1
|
Pollon M, Río Segade S, Giacosa S, Botto R, Montanini C, Rolle L. Volatile Compound Release from Oak Chips in Model Wine Media: Combined Influence of Toasting Degree, Size, Time of Contact, and Ethanol Content. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13440-13450. [PMID: 37664949 DOI: 10.1021/acs.jafc.3c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The effects of size, toasting degree, and time of contact on the release of volatile compounds from Quercus alba (L.) chips during a simulated fermentation and post-fermentative process were studied. The results obtained indicated that the large-size chips favored the release of furfural and furfuryl alcohol, while the small ones increased the concentration of cyclotene and maltol. The interaction between chip size and time of contact showed that the small-size chips are more sensitive to the increase of ethanol concentration for the extraction rate of some compounds (furfural, vanillin, maltol, cyclotene, whiskey lactones, and eugenol) compared to the large-size ones, increasing their concentrations at the end of maceration. The toasting degree of oak chips had a different influence on the volatile compounds studied. Cyclotene and guaiacol concentrations increased with the toasting intensity, whereas the extracted concentration of all compounds increased from light to medium-toasted chips, except for eugenol, and then decreased by further increasing the toasting level for 5-methylfurfural, whiskey lactones, eugenol, and only using high-level toasted chips for furfuryl alcohol, maltol, and vanillin. A possible protection effect of the chip size toward the possible degradation or volatilization losses of furfural for high toasting degrees was observed.
Collapse
Affiliation(s)
- Matteo Pollon
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Susana Río Segade
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simone Giacosa
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Riccardo Botto
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| | | | - Luca Rolle
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
2
|
Lee SB. Quality Characteristics and Antioxidant Activities of Six Types of Korean White Wine. Foods 2023; 12:3246. [PMID: 37685179 PMCID: PMC10486741 DOI: 10.3390/foods12173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The cultivation of European grape cultivars suitable for winemaking in Korea presents challenges due to factors such as climate, soil conditions, precipitation, and sunlight. Consequently, Korea has traditionally resorted to adding sugar to its wine production to counteract the low sugar content in Korean grapes, yielding lower-quality wines. However, recent success in the cultivation of five European grape cultivars and the development of the domestic grape cultivar Cheongsoo have increased the possibility of achieving high-quality Korean wines. This study aimed to explore the potential of European grape cultivars and Cheongsoo as wine grapes in Korea. This study also conducted sensory evaluation and analyzed the physicochemical properties of the grapes and wines, including antioxidant capacity and color. Despite originating from the same vineyard, the composition of grapes and wines, including volatile aromatic compounds, significantly differed among the grape cultivars. In particular, Vidal wine exhibited superior antioxidant capacity compared with other wines. Moreover, Cheongsoo wine showed higher levels of essential volatile aromatic compounds, such as monoterpenes, than other wines. Sensory evaluation of these two wines also revealed excellent results. In conclusion, these findings hold promise for enhancing the diversity of Korean white wine and fostering growth in the wine industry.
Collapse
Affiliation(s)
- Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea; ; Tel.: +82-53-950-7749
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Peng Q, Zheng H, Meng K, Zhu Y, Zhu W, Zhu H, Shen C, Fu J, Elsheery NL, Xie G, Han J, Wu P, Fan Y, Girma D, Sun J, Hu B. The way of Qu-making significantly affected the volatile flavor compounds in Huangjiu (Chinese rice wine) during different brewing stages. Food Sci Nutr 2022; 10:2255-2270. [PMID: 35844911 PMCID: PMC9281927 DOI: 10.1002/fsn3.2835] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
The volatile flavor compounds of Huangjiu (Chinese rice wine) brewed from different raw materials were obviously different, but there were few studies on the volatile flavor compounds of Huangjiu brewed from different wheat Qu at different brewing stages. In this paper, headspace-solid phase microextraction combined with gas chromatography-mass spectrometry, combined with principal component analysis and sensory evaluation, was used to determine the volatile flavor compounds in Huangjiu brewed from wheat Qu made by hand and wheat Qu made by mechanical. The results showed that there were significant differences in the contents and types of volatile flavor substances in Huangjiu brewed from different wheat Qu at fermentation stages, and the prefermentation and postfermentation Huangjiu samples could be well distinguished from each other. Compared with the Huangjiu brewed from wheat Qu made by mechanical, the Huangjiu brewed from wheat Qu made by hand has stronger aroma and better taste.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
- California Institute of Food and Agricultural ResearchUniversity of CaliforniaDavisCaliforniaUSA
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Kai Meng
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Yimeng Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Wenxia Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Hongyi Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Chi Shen
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Jianwei Fu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Nabil l. Elsheery
- Agricultural Botany DepartmentFaculty of AgricultureTanta UniversityTantaEgypt
| | - Guangfa Xie
- College of Biology and Environmental EngineeringCollege of Shaoxing CRWZhejiang Shuren UniversityHangzhouChina
| | | | - Peng Wu
- School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Yuyan Fan
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - DulaBealu Girma
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Jianqiu Sun
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Baowei Hu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| |
Collapse
|
4
|
Use of Multivariate Statistics in the Processing of Data on Wine Volatile Compounds Obtained by HS-SPME-GC-MS. Foods 2022; 11:foods11070910. [PMID: 35406997 PMCID: PMC8997410 DOI: 10.3390/foods11070910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
This review takes a snapshot of the main multivariate statistical techniques and methods used to process data on the concentrations of wine volatile molecules extracted by means of solid phase micro-extraction and analyzed using GC-MS. Hypothesis test, exploratory analysis, regression models, and unsupervised and supervised pattern recognition methods are illustrated and discussed. Several applications in the wine volatolomic sector are described to highlight different interactions among the various matrix components and volatiles. In addition, the use of Artificial Intelligence-based methods is discussed as an innovative class of methods for validating wine varietal authenticity and geographical traceability.
Collapse
|
5
|
He H, Yan Y, Dong D, Bao Y, Luo T, Chen Q, Wang J. Effect of Issatchenkia terricola WJL-G4 on Deacidification Characteristics and Antioxidant Activities of Red Raspberry Wine Processing. J Fungi (Basel) 2021; 8:17. [PMID: 35049959 PMCID: PMC8780789 DOI: 10.3390/jof8010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous study isolated a novel Issatchenkia terricola WJL-G4, which exhibited a potent capability of reducing citric acid. In the current study, I. terricola WJL-G4 was applied to decrease the content of citric acid in red raspberry juice, followed by the red raspberry wine preparation by Saccharomyces cerevisiae fermentation, aiming to investigate the influence of I. terricola WJL-G4 on the physicochemical properties, organic acids, phenolic compounds and antioxidant activities during red raspberry wine processing. The results showed that after being treated with I. terricola WJL-G4, the citric acid contents in red raspberry juice decreased from 19.14 ± 0.09 to 6.62 ± 0.14 g/L, which was further declined to 5.59 ± 0.22 g/L after S. cerevisiae fermentation. Parameters related to CIELab color space, including L*, a*, b*, h°, and ∆E* exhibited the highest levels in samples after I. terricola WJL-G4 fermentation. Compared to the red raspberry wine pretreated without deacidification (RJO-SC), wine pretreated by I. terricola WJL-G4 (RJIT-SC) exhibited significantly decreased contents of gallic acid, cryptochlorogenic acid, and arbutin, while significantly increased contents of caffeic acid, sinapic acid, raspberry ketone, quercitrin, quercetin, baicalein, and rutin. Furthermore, the antioxidant activities including DPPH· and ABTS+· radical scavenging were enhanced in RJIT-SC group as compared to RJO-SC. This work revealed that I. terricola WJL-G4 had a great potential in red raspberry wine fermentation.
Collapse
Affiliation(s)
- Hongying He
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
| | - Yuchen Yan
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
| | - Dan Dong
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, No. 26, Hexing St., Harbin 150040, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 999, Xuefu St., Nanchang 330047, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China; (H.H.); (Y.Y.); (D.D.); (Y.B.)
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, No. 26, Hexing St., Harbin 150040, China
| |
Collapse
|
6
|
Ogawa M, Vararu F, Moreno-Garcia J, Mauricio JC, Moreno J, Garcia-Martinez T. Analyzing the minor volatilome of Torulaspora delbrueckii in an alcoholic fermentation. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03910-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTorulaspora delbrueckii is an emerging yeast species in the beverage and food industry that is suitable for alcoholic fermentation and to improve the organoleptic quality of wine, beer, mead, and other beverages. Modern consumer preference toward new flavors and products drives the application of T. delbrueckii to ferment less traditional fruits and vegetables. Thus, it has become increasingly relevant to define those metabolites produced in minute quantities by T. delbrueckii, because they may have an impact when producing these new alcoholic beverages. In this study, we have identified metabolites of T. delbrueckii and have compared them with those of Saccharomyces cerevisiae in a controlled setting with a synthetic, high glucose medium using gas chromatography coupled to flame ionization detector (GC–FID) and stir bar sorptive extraction (SBSE) with GC coupled to mass spectrometry (MS). Results showed that T. delbrueckii produced metabolites with higher changes in odor activity complexes than S. cerevisiae: ethyl propanoate, 1,1-diethoxyethane, ethyl isobutyrate, ethyl butyrate, isoamyl acetate, ethyl heptanoate, nonanal, and decanal. We also report seven metabolites detected for the first time in T. delbrueckii. This datum serves to expand the knowledge of T. delbrueckii performance and shows that application of this yeast species is more suitable to a wide array of beverage producers.
Collapse
|
7
|
Study of Wine Volatile Composition of Tempranillo versus Tempranillo Blanco, a New White Grape Variety. BEVERAGES 2021. [DOI: 10.3390/beverages7040072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this work was to analyze and compare the concentration of higher alcohols, esters, and acids in wines from Tempranillo and Tempranillo Blanco. Tempranillo Blanco is a new and little-studied white variety that originated from Tempranillo by a natural mutation. During three seasons, grapevines of both varieties were harvested, and nine wines were made from each. The volatile composition of the wines was determined by GC-MS. In the wines of both varieties, the content of higher alcohols was higher than those of esters and acids. Wines from Tempranillo Blanco had lower content of 2-phenylethanol, methionol, 1-hexanol, benzyl alcohol, and total higher alcohols, but higher hexyl acetate and ethyl decanoate than Tempranillo wines. Total ethyl esters and total esters were higher in Tempranillo wines due to the higher ethyl lactate and ethyl succinate content derivate from the malolactic fermentation that was not made in Tempranillo Blanco. The content of hexanoic and octanoic acids and total acids was also higher in Tempranillo Blanco wines than in Tempranillo. This is one of the first studies carried out on the wine volatile composition of Tempranillo Blanco and therefore contributes to a better understanding of the oenological characteristics of this white variety.
Collapse
|
8
|
Aromatic Characterization of New White Wine Varieties Made from Monastrell Grapes Grown in South-Eastern Spain. Molecules 2020; 25:molecules25173917. [PMID: 32867325 PMCID: PMC7503703 DOI: 10.3390/molecules25173917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/28/2022] Open
Abstract
The aromatic profile of a wine is one of the main characteristics appreciated by consumers. Due to climate change, vineyards need to adapt to new conditions, and one of the strategies that might be followed is to develop new white varieties from Monastrell and other cultivars by means of intervarietal crosses, since white varieties are a minority in south-eastern Spain. Such crosses have already been obtained and have been seen to provide quality white wines of high acidity and with a good aromatic composition. To confirm this, a quantitative analysis was carried out during two vintages (2018 and 2019) in order to study and compare the volatile composition of Verdejo (V) wine with the aromatic composition of several wines made from different crosses between Cabernet Sauvignon (C), Syrah (S), Tempranillo (T), and Verdejo (V) with Monastrell (M), by means of headspace SPME-GC-MS analysis. Wine volatile compounds (alcohols, volatile acids, ethyl esters, terpenes, norisoprenoids, and two other compounds belonging to a miscellaneous group) were identified and quantified using a HS-SPME-GS-MS methodology. An additional sensory analysis was carried out by a qualified tasting panel in order to characterize the different wines. The results highlighted how the crosses MT103, MC69, and MC180 showed significant differences from and better quality than the Verdejo wine. These crosses produced higher concentrations of several aromatic families analyzed, which was supported by the views of the tasting panel, thus confirming their excellent aromatic potential as cultivars for producing grapes well adapted to this area for making white wines.
Collapse
|
9
|
Fermentative volatilome modulation of Muscat Ottonel wines by using yeast starter cultures. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
González-Jiménez MDC, Moreno-García J, García-Martínez T, Moreno JJ, Puig-Pujol A, Capdevilla F, Mauricio JC. Differential Analysis of Proteins Involved in Ester Metabolism in two Saccharomyces cerevisiae Strains during the Second Fermentation in Sparkling Wine Elaboration. Microorganisms 2020; 8:E403. [PMID: 32183073 PMCID: PMC7143655 DOI: 10.3390/microorganisms8030403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 02/02/2023] Open
Abstract
The aromatic metabolites derived from yeast metabolism determine the characteristics of aroma and taste in wines, so they are considered of great industrial interest. Volatile esters represent the most important group and therefore, their presence is extremely important for the flavor profile of the wine. In this work, we use and compare two Saccharomyces cerevisiae yeast strains: P29, typical of sparkling wines resulting of second fermentation in a closed bottle; G1, a flor yeast responsible for the biological aging of Sherry wines. We aimed to analyze and compare the effect of endogenous CO2 overpressure on esters metabolism with the proteins related in these yeast strains, to understand the yeast fermentation process in sparkling wines. For this purpose, protein identification was carried out using the OFFGEL fractionator and the LTQ Orbitrap, following the detection and quantification of esters with gas chromatograph coupled to flame ionization detector (GC-FID) and stir-bar sorptive extraction, followed by thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Six acetate esters, fourteen ethyl esters, and five proteins involved in esters metabolism were identified. Moreover, significant correlations were established between esters and proteins. Both strains showed similar behavior. According to these results, the use of this flor yeast may be proposed for the sparkling wine production and enhance the diversity and the typicity of sparkling wine yeasts.
Collapse
Affiliation(s)
| | - Jaime Moreno-García
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| | - Teresa García-Martínez
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| | - Juan José Moreno
- Department of Agricultural Chemistry, University of Cordoba, 14014 Cordoba, Spain;
| | - Anna Puig-Pujol
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and wine (IRTA-INCAVI), 08720 Barcelona, Spain; (A.P.-P.); (F.C.)
| | - Fina Capdevilla
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and wine (IRTA-INCAVI), 08720 Barcelona, Spain; (A.P.-P.); (F.C.)
| | - Juan Carlos Mauricio
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| |
Collapse
|
11
|
Tang K, Hu J, Fan W, Xu Y, Li JM. Chemometric analysis of Chinese red wines using stir bar sorptive extraction combined with GC–MS analysis. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03380-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Determination and identification of organic acids in wine samples. Problems and challenges. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115630] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Esteki M, Shahsavari Z, Simal-Gandara J. Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authentication. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1649691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- M. Esteki
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Z. Shahsavari
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo – Ourense Campus, Ourense, Spain
| |
Collapse
|
14
|
A review on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wine authentication: a fingerprinting multiclass strategy to classify red varietals through profound chemometric analysis of volatiles. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3151-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Peng C, Viana T, Petersen MA, Larsen FH, Arneborg N. Metabolic footprint analysis of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. Metabolomics 2018; 14:93. [PMID: 30830430 DOI: 10.1007/s11306-018-1391-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There has been a growing interest towards creating defined mixed starter cultures for alcoholic fermentations. Previously, metabolite differences between single and mixed cultures have been explored at the endpoint of fermentations rather than during fermentations. OBJECTIVES To create metabolic footprints of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. METHODS 1H NMR- and GC-MS-based metabolomics was used to identify metabolites that discriminate single and mixed cultures of Lachancea thermotolerans (LT) and Saccharomyces cerevisiae (SC) during alcoholic fermentations. RESULTS Twenty-two metabolites were found when comparing single LT and mixed cultures, including both non-volatiles (carbohydrate, amino acid and acids) and volatiles (higher alcohols, esters, ketones and aldehydes). Fifteen of these compounds were discriminatory only at the death phase initiation (T1) and fifteen were discriminatory only at the death phase termination (T2) of LT in mixed cultures. Eight metabolites were discriminatory at both T1 and T2. These results indicate that specific metabolic changes may be descriptive of different LT growth behaviors. Fifteen discriminatory metabolites were found when comparing single SC and mixed cultures. These metabolites were all volatiles, and twelve metabolites were discriminatory only at T2, indicating that LT-induced changes in volatiles occur during the death phase of LT in mixed cultures and not during their initial growth stage. CONCLUSIONS This work provides a detailed insight into yeast metabolites that differ between single and mixed cultures, and these data may be used for understanding and eventually predicting yeast metabolic changes in wine fermentations.
Collapse
Affiliation(s)
- Chuantao Peng
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Tiago Viana
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
- Chr.Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Flemming Hofmann Larsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
17
|
López de Lerma N, Peinado RA, Puig-Pujol A, Mauricio JC, Moreno J, García-Martínez T. Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem 2018; 250:22-29. [PMID: 29412914 DOI: 10.1016/j.foodchem.2018.01.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Production of sparkling wines involve a second alcoholic fermentation and contact with yeast less over an extended period of time, which influences the aroma composition and sensory quality of the resulting wines. Sparkling wines obtained with two yeast strains inoculated as free cells, immobilized in alginate bed and bioimmobilized as biocapsules, were aged during 32 months. Among the volatile compounds, high Odor Activity Values were obtained with isoamyl acetate, ethyl propanoate, ethyl butanoate, ethyl 3-methylbutanoate, ethyl hexanoate, ethyl octanoate, hexanol, 2-methoxy-4-vinylphenol, decanal, octanoic acid, decanoic acid and TDN. Taken together these contribute more than 70% of the overall aromatic series value. Although some results rely more on the yeast strain than the inoculation format, specific aroma compounds were associated with the immobilization format, allowing the classification of sparkling wines by PCA. As a result the aroma quality of sparkling wines could be improved using immobilized yeasts.
Collapse
Affiliation(s)
- Nieves López de Lerma
- Agricultural Chemistry Department, University of Córdoba, Building Marie Curie, 3rd Floor, Campus de Rabanales, 14014 Córdoba, Spain
| | - Rafael A Peinado
- Agricultural Chemistry Department, University of Córdoba, Building Marie Curie, 3rd Floor, Campus de Rabanales, 14014 Córdoba, Spain.
| | - Anna Puig-Pujol
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and Wine (IRTA-INCAVI), Plaça Àgora 2, 08720 Vilafranca del Penedès, Barcelona, Spain
| | - Juan C Mauricio
- Microbiology Department, University of Córdoba, Building Severo Ochoa, Ground Floor, Campus de Rabanales, 14014 Córdoba, Spain
| | - Juan Moreno
- Agricultural Chemistry Department, University of Córdoba, Building Marie Curie, 3rd Floor, Campus de Rabanales, 14014 Córdoba, Spain
| | - Teresa García-Martínez
- Microbiology Department, University of Córdoba, Building Severo Ochoa, Ground Floor, Campus de Rabanales, 14014 Córdoba, Spain
| |
Collapse
|
18
|
Volatile and phenolic composition of red wines subjected to aging in oak cask of different toast degree during two periods of time. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Comparison of stir bar sorptive extraction in the liquid and vapour phases, solvent-assisted flavour evaporation and headspace solid-phase microextraction for the (non)-targeted analysis of volatiles in fruit juice. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Villano C, Lisanti MT, Gambuti A, Vecchio R, Moio L, Frusciante L, Aversano R, Carputo D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Grigorica LG, Niculaua M, Nechita CB, Nistor AM, Cotea VV. The impact of some commercial yeast strains on aroma compounds and sensorial analysis on two white wine varieties made in PGI Dealurile Olteniei, Romania. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170902006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Optimization of Head Space Sorptive Extraction to Determine Volatile Compounds from Oak Wood in Fortified Wines. Chromatographia 2016. [DOI: 10.1007/s10337-016-3088-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Schueuermann C, Khakimov B, Engelsen SB, Bremer P, Silcock P. GC-MS Metabolite Profiling of Extreme Southern Pinot noir Wines: Effects of Vintage, Barrel Maturation, and Fermentation Dominate over Vineyard Site and Clone Selection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2342-2351. [PMID: 26857342 DOI: 10.1021/acs.jafc.5b05861] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Wine is an extremely complex beverage that contains a multitude of volatile and nonvolatile compounds. This study investiged the effect of vineyard site and grapevine clone on the volatile profiles of commercially produced Pinot noir wines from central Otago, New Zealand. Volatile metabolites in Pinot noir wines produced from five grapevine clones grown on six vineyard sites in close proximity, over two consecutive vintages, were surveyed using gas chromatography-mass spectrometry (GC-MS). The raw GC-MS data were processed using parallel factor analysis (PARAFAC2), and final metabolite data were analyzed by principal component analysis (PCA). Winemaking conditions, vintage, and barrel maturation were found to be the most dominant factors. The effects of vineyard site and clone were mostly vintage dependent. Although four compounds including β-citronellol, homovanillyl alcohol, N-(3-methylbutyl)acetamide, and N-(2-phenylethyl)acetamide discriminated the vineyard sites independent of vintage, Pinot noir wines from different clones were only partially discriminated by PCA, and marker compound selection remained challenging.
Collapse
Affiliation(s)
- Claudia Schueuermann
- Department of Food Science, University of Otago , P.O. Box 56, Dunedin, New Zealand
| | - Bekzod Khakimov
- Spectroscopy and Chemometrics Group, Department of Food Science, University of Copenhagen , Rolighedsvej 26, DK-1958 Fredriksberg C, Denmark
| | - Søren Balling Engelsen
- Spectroscopy and Chemometrics Group, Department of Food Science, University of Copenhagen , Rolighedsvej 26, DK-1958 Fredriksberg C, Denmark
| | - Phil Bremer
- Department of Food Science, University of Otago , P.O. Box 56, Dunedin, New Zealand
| | - Patrick Silcock
- Department of Food Science, University of Otago , P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
24
|
Vararu F, Moreno-García J, Zamfir CI, Cotea VV, Moreno J. Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains. Food Chem 2015; 197:373-81. [PMID: 26616963 DOI: 10.1016/j.foodchem.2015.10.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
Nine wines obtained by fermenting Aligoté musts with individual starter cultures of eight Saccharomyces cerevisiae yeast strains and with the indigenous microbiota were compared in terms of their composition in minor volatile aroma compounds. An easy handle methodology Stir-Bar-Sorptive-Adsorption, Gas Chromatography-Mass Spectrometry based, permits the identification of 49 aroma compounds. The rearrangement of these aroma compounds in six chemical families permits the establishment of a finger printing for each wine. Eighteen aroma compounds that exhibit a high differentiation power (p⩽0.05) were selected for chemometric analysis. The Principal Component Analysis carried out with these aroma compounds reveal that the first two principal components explain 53.8% and 17.2% of the total variance, respectively, allowing the establishment of nine different groups, in accordance with the wine types obtained. These results reveal analytical differences among the wines that are not recognized by sensorial analysis.
Collapse
Affiliation(s)
- Florin Vararu
- University of Agricultural Sciences and Veterinary Medicine, 3 Mihail Sadoveanu Alley, Iaşi 700490, Romania
| | - Jaime Moreno-García
- Departamento de Química Agrícola y Edafología, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Cordoba, Spain
| | - Cătălin-Ioan Zamfir
- Research Center for Oenology, Romanian Academy, 9 Mihail Sadoveanu Alley, Iaşi 700490, Romania
| | - Valeriu V Cotea
- University of Agricultural Sciences and Veterinary Medicine, 3 Mihail Sadoveanu Alley, Iaşi 700490, Romania
| | - Juan Moreno
- Departamento de Química Agrícola y Edafología, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Cordoba, Spain.
| |
Collapse
|
25
|
Anthocyanins as markers for the classification of Argentinean wines according to botanical and geographical origin. Chemometric modeling of liquid chromatography–mass spectrometry data. Food Chem 2015; 175:174-80. [DOI: 10.1016/j.foodchem.2014.11.124] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/20/2014] [Accepted: 11/20/2014] [Indexed: 11/22/2022]
|
26
|
Moreno-García J, García-Martínez T, Millán MC, Mauricio JC, Moreno J. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Food Microbiol 2015; 51:1-9. [PMID: 26187821 DOI: 10.1016/j.fm.2015.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/19/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - M Carmen Millán
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Juan Carlos Mauricio
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain.
| |
Collapse
|
27
|
Pérez-Magariño S, Ortega-Heras M, Bueno-Herrera M, Martínez-Lapuente L, Guadalupe Z, Ayestarán B. Grape variety, aging on lees and aging in bottle after disgorging influence on volatile composition and foamability of sparkling wines. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Xiao Z, Dai X, Zhu J, Yu H. Classification of Chinese Rice Wine According to Geographic Origin and Wine Age Based on Chemometric Methods and SBSE-TD-GC-MS Analysis of Volatile Compounds. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zuobing Xiao
- Department of Food Science and Technology, Shanghai Institute of Technology
| | - Xin Dai
- Department of Food Science and Technology, Shanghai Institute of Technology
| | - Jiancai Zhu
- Department of Food Science and Technology, Shanghai Institute of Technology
| | - Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology
| |
Collapse
|
29
|
Gupta S, Variyar PS, Sharma A. Application of mass spectrometry based electronic nose and chemometrics for fingerprinting radiation treatment. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Use of Stir Bar Sorptive Extraction and Thermal Desorption for Gas Chromatography-Mass Spectrometry Characterization of Selected Volatile Compounds in Chinese Liquors. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0060-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Tang K, Ma L, Han YH, Nie Y, Li JM, Xu Y. Comparison and chemometric analysis of the phenolic compounds and organic acids composition of chinese wines. J Food Sci 2014; 80:C20-8. [PMID: 25427857 DOI: 10.1111/1750-3841.12691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
Abstract
Characteristics of 106 wines from 5 major grape varieties and 3 typical geographic regions in China were investigated by means of profiling of organic acids and phenolic compounds analysis. An ultra-performance liquid chromatography method was developed and thus, large number of samples could be determined in a quick and reliable way. The results showed that different origins and varieties were characteristic of various profiles of organic acid and phenolic compounds. In order to investigate possible correlation between organic acids and phenolic compounds content and grape variety and/or geographical origin, analysis of variance and linear discriminant analysis (LDA) were conducted. A satisfactory LDA result for red wines according to geographic origin was obtained, in which the correct classification was 100% and the leave-one-out validation accuracy was 90%. The corresponding results of white wines were 91% and 86%, respectively. When LDA was processed, according to grape varieties, the proportionality of successfully classified wines was 96%, while the leave-one-out validation accuracy was 94%. The organic acids and phenolic compounds profiles were useful in the classification of Chinese wines according to grape variety and geographic origin.
Collapse
Affiliation(s)
- Ke Tang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ, 1800 Lihu Ave, Wuxi 214122, Jiangsu, PR China; Centre for Brewing Science and Enzyme Biotechnology, School of Biotechnology, Jiangnan Univ, 1800 Lihu Ave, Wuxi 214122, Jiangsu, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Springer AE, Riedl J, Esslinger S, Roth T, Glomb MA, Fauhl-Hassek C. Validated modeling for German white wine varietal authentication based on headspace solid-phase microextraction online coupled with gas chromatography mass spectrometry fingerprinting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6844-6851. [PMID: 25000414 DOI: 10.1021/jf502042c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An untargeted analytical approach combined with chemometrics using the volatiles of German white wine was investigated regarding the usefulness for verifying botanical origin. A total of 198 wine samples of Riesling, Müller-Thurgau, Silvaner, Pinot Gris, and Pinot Blanc were examined applying headspace solid-phase microextraction online coupled with gas chromatography mass spectrometry. The resultant three-dimensional raw data were processed by available metabolomics software. After data treatment, a partial least-squares discriminant analysis (PLS-DA) model was validated. External samples were correctly classified for 97% Silvaner, 93% Riesling, 91% Pinot Gris/Blanc, and 80% Müller-Thurgau. This model was related to monoterpenoids, C13-norisoprenoids, and esters. Further, 100% prediction for a two-class model of Riesling versus Pinot Gris/Blanc was confirmed by 74 additional samples measured independently. Hence, the strategy applied was, in particular, reliable and relevant for white wine varietal classification. In addition, the superior classification performance of the Riesling class was revealed.
Collapse
Affiliation(s)
- A E Springer
- Department Safety in the Food Chain, Bundesinstitut für Risikobewertung (BfR) Federal Institue for Risk Assessment , Max-Dohrn-Straße 8-10, D-10589 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Moreno-García J, Raposo RM, Moreno J. Biological aging status characterization of Sherry type wines using statistical and oenological criteria. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Martínez-Gil AM, Pardo-García AI, Zalacain A, Alonso GL, Salinas MR. Lavandin hydrolat applications to Petit Verdot vineyards and their impact on their wine aroma compounds. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Kusano M, Iizuka Y, Kobayashi M, Fukushima A, Saito K. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis. Metabolites 2013; 3:223-42. [PMID: 24957989 PMCID: PMC3901263 DOI: 10.3390/metabo3020223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 12/27/2022] Open
Abstract
Plants produce various volatile organic compounds (VOCs), which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis) involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS). We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions.
Collapse
Affiliation(s)
- Miyako Kusano
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan.
| | - Yumiko Iizuka
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | - Kazuki Saito
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
37
|
Kawaguchi M, Takatsu A, Ito R, Nakazawa H. Applications of stir-bar sorptive extraction to food analysis. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Multivariate analysis for the differentiation of sparkling wines elaborated from autochthonous Spanish grape varieties: volatile compounds, amino acids and biogenic amines. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1934-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Simultaneous quantitation of volatile compounds in citrus beverage through stir bar sorptive extraction coupled with thermal desorption-programmed temperature vaporization. Talanta 2013; 107:118-26. [PMID: 23598201 DOI: 10.1016/j.talanta.2012.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022]
Abstract
Due to disparate concentrations and physiochemical properties of analytes, difficulties in terms of sensitivity and reproducibility are commonly encountered in flavour analysis. In this study, we attempted to improve the performance of stir bar sorptive extraction coupled with thermal desorption and programmed temperature vaporization (SBSE-TD-PTV) based on a model citrus beverage. Through response surface methodology, thermal desorption conditions (i.e. desorption flow, thermal desorption time and cryofocusing temperature) were optimised based on constrained optimisation. Solute discrimination during injection was alleviated by normalising the variability of peak responses of different analytes. In addition, the effects of extraction conditions (i.e. ionic strength, stirring speed, extraction time, temperature and pH) were also investigated using partial factorial design. The obtained method showed high precision and good linearity over the concentration ranged from 0.10 to 20.00 μg L(-1) with the correlation coefficients higher than 0.991 for most of the selected chemicals, except indole. The limit of detection ranged from 0.03 to 3.89 μg L(-1). Hence, our results indicated that through the systematic study, SBSE-TD-PTV method became much less solute discriminative and more reliable to quantitate complex analytes.
Collapse
|
40
|
Comparison of the sensitivity of different aroma extraction techniques in combination with gas chromatography–mass spectrometry to detect minor aroma compounds in wine. J Chromatogr A 2013; 1272:1-7. [DOI: 10.1016/j.chroma.2012.11.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/24/2012] [Accepted: 11/14/2012] [Indexed: 11/22/2022]
|
41
|
Naudé Y, Rohwer ER. Investigating the coffee flavour in South African Pinotage wine using novel offline olfactometry and comprehensive gas chromatography with time of flight mass spectrometry. J Chromatogr A 2012; 1271:176-80. [PMID: 23219481 DOI: 10.1016/j.chroma.2012.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
Abstract
Pinotage wine from several South African wine cellars has been produced with a novel coffee flavour. We have investigated this innovative coffee effect using in house developed solventless sampling and fractionating olfactometric techniques, which are unique in their ability to study synergistic aroma effects as opposed to traditional gas chromatography olfactometry (GC-O) which is designed to, ideally, evaluate single eluting compounds in a chromatographic sequence. Sections of the chromatogram, multiple or single peaks, were recaptured on multichannel open tubular silicone rubber (polydimethylsiloxane (PDMS)) traps at the end of a GC column. The recaptured fractions were released in a controlled manner for offline olfactory evaluation, and for qualitative analysis using comprehensive gas chromatography coupled to time of flight mass spectrometry (GC×GC-TOFMS) for compound separation and identification, thus permitting correlation of odour with specific compounds. A combination of furfural and 2-furanmethanol was responsible for a roast coffee bean-like odour in coffee style Pinotage wines. This coffee perception is the result of a synergistic effect in which no individual compound was responsible for the characteristic aroma.
Collapse
Affiliation(s)
- Yvette Naudé
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.
| | | |
Collapse
|
42
|
Sichilongo KF, Obuseng VC, Okatch H. Applications of Gas Chromatography–Mass Spectrometry (GC–MS): An Examination of Selected African Cases. Chromatographia 2012. [DOI: 10.1007/s10337-012-2277-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
de Villiers A, Alberts P, Tredoux AG, Nieuwoudt HH. Analytical techniques for wine analysis: An African perspective; a review. Anal Chim Acta 2012; 730:2-23. [DOI: 10.1016/j.aca.2011.11.064] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/15/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
|
44
|
Bowen AJ, Reynolds AG. Odor potency of aroma compounds in Riesling and Vidal blanc table wines and icewines by gas chromatography-olfactometry-mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2874-2883. [PMID: 22324474 DOI: 10.1021/jf203314j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study aimed to elucidate the odor potency of aroma compounds in Riesling and Vidal blanc (syn. Vidal) table wines and icewines from the Niagara Peninsula using stir bar sorptive extraction-gas chromatography-olfactometry-mass spectrometry. Dilution analysis determined the most odor-potent compounds in Vidal and Riesling icewines (n = 2) and table wines (n = 2) from a commercial producer. The top 15 odor-potent compounds in each wine were identified and quantified, resulting in 23 and 24 compounds for Riesling and Vidal, respectively. The most odor-potent compounds were β-damascenone, decanal, 1-hexanol, 1-octen-3-ol, 4-vinylguaiacol, ethyl hexanoate, and ethyl 3-methylbutyrate. In general, icewines had higher concentrations of most aroma compounds compared to table wines. Through computation of odor activity values, the compounds with the highest odor activity for the icewines were β-damascenone, 1-octen-3-ol, ethyl octanoate, cis-rose oxide, and ethyl hexanoate. In table wines the highest odor activity values were found for ethyl octanoate, β-damascenone, ethyl hexanoate, cis-rose oxide, ethyl 3-methylbutyrate, and 4-vinylguaiacol. These findings provide a foundation to determine impact odorants in icewines and the effects of viticultural and enological practices on wine aroma volatile composition.
Collapse
Affiliation(s)
- Amy J Bowen
- Cool Climate Oenology and Viticulture Institute, Brock University , 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada.
| | | |
Collapse
|
45
|
Welke JE, Manfroi V, Zanus M, Lazarotto M, Alcaraz Zini C. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J Chromatogr A 2012; 1226:124-39. [DOI: 10.1016/j.chroma.2012.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 11/28/2022]
|
46
|
|
47
|
Weldegergis BT, Villiers AD, McNeish C, Seethapathy S, Mostafa A, Górecki T, Crouch AM. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC–TOFMS). Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.157] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Dall’Asta C, Cirlini M, Morini E, Galaverna G. Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. J Chromatogr A 2011; 1218:7557-65. [DOI: 10.1016/j.chroma.2011.08.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/12/2011] [Accepted: 08/11/2011] [Indexed: 11/25/2022]
|
49
|
|
50
|
Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines. Anal Chim Acta 2011; 701:98-111. [DOI: 10.1016/j.aca.2011.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/20/2011] [Accepted: 06/05/2011] [Indexed: 11/17/2022]
|