetaine exposure is apparent. This review provides an overview of the occurrence and assessment of human exposure to arsenic toxicity associated with the consumption of seafood.
Collapse
Affiliation(s)
- Caleb Luvonga
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Catherine A Rimmer
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Lee L Yu
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Sang B Lee
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
6
|
Liao W, Wang G, Li K, Zhao W. Change of Arsenic Speciation in Shellfish after Cooking and Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7805-7814. [PMID: 29953224 DOI: 10.1021/acs.jafc.8b02441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Shellfish is a common part of indigenous cuisines throughout the world and one of the major sources of human exposure to arsenic (As). We evaluated As speciation in shellfish after cooking and gastrointestinal digestion in this study. Results showed that washing and cooking (boiling and steaming) can reduce As exposures from shellfish. The use of spices during cooking processes also helped to reduce the bioaccessibility of total As. Through mass balance calculations, we verified the transformation of methylated As compounds into inorganic As in shellfish takes place during cooking and that As demethylation can occur during simulated gastrointestinal digestion. In vivo demethylation of As after gastrointestinal digestion was also demonstrated in laboratory mice. This increase in inorganic As during digestion suggests that risks of As toxicity from shellfish consumption are being underestimated. Further studies on the mechanisms of As speciation transformation in food are necessary for more thorough risk assessments.
Collapse
Affiliation(s)
- Wen Liao
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- National Key Laboratory of Water Environment Simulation and Pollution Control , South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China , Guangzhou 510655 , China
- Guangdong Key Laboratory of Water and Air Pollution Control , South China Institute of Environmental Sciences , Guangzhou 510655 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guang Wang
- National Key Laboratory of Water Environment Simulation and Pollution Control , South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China , Guangzhou 510655 , China
- Guangdong Key Laboratory of Water and Air Pollution Control , South China Institute of Environmental Sciences , Guangzhou 510655 , China
| | - Kaiming Li
- National Key Laboratory of Water Environment Simulation and Pollution Control , South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China , Guangzhou 510655 , China
- Guangdong Key Laboratory of Water and Air Pollution Control , South China Institute of Environmental Sciences , Guangzhou 510655 , China
| | - Wenbo Zhao
- National Key Laboratory of Water Environment Simulation and Pollution Control , South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China , Guangzhou 510655 , China
- Guangdong Key Laboratory of Water and Air Pollution Control , South China Institute of Environmental Sciences , Guangzhou 510655 , China
- College of Life Sciences , Hebei University , Baoding 071002 , China
| |
Collapse
|
7
|
Chi H, Zhang Y, Williams PN, Lin S, Hou Y, Cai C. In Vitro Model To Assess Arsenic Bioaccessibility and Speciation in Cooked Shrimp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4710-4715. [PMID: 29633616 DOI: 10.1021/acs.jafc.7b06149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Shrimp, a popular and readily consumed seafood, contains high concentrations of arsenic. However, few studies have focused on whether arsenic in the shrimp could be transformed during the cooking process and gastrointestinal digestion. In this study, a combined in vitro model [Unified Bioaccessibility Research Group of Europe (BARGE) Method-Simulator of Human Intestinal Microbial Ecosystem (UBM-SHIME)] was used to investigate arsenic bioaccessibility and its speciation in raw and cooked shrimps. The results showed that the cooking practices had little effect on the arsenic content and speciation. Bioaccessibility of arsenic in raw shrimp was at a high level, averaging 76.9 ± 4.28 and 86.7 ± 3.74% in gastric and small intestinal phases, respectively. Arsenic speciation was stable in all of the shrimp digestions, with nontoxic arsenobetaine (AsB) being the dominated speciation. The cooking practice significantly increased the bioaccessibility of arsenate ( p < 0.05) in shrimp digests, indicating the increase of the potential health risks.
Collapse
Affiliation(s)
- Haifeng Chi
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen , Fujian 361021 , People's Republic of China
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| | - Youchi Zhang
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| | - Paul N Williams
- Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast BT9 7BL , United Kingdom
| | - Shanna Lin
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen , Fujian 361021 , People's Republic of China
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| | - Yanwei Hou
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen , Fujian 361021 , People's Republic of China
| | - Chao Cai
- State Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| |
Collapse
|
8
|
Cheyns K, Waegeneers N, Van de Wiele T, Ruttens A. Arsenic Release from Foodstuffs upon Food Preparation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2443-2453. [PMID: 28252943 DOI: 10.1021/acs.jafc.6b05721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study the concentration of total arsenic (As) and arsenic species (inorganic As, arsenobetaine, dimethylarsinate, and methylarsonate) was monitored in different foodstuffs (rice, vegetables, algae, fish, crustacean, molluscs) before and after preparation using common kitchen practices. By measuring the water content of the foodstuff and by reporting arsenic concentrations on a dry weight base, we were able to distinguish between As release effects due to food preparation and As decrease due to changes in moisture content upon food preparation. Arsenic species were released to the broth during boiling, steaming, frying, or soaking of the food. Concentrations declined with maxima of 57% for total arsenic, 65% for inorganic As, and 32% for arsenobetaine. On the basis of a combination of our own results and literature data, we conclude that the extent of this release of arsenic species is species specific, with inorganic arsenic species being released most easily, followed by the small organic As species and the large organic As species.
Collapse
Affiliation(s)
- Karlien Cheyns
- Veterinary and Agrochemical Research Centre (CODA-CERVA) , Leuvensesteenweg 17, 3080 Tervuren, Belgium
| | - Nadia Waegeneers
- Veterinary and Agrochemical Research Centre (CODA-CERVA) , Leuvensesteenweg 17, 3080 Tervuren, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Ann Ruttens
- Veterinary and Agrochemical Research Centre (CODA-CERVA) , Leuvensesteenweg 17, 3080 Tervuren, Belgium
| |
Collapse
|
9
|
Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA. Human exposure to organic arsenic species from seafood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:266-282. [PMID: 28024743 PMCID: PMC5326596 DOI: 10.1016/j.scitotenv.2016.12.113] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 05/18/2023]
Abstract
Seafood, including finfish, shellfish, and seaweed, is the largest contributor to arsenic (As) exposure in many human populations. In contrast to the predominance of inorganic As in water and many terrestrial foods, As in marine-derived foods is present primarily in the form of organic compounds. To date, human exposure and toxicological assessments have focused on inorganic As, while organic As has generally been considered to be non-toxic. However, the high concentrations of organic As in seafood, as well as the often complex As speciation, can lead to complications in assessing As exposure from diet. In this report, we evaluate the presence and distribution of organic As species in seafood, and combined with consumption data, address the current capabilities and needs for determining human exposure to these compounds. The analytical approaches and shortcomings for assessing these compounds are reviewed, with a focus on the best practices for characterization and quantitation. Metabolic pathways and toxicology of two important classes of organic arsenicals, arsenolipids and arsenosugars, are examined, as well as individual variability in absorption of these compounds. Although determining health outcomes or assessing a need for regulatory policies for organic As exposure is premature, the extensive consumption of seafood globally, along with the preliminary toxicological profiles of these compounds and their confounding effect on assessing exposure to inorganic As, suggests further investigations and process-level studies on organic As are needed to fill the current gaps in knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Ken Reimer
- Royal Military College, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Joseph T, Dubey B, McBean EA. A critical review of arsenic exposures for Bangladeshi adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:540-551. [PMID: 26004539 DOI: 10.1016/j.scitotenv.2015.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/09/2015] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
Groundwater, the most important source of water for drinking, cooking, and irrigation in Bangladesh, is a significant contributor to the daily human intake of arsenic. Other arsenic intake pathways, established as relevant for Bangladeshi adults through this review, include consumption of contaminated edible plant parts and animal-origin food, inhalation of contaminated air, soil ingestion, betel quid chewing, and tobacco smoking. This review qualifies and quantifies these arsenic intake pathways through analysis of the range of arsenic levels observed in different food types, water, soil, and air in Bangladesh, and highlights the contributions of dietary intake variation and cooking method in influencing arsenic exposures. This study also highlights the potential of desirable dietary patterns and intakes in increasing arsenic exposure which is relevant to Bangladesh where nutritional deficiencies and lower-than-desirable dietary intakes continue to be a major concern.
Collapse
Affiliation(s)
- Tijo Joseph
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Brajesh Dubey
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada; Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Edward A McBean
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
11
|
Molin M, Ulven SM, Meltzer HM, Alexander J. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic. J Trace Elem Med Biol 2015; 31:249-59. [PMID: 25666158 DOI: 10.1016/j.jtemb.2015.01.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/28/2022]
Abstract
Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals.
Collapse
Affiliation(s)
- Marianne Molin
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs Plass, NO-0130 Oslo, Norway.
| | - Stine Marie Ulven
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs Plass, NO-0130 Oslo, Norway
| | | | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| |
Collapse
|
12
|
Ling MP, Wu CH, Chen SC, Chen WY, Chio CP, Cheng YH, Liao CM. Probabilistic framework for assessing the arsenic exposure risk from cooked fish consumption. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2014; 36:1115-1128. [PMID: 24804830 DOI: 10.1007/s10653-014-9621-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Geogenic arsenic (As) contamination of groundwater is a major ecological and human health problem in southwestern and northeastern coastal areas of Taiwan. Here, we present a probabilistic framework for assessing the human health risks from consuming raw and cooked fish that were cultured in groundwater As-contaminated ponds in Taiwan by linking a physiologically based pharmacokinetics model and a Weibull dose-response model. Results indicate that As levels in baked, fried, and grilled fish were higher than those of raw fish. Frying resulted in the greatest increase in As concentration, followed by grilling, with baking affecting the As concentration the least. Simulation results show that, following consumption of baked As-contaminated fish, the health risk to humans is <10(-6) excess bladder cancer risk level for lifetime exposure; as the incidence ratios of liver and lung cancers are generally acceptable at risk ranging from 10(-6) to 10(-4), the consumption of baked As-contaminated fish is unlikely to pose a significant risk to human health. However, contaminated fish cooked by frying resulted in significant health risks, showing the highest cumulative incidence ratios of liver cancer. We also show that males have higher cumulative incidence ratio of liver cancer than females. We found that although cooking resulted in an increase for As levels in As-contaminated fish, the risk to human health of consuming baked fish is nevertheless acceptable. We suggest the adoption of baking as a cooking method and warn against frying As-contaminated fish. We conclude that the concentration of contaminants after cooking should be taken into consideration when assessing the risk to human health.
Collapse
Affiliation(s)
- Min-Pei Ling
- Department of Health Risk Management, China Medical University, Taichung, 40402, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
13
|
Aylward LL, Ramasamy S, Hays SM, Schoeny R, Kirman CR. Evaluation of urinary speciated arsenic in NHANES: issues in interpretation in the context of potential inorganic arsenic exposure. Regul Toxicol Pharmacol 2014; 69:49-54. [PMID: 24582650 DOI: 10.1016/j.yrtph.2014.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Urinary dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) are among the commonly used biomarkers for inorganic arsenic (iAs) exposure, but may also arise from seafood consumption and organoarsenical pesticide applications. We examined speciated urinary arsenic data from National Health and Nutrition Examination Survey (NHANES) 2009-2010 cycle to assess potential correlations among urinary DMA, MMA, and the organic arsenic species arsenobetaine. Urinary DMA and MMA were positively associated with urinary arsenobetaine, suggesting direct exposure to these species in seafood or metabolism of organic arsenicals to these species, although the biomonitoring data do not directly identify the sources of exposure. The magnitude of association was much larger for DMA than for MMA. The secondary methylation index (SMI, ratio of urinary DMA to MMA) observed in the NHANES program likewise is much higher in persons with detected arsenobetaine than in those without, again suggesting that direct DMA exposure is co-occurring with exposure to arsenobetaine. Urinary MMA was less correlated with organic arsenic exposures than DMA and, therefore, may be a more reliable biomarker for iAs exposure in the general US population. However, given the associations between both MMA and DMA and organic arsenic species in urine, interpretations of the urinary arsenic concentrations observed in the NHANES in the context of potential arsenic exposure should be made cautiously.
Collapse
Affiliation(s)
| | - Santhini Ramasamy
- Office of Water, US Environmental Protection Agency, Washington, DC, USA
| | | | - Rita Schoeny
- Office of Science Policy, Office of Research and Development, US Environmental Protection Agency, Washington, DC, USA
| | | |
Collapse
|
14
|
Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, Moreno López MV, Lopez DL, Jean JS, Cornejo L, Lauer Macedo LF, Filho AT. Arsenic in the human food chain: the Latin American perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 429:92-106. [PMID: 22115614 DOI: 10.1016/j.scitotenv.2011.09.069] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
Many regions of Latin America are widely reported for the occurrence of high arsenic (As) in groundwater and surface water due to a combination of geological processes and/or anthropogenic activities. In this paper, we review the available literature (both in English and Spanish languages) to delineate human As exposure pathways through the food chain. Numerous studies show that As accumulations in edible plants and crops are mainly associated with the presence of high As in soils and irrigation waters. However, factors such as As speciation, type and composition of soil, and plant species have a major control on the amount of As uptake. Areas of high As concentrations in surface water and groundwater show high As accumulations in plants, fish/shellfish, livestock meat, milk and cheese. Such elevated As concentrations in food may result in widespread health risks to local inhabitants, including health of indigenous populations and residents living close to mining industries. Some studies show that As can be transferred from the water to prepared meals, thereby magnifying the As content in the human diet. Arsenic speciation might also change during food preparation, especially during high temperature cooking, such as grilling and frying. Finally, the review of the available literature demonstrates the necessity of more rigorous studies in evaluating pathways of As exposure through the human food chain in Latin America.
Collapse
Affiliation(s)
- Jochen Bundschuh
- Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rivera-Núñez Z, Meliker JR, Meeker JD, Slotnick MJ, Nriagu JO. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:182-90. [PMID: 21878987 PMCID: PMC10037220 DOI: 10.1038/jes.2011.27] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/14/2011] [Indexed: 05/21/2023]
Abstract
The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | |
Collapse
|
16
|
On confounded fishy results regarding arsenic and diabetes. Epidemiology 2010; 20:821-3; discussion e1-2. [PMID: 19730267 DOI: 10.1097/ede.0b013e3181b26bce] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
|
18
|
Ahlborn GJ, Nelson GM, Grindstaff RD, Waalkes MP, Diwan BA, Allen JW, Kitchin KT, Preston RJ, Hernandez-Zavala A, Adair B, Thomas DJ, Delker DA. Impact of life stage and duration of exposure on arsenic-induced proliferative lesions and neoplasia in C3H mice. Toxicology 2009; 262:106-13. [PMID: 19450653 PMCID: PMC3496158 DOI: 10.1016/j.tox.2009.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 12/31/2022]
Abstract
Epidemiological studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Previous experimental studies have demonstrated increased incidence of liver, lung, ovary, and uterine tumors in mice exposed to 85 ppm (approximately 8 mg/kg) inorganic arsenic during gestation. To further characterize age susceptibility to arsenic carcinogenesis we administered 85 ppm inorganic arsenic in drinking water to C3H mice during gestation, prior to pubescence and post-pubescence to compare proliferative lesion and tumor outcomes over a one-year exposure period. Inorganic arsenic significantly increased the incidence of hyperplasia in urinary bladder (48%) and oviduct (36%) in female mice exposed prior to pubescence (beginning on postnatal day 21 and extending through one year) compared to control mice (19 and 5%, respectively). Arsenic also increased the incidence of hyperplasia in urinary bladder (28%) of female mice continuously exposed to arsenic (beginning on gestation day 8 and extending though one year) compared to gestation only exposed mice (0%). In contrast, inorganic arsenic significantly decreased the incidence of tumors in liver (0%) and adrenal glands (0%) of male mice continuously exposed from gestation through one year, as compared to levels in control (30 and 65%, respectively) and gestation only (33 and 55%, respectively) exposed mice. Together, these results suggest that continuous inorganic arsenic exposure at 85 ppm from gestation through one year increases the incidence and severity of urogenital proliferative lesions in female mice and decreases the incidence of liver and adrenal tumors in male mice. The paradoxical nature of these effects may be related to altered lipid metabolism, the effective dose in each target organ, and/or the shorter one-year observational period.
Collapse
Affiliation(s)
- Gene J. Ahlborn
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
- North Carolina State University, College of Veterinary Medicine, Department of Molecular Biomedical Sciences, Raleigh, NC
| | - Gail M. Nelson
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
| | - Rachel D. Grindstaff
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
| | - Michael P. Waalkes
- National Cancer Institute at NIEHS, Laboratory of Comparative Carcinogenesis, Research Triangle Park, NC
| | | | - James W. Allen
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
| | - Kirk T. Kitchin
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
| | - R. Julian Preston
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
| | - Araceli Hernandez-Zavala
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Blakely Adair
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
| | - David J. Thomas
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
| | - Don A. Delker
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
| |
Collapse
|
19
|
Devesa V, Vélez D, Montoro R. Effect of thermal treatments on arsenic species contents in food. Food Chem Toxicol 2008; 46:1-8. [DOI: 10.1016/j.fct.2007.08.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/25/2007] [Accepted: 08/13/2007] [Indexed: 11/28/2022]
|
20
|
Abstract
Concerns about the adverse effects of chronic arsenic exposure have focused on contaminated drinking water and airborne workplace exposures; the risks of naturally occurring arsenic in foods have received less attention. About 90% of the arsenic in US diets comes from seafood, of which only a small proportion occurs in inorganic forms; the great majority consists of complex organic compounds that generally have been regarded as non-toxic. However, recent studies of seafood have documented formation of metabolites carcinogenic in some rodents. To calculate the risks of ingested seafood arsenic, therefore, it is necessary to identify the nature and quantity of arsenic species present and the metabolites formed by expected metabolic activities. We review the nature and quantities of the various arsenical compounds found in dietary seafood and discuss their metabolic processing and fate. Based on conservative dose estimates and the likelihood that arsenic's carcinogenic mechanisms follow sub-linear dose-response curves, we estimate a margin of exposure of at least 10(3)-10(4) between carcinogenic doses used in rodent studies and those expected after human consumption of large quantities of seafood.
Collapse
|