1
|
Ma Y, Zhang L, Ma X, Bai K, Tian Z, Wang Z, Muratkhan M, Wang X, Lü X, Liu M. Saccharide mapping as an extraordinary method on characterization and identification of plant and fungi polysaccharides: A review. Int J Biol Macromol 2024; 275:133350. [PMID: 38960255 DOI: 10.1016/j.ijbiomac.2024.133350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Saccharide mapping was a promising scheme to unveil the mystery of polysaccharide structure by analysis of the fragments generated from polysaccharide decomposition process. However, saccharide mapping was not widely applied in the polysaccharide analysis for lacking of systematic introduction. In this review, a detailed description of the establishment process of saccharide mapping, the pros and cons of downstream technologies, an overview of the application of saccharide mapping, and practical strategies were summarized. With the updating of the available downstream technologies, saccharide mapping had been expanding its scope of application to various kinds of polysaccharides. The process of saccharide mapping analysis included polysaccharides degradation and hydrolysates analysis, and the degradation process was no longer limited to acid hydrolysis. Some downstream technologies were convenient for rapid qualitative analysis, while others could achieve quantitative analysis. For the more detailed structure information could be provided by saccharide mapping, it was possible to improve the quality control of polysaccharides during preparation and application. This review filled the blank of basic information about saccharide mapping and was helpful for the establishment of a professional workflow for the saccharide mapping application to promote the deep study of polysaccharide structure.
Collapse
Affiliation(s)
- Yuntian Ma
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lichen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuoer Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhangyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Marat Muratkhan
- Department of Food Technology and Processing Products, Technical Faculty, Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Manshun Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
3
|
Pandeirada CO, Hageman JA, Janssen HG, Westphal Y, Schols HA. Identification of plant polysaccharides by MALDI-TOF MS fingerprinting after periodate oxidation and thermal hydrolysis. Carbohydr Polym 2022; 292:119685. [DOI: 10.1016/j.carbpol.2022.119685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 01/05/2023]
|
4
|
Pandeirada CO, Achterweust M, Janssen HG, Westphal Y, Schols HA. Periodate oxidation of plant polysaccharides provides polysaccharide-specific oligosaccharides. Carbohydr Polym 2022; 291:119540. [DOI: 10.1016/j.carbpol.2022.119540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 01/05/2023]
|
5
|
Pandeirada CO, Speranza S, Bakx E, Westphal Y, Janssen HG, Schols HA. Partial acid-hydrolysis of TEMPO-oxidized arabinoxylans generates arabinoxylan-structure resembling oligosaccharides. Carbohydr Polym 2022; 276:118795. [PMID: 34823802 DOI: 10.1016/j.carbpol.2021.118795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/09/2023]
Abstract
Arabinoxylans (AXs) display biological activities that depend on their chemical structures. To structurally characterize and distinguish AXs using a non-enzymatic approach, various TEMPO-oxidized AXs were partially acid-hydrolysed to obtain diagnostic oligosaccharides (OS). Arabinurono-xylo-oligomer alditols (AUXOS-A) with degree of polymerization 2-5, comprising one and two arabinuronic acid (AraA) substituents were identified in the UHPLC-PGC-MS profiles of three TEMPO-oxidized AXs, namely wheat (ox-WAX), partially-debranched WAX (ox-pD-WAX), and rye (ox-RAX). Characterization of these AUXOS-A highlighted that single-substitution of the Xyl unit preferably occurs at position O-3 for these samples, and that ox-WAX has both more single substituted and more double-substituted xylose residues in its backbone than the other AXs. Characteristic UHPLC-PGC-MS OS profiles, differing in OS abundance and composition, were obtained for each AX. Thus, partial acid-hydrolysis of TEMPO-oxidized AXs with analysis of the released OS by UHPLC-PGC-MS is a promising novel non-enzymatic approach to distinguish AXs and obtain insights into their structures.
Collapse
Affiliation(s)
- Carolina O Pandeirada
- Wageningen University & Research, Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Sofia Speranza
- Wageningen University & Research, Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Edwin Bakx
- Wageningen University & Research, Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Yvonne Westphal
- Unilever Foods Innovation Centre - Hive, Bronland 14, 6708 WH Wageningen, the Netherlands
| | - Hans-Gerd Janssen
- Unilever Foods Innovation Centre - Hive, Bronland 14, 6708 WH Wageningen, the Netherlands; Wageningen University & Research, Laboratory of Organic Chemistry, P.O. Box 8026, 6700 EG Wageningen, the Netherlands
| | - Henk A Schols
- Wageningen University & Research, Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
6
|
MALDI-TOF Mass Spectroscopy Applications in Clinical Microbiology. Adv Pharmacol Pharm Sci 2021; 2021:9928238. [PMID: 34041492 PMCID: PMC8121603 DOI: 10.1155/2021/9928238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
There is a range of proteomics methods to spot and analyze bacterial protein contents such as liquid chromatography-mass spectrometry (LC-MS), two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), which give comprehensive information about the microorganisms that may be helpful within the diagnosis and coverings of infections. Microorganism identification by mass spectrometry is predicted on identifying a characteristic spectrum of every species so matched with an outsized database within the instrument. MALDI-TOF MS is one of the diagnostic methods, which is a straightforward, quick, and precise technique, and is employed in microbial diagnostic laboratories these days and may replace other diagnostic methods. This method identifies various microorganisms such as bacteria, fungi, parasites, and viruses, which supply comprehensive information. One of the MALDI-TOF MS's crucial applications is bacteriology, which helps identify bacterial species, identify toxins, and study bacterial antibiotic resistance. By knowing these cases, we will act more effectively against bacterial infections.
Collapse
|
7
|
Jiang Q, Wang Y, Li H, Chen DDY. Combining online size exclusion chromatography and electrospray ionization mass spectrometry to characterize plant polysaccharides. Carbohydr Polym 2020; 246:116591. [PMID: 32747250 DOI: 10.1016/j.carbpol.2020.116591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Characterizing polysaccharides with large molecular weights and isomeric heterogeneity with mass spectrometry (MS) is generally difficult. In this work, we demonstrate how coupling size exclusion chromatography (SEC) and high-resolution MS with source-induced dissociation (SID) can be used for the separation and direct structural evaluation of intact polysaccharides. The analytical method was successfully developed using dextran standards up to 3755 kDa. This method was used to separate naturally occurring plant polysaccharides based on size, after which numerous polysaccharide fragments were identified from the resulting MS spectra. The results provided strong evidence for structural diversity, complexity, and heterogeneity among polysaccharides. MS showed superior sensitivity and reliability for the polysaccharides in eluted fractions when compared to a refractive index detector. Putative compositions for the fragments were proposed based on exact mass values. The work demonstrated that SEC-SID-MS is a feasible alternative for obtaining valuable structural information from the analysis of intact polysaccharides.
Collapse
Affiliation(s)
- Qing Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ying Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - David D Y Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z1, Canada.
| |
Collapse
|
8
|
Saika A, Fukuoka T, Mikome S, Kondo Y, Habe H, Morita T. Screening and isolation of the liamocin-producing yeast Aureobasidium melanogenum using xylose as the sole carbon source. J Biosci Bioeng 2019; 129:428-434. [PMID: 31732259 DOI: 10.1016/j.jbiosc.2019.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Xylose, the main component of xylan, is the second most abundant sugar in nature after glucose. Consequently, xylose represents an attractive feedstock for the production of value-added compounds such as biosurfactants (BSs), which are produced by various bacteria and yeasts. In this study, we screened and isolated yeast strains that synthesize BSs using xylose as the sole carbon source. We applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to screen for BS-producing yeasts and isolated eight strains as the liamocin producers. Two of the eight strains, AS37 and SK25, were identified as Aureobasidium melanogenum, which is known as black yeasts, by based on 26S ribosomal RNA gene sequences. Both strains produced a wide variety of liamocin structures from not only xylose but also glucose and sucrose. According to the MALDI-TOF MS analysis, signals corresponding to sodium ion adducts of di-, tri-, tetra-, penta- and hexa-acylated C6-liamocins and di-, tri- and tetra-acylated C5-liamocins were detected. In addition, their mono-acetylated form was also detected. The dominant sugar component of liamocins produced by strains AS37 and SK25 is mannitol as estimated by HPLC analysis. This is the first report to describe the screening of liamocins-producing yeasts using xylose as the sole carbon source.
Collapse
Affiliation(s)
- Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shuntaro Mikome
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yukishige Kondo
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
9
|
Minoia S, Boualem A, Marcel F, Troadec C, Quemener B, Cellini F, Petrozza A, Vigouroux J, Lahaye M, Carriero F, Bendahmane A. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:195-202. [PMID: 26566837 DOI: 10.1016/j.plantsci.2015.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 05/25/2023]
Abstract
Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits.
Collapse
Affiliation(s)
- Silvia Minoia
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France; ALSIA, Centro Ricerche Metapontum Agrobios, SS Jonica 106 Km 448.2, 75012 Metaponto (MT), Italy.
| | - Adnane Boualem
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - Fabien Marcel
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - Christelle Troadec
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - Bernard Quemener
- INRA, UR1268 Biopolymers, Interactions and Assemblies, rue de la Géraudière, F-44316 Nantes, France.
| | - Francesco Cellini
- ALSIA, Centro Ricerche Metapontum Agrobios, SS Jonica 106 Km 448.2, 75012 Metaponto (MT), Italy.
| | - Angelo Petrozza
- ALSIA, Centro Ricerche Metapontum Agrobios, SS Jonica 106 Km 448.2, 75012 Metaponto (MT), Italy.
| | - Jacqueline Vigouroux
- INRA, UR1268 Biopolymers, Interactions and Assemblies, rue de la Géraudière, F-44316 Nantes, France.
| | - Marc Lahaye
- INRA, UR1268 Biopolymers, Interactions and Assemblies, rue de la Géraudière, F-44316 Nantes, France.
| | - Filomena Carriero
- ALSIA, Centro Ricerche Metapontum Agrobios, SS Jonica 106 Km 448.2, 75012 Metaponto (MT), Italy.
| | - Abdelhafid Bendahmane
- INRA, UMR1403, IPS2, CNRS-UMR 9213, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 2 rue Gaston Crémieux, 91057 Evry, France.
| |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
11
|
Chong SL, Virkki L, Maaheimo H, Juvonen M, Derba-Maceluch M, Koutaniemi S, Roach M, Sundberg B, Tuomainen P, Mellerowicz EJ, Tenkanen M. O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology 2014; 24:494-506. [DOI: 10.1093/glycob/cwu017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
12
|
Analytical techniques for the elucidation of wheat bran constituents and their structural features with emphasis on dietary fiber – A review. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2013.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Li X, Jackson P, Rubtsov DV, Faria-Blanc N, Mortimer JC, Turner SR, Krogh KB, Johansen KS, Dupree P. Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:94. [PMID: 23819705 PMCID: PMC3717103 DOI: 10.1186/1754-6834-6-94] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/28/2013] [Indexed: 05/17/2023]
Abstract
BACKGROUND Plant cell wall polysaccharide composition varies substantially between species, organs and genotypes. Knowledge of the structure and composition of these polysaccharides, accompanied by a suite of well characterised glycosyl hydrolases will be important for the success of lignocellulosic biofuels. Current methods used to characterise enzymatically released plant oligosaccharides are relatively slow. RESULTS A method and software was developed allowing the use of a DNA sequencer to profile oligosaccharides derived from plant cell wall polysaccharides (DNA sequencer-Assisted Saccharide analysis in High throughput, DASH). An ABI 3730xl, which can analyse 96 samples simultaneously by capillary electrophoresis, was used to separate fluorophore derivatised reducing mono- and oligo-saccharides from plant cell walls. Using electrophoresis mobility markers, oligosaccharide mobilities were standardised between experiments to enable reproducible oligosaccharide identification. These mobility markers can be flexibly designed to span the mobilities of oligosaccharides under investigation, and they have a fluorescence emission that is distinct from that of the saccharide labelling. Methods for relative and absolute quantitation of oligosaccharides are described. Analysis of a large number of samples is facilitated by the DASHboard software which was developed in parallel. Use of this method was exemplified by comparing xylan structure and content in Arabidopsis thaliana mutants affected in xylan synthesis. The product profiles of specific xylanases were also compared in order to identify enzymes with unusual oligosaccharide products. CONCLUSIONS The DASH method and DASHboard software can be used to carry out large-scale analyses of the compositional variation of plant cell walls and biomass, to compare plants with mutations in plant cell wall synthesis pathways, and to characterise novel carbohydrate active enzymes.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Biochemistry, Building O, Downing Site, University of Cambridge, Cambridge CB2 1QW, UK
| | - Peter Jackson
- Department of Biochemistry, Building O, Downing Site, University of Cambridge, Cambridge CB2 1QW, UK
| | - Denis V Rubtsov
- Department of Biochemistry, Building O, Downing Site, University of Cambridge, Cambridge CB2 1QW, UK
| | - Nuno Faria-Blanc
- Department of Biochemistry, Building O, Downing Site, University of Cambridge, Cambridge CB2 1QW, UK
| | - Jenny C Mortimer
- Department of Biochemistry, Building O, Downing Site, University of Cambridge, Cambridge CB2 1QW, UK
| | - Simon R Turner
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | - Paul Dupree
- Department of Biochemistry, Building O, Downing Site, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
14
|
Wang L, Wang W, Wang YQ, Liu YY, Wang JX, Zhang XQ, Ye D, Chen LQ. Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. MOLECULAR PLANT 2013; 6:1131-48. [PMID: 23709340 DOI: 10.1093/mp/sst084] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell wall biosynthesis is indispensable for pollen tube growth. Despite its importance to sexual reproduction, the molecular mechanisms of pollen tube wall biosynthesis remain poorly understood. Here, we report functional characterization of two putative Arabidopsis galacturonosyltransferase genes, GAUT13 and GAUT14, which are essential for pollen tube growth. GAUT13 and GAUT14 encode the proteins that share a high amino acid sequence identity and are located in the Golgi apparatus. The T-DNA insertion mutants, gaut13 and gaut14, did not exhibit any observable defects, but the gaut13 gaut14 double mutants were defective in pollen tube growth; 35.2-37.3% pollen tubes in the heterozygous double mutants were swollen and defective in elongation. The outer layer of the cell wall did not appear distinctly fibrillar in the double mutant pollen tubes. Furthermore, distribution of homogalacturonan labeled with JIM5 and JIM7 in the double mutant pollen tube wall was significantly altered compared to wild-type. Our results suggest that GAUT13 and GAUT14 function redundantly in pollen tube growth, possibly through participation in pectin biosynthesis of the pollen tube wall.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mishra A, Joshi M, Jha B. Oligosaccharide mass profiling of nutritionally important Salicornia brachiata, an extreme halophyte. Carbohydr Polym 2013; 92:1942-5. [DOI: 10.1016/j.carbpol.2012.11.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/07/2012] [Accepted: 11/21/2012] [Indexed: 11/30/2022]
|
16
|
Jiao L, Wan D, Zhang X, Li B, Zhao H, Liu S. Characterization and immunostimulating effects on murine peritoneal macrophages of oligosaccharide isolated from Panax ginseng C.A. Meyer. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:490-496. [PMID: 23036810 DOI: 10.1016/j.jep.2012.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Meyer has been the most precious and renowned Chinese herb used in Asian countries for the treatment of various medical disorders. AIM OF THE STUDY The aim of this work was to investigate the activation effect on murine peritoneal macrophages of oligosaccharide from the roots of P. ginseng. MATERIALS AND METHODS In this work, the water-extracted oligosaccharide of P. ginseng was (WGOS) isolated and purified from the roots of P. ginseng by hot water extraction, ultrafiltration and gel-permeation chromatography. The monosaccharide composition and degree of polymerization (DP) of WGOS were determined by a combination of acid hydrolysis, high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Phagocytosis of macrophages was measured by uptake of the neutral red by macrophages, nitric oxide (NO) was determined by the Griess method, inducible NO synthase (iNOS) activity was determined by colorimetric method using a reagent kit, and tumor necrosis factor-α (TNF-α) was analyzed by enzyme linked immunosorbent assay (ELISA). The reactive species detection kit was used to measure the reactive oxygen species (ROS) level. RESULTS WGOS was composed of glucose and the DP was ranging from 2 to 14. Immunological tests showed that treatment of WGOS significantly increased phagocytosis of macrophages, and promoted NO, TNF-α and ROS production. Furthermore, WGOS dose-dependently stimulated NO formation through the up-regulation of iNOS activity. CONCLUSIONS Taken together, WGOS possessed high immunopotentiating activity and could be developed as a novel immnunostimulant.
Collapse
Affiliation(s)
- Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | | | | | | | | | | |
Collapse
|
17
|
Lahaye M, Falourd X, Quemener B, Ralet MC, Howad W, Dirlewanger E, Arús P. Cell wall polysaccharide chemistry of peach genotypes with contrasted textures and other fruit traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6594-605. [PMID: 22697314 DOI: 10.1021/jf301494j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell wall composition, pectin, and hemicellulose fine structure variation were assessed in peach and related genotypes with contrasted texture and fruit shape. Cell walls were prepared from four commercial peaches, eight genotypes from the Jalousia × Fantasia peach cross, and six genotypes from the Earlygold peach × Texas almond cross. Sugar composition was determined chemically while fine structure of homogalacturonan pectin and xyloglucan hemicellulose were assessed by coupling pectin lyase and glucanase degradation, respectively, with MALDI-TOF MS analysis of the degradation products. The results indicate clear compositional and structural differences between the parents and their related genotypes on the basis of pectin versus cellulose/hemicellulose content and on the fine structure of homogalacturonan and xyloglucan. A relation between methyl- and acetyl-esterification of pectin with fruit shape is revealed in the Fantasia × Jalousia peach genotypes.
Collapse
Affiliation(s)
- Marc Lahaye
- INRA, UR1268 Biopolymères Interactions Assemblages, Nantes, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bauer S. Mass spectrometry for characterizing plant cell wall polysaccharides. FRONTIERS IN PLANT SCIENCE 2012; 3:45. [PMID: 22645587 PMCID: PMC3355817 DOI: 10.3389/fpls.2012.00045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/23/2012] [Indexed: 05/23/2023]
Abstract
Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching, and modifications are obtained from characteristic fragmentation patterns.
Collapse
Affiliation(s)
- Stefan Bauer
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
19
|
Galvez-Lopez D, Laurens F, Quéméner B, Lahaye M. Variability of cell wall polysaccharides composition and hemicellulose enzymatic profile in an apple progeny. Int J Biol Macromol 2011; 49:1104-9. [DOI: 10.1016/j.ijbiomac.2011.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/25/2011] [Accepted: 09/07/2011] [Indexed: 11/24/2022]
|
20
|
Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana. Anal Bioanal Chem 2011; 401:2995-3009. [DOI: 10.1007/s00216-011-5370-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
|
21
|
Ropartz D, Bodet PE, Przybylski C, Gonnet F, Daniel R, Fer M, Helbert W, Bertrand D, Rogniaux H. Performance evaluation on a wide set of matrix-assisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2059-70. [PMID: 21698689 DOI: 10.1002/rcm.5060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Compared to other analytical methods, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) presents several unique advantages for the structural characterization of degradation products of carbohydrates. Our final goal is to implement this technique as a high-throughput platform, with the aim of exploring natural bio-diversity to discover new carbohydrate depolymerizing enzymes. In this approach, a variety of carbohydrates will be used as enzymes substrates and MALDI-MS will be employed to monitor the oligosaccharides produced. One drawback of MALDI, however, is that the choice of the matrix is largely dependent on the chemical properties of the analyte. In this context, our objective in the present work was to find the smallest set of MALDI matrices able to detect chemically heterogeneous oligosaccharides. This was done through the performance evaluation of more than 40 MALDI matrices preparations. Homogeneity of analyte-matrix deposits was considered as a critical feature, especially since the final objective is to fully automate the analyses. Evaluation of the matrices was done by means of a rigorous statistical approach. Amongst all tested compounds, our work proposes the use of the DHB/DMA ionic matrix as the most generic matrix, for rapid detection of a variety of polysaccharides including neutral, anionic, methylated, sulfated, and acetylated compounds. The selected matrices were then used to screen crude bacterial incubation media for the detection of enzymatic degradation products.
Collapse
Affiliation(s)
- David Ropartz
- INRA UR1268 Biopolymères Interactions Assemblages, Plate-Forme BIBS, F-44316 Nantes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|