1
|
Guo H, Hilaili M, Sari BPP, Putri WDR, Ogawa Y. Determination of starch digestibility in white sweet potato after acid hydrolysis and heat-moisture treatment using terahertz spectroscopy. Food Chem 2025; 479:143867. [PMID: 40090196 DOI: 10.1016/j.foodchem.2025.143867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Acid hydrolysis and heat-moisture treatment (HMT) have been used to alter digestibility of starch in white sweet potato, providing health benefits. The potential of terahertz spectroscopy for rapid and non-destructive determination of starch digestibility in white sweet potato treated with acetic acid and citric acid, followed by HMT, was investigated. An in vitro starch digestibility assay was employed to measure the contents of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS). The intensities of the peaks attributed to covalent vibrational modes at 9.0, 10.5, and 13.1 THz showed a strong correlation with RDS content (R2 > 0.95). Moreover, the intensities of the peaks sensitive to non-covalent forces within and between double helices of starch, around 5.0 and 7.9 THz, were correlated with RS content (R2 > 0.65). These results indicate, after acid hydrolysis and HMT, the starch digestibility of white sweet potato can be determined using THz peaks.
Collapse
Affiliation(s)
- Han Guo
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Maulidia Hilaili
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Bakti Pertiwi Purnama Sari
- Department of Food Processing Science and Technology, Faculty of Agricultural Technology, University of Brawijaya, Malang 65145, Indonesia
| | - Widya Dwi Rukmi Putri
- Department of Food Processing Science and Technology, Faculty of Agricultural Technology, University of Brawijaya, Malang 65145, Indonesia
| | - Yuichi Ogawa
- Institute of Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
2
|
Sun X, Wei Z, Su Y, Fang R, Fan Y, Zeng D, Ding Q, Miao Y, Liu J, Sun Q. Structural characteristics and anti-tumor activities of a novel polysaccharide from Klebsiella sp. SXW12. Carbohydr Polym 2025; 356:123368. [PMID: 40049944 DOI: 10.1016/j.carbpol.2025.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 05/13/2025]
Abstract
The purpose of this study is to elucidate the structure and biological properties of an extracellular polysaccharide (EPS), named EPS12, produced by Klebsiella sp. SXW12, a strain isolated from pond sludge. The maximum EPS12 yield of 15 g/L was obtained after optimizing the fermentation conditions by single-factor effects. EPS12 was an acidic homogeneous polysaccharide, and the molecular weight was measured to be 9.39 × 104 Da. Monosaccharide composition, methylation analysis, and NMR showed that EPS12 backbone was →3)-β-D-Glcp-(1 → 4)-β-D-GlcpA-(1 → 4) -α-L-Fucp-(1→, and terminal-β-D-Glcp was connected to the O-4 of →3)-β-D-Glcp-(1→. Network pharmacology analysis suggested that EPS12 may have anti-cancer effects. The anti-tumor effect of EPS12 on LLC-LUC tumor mice was studied. The results indicated that EPS12 exhibited excellent anti-tumor activity in mice at low doses (1, 2, and 4 mg/kg body weight). In vivo, EPS12 increased spleen index, promoted lymphocyte proliferation, and reduced spleen cell apoptosis through the Bcl-2-Bax/Bak-Caspase-3 apoptotic signaling pathway, and exhibited good biosafety. In addition, EPS12 could partially regulate the metabolic profiles of splenocytes. These properties make EPS12 a potential efficient and cost-effective anti-tumor agent or health product.
Collapse
Affiliation(s)
- Xiaqing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu 233030, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Zhenxuan Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu 233030, China
| | - Yawen Su
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Rui Fang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Yizhuo Fan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu 233030, China
| | - Dejie Zeng
- Department of Physiology, Bengbu Medical University, Bengbu 233030, China
| | - Qiankun Ding
- Department of Physiology, Bengbu Medical University, Bengbu 233030, China
| | - Yaqiong Miao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu 233030, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Junhao Liu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China.
| | - Qi Sun
- Department of Physiology, Bengbu Medical University, Bengbu 233030, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China.
| |
Collapse
|
3
|
Liu T, Zhang M, Xie Q, Gu J, Zeng S, Huang D. Unveiling the Antiobesity Mechanism of Sweet Potato Extract by Microbiome, Transcriptome, and Metabolome Analyses in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7807-7821. [PMID: 39989409 DOI: 10.1021/acs.jafc.4c13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
This study aimed to elucidate the antiobesity mechanisms of sweet potato extract (SPE) through biochemical, gut microbiome, liver transcriptome, and metabolome analyses. Administration of SPE to high-fat-diet-fed mice significantly reduced body weight gain, serum low-density lipoprotein cholesterol, hepatic lipid accumulation, and adipocyte hypertrophy, which were closely linked to gut microbiome composition. SPE notably increased the abundance of Eubacterium_coprostanoligenes_group_unclassified and decreased that of Kineothrix, both of which were strongly associated with short-chain fatty acid (SCFA) production. LC-QTOF-MS analysis identified resin glycoside compounds from SPE with reduced levels in mouse feces, suggesting their utilization in vivo. SPE also promoted dietary fat excretion. Liver transcriptomic and metabolomic profiling revealed that SPE may exert antiobesity effects by modulating the bile-sphingolipid metabolism, which was closely correlated with the reshaped gut microbiomes and SCFAs. These findings provide new insights into the antiobesity effects and mechanisms of SPE.
Collapse
Affiliation(s)
- Tiange Liu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Min Zhang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Qingtong Xie
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Jia Gu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Shunjiang Zeng
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| |
Collapse
|
4
|
Xue T, Zheng D, Wen L, Hou Q, He S, Zhang H, Gong Y, Li M, Hu J, Yang J. Advance in Cistanche deserticola Y. C. Ma. polysaccharides: Isolation, structural characterization, bioactivities and application: A review. Int J Biol Macromol 2024; 278:134786. [PMID: 39153679 DOI: 10.1016/j.ijbiomac.2024.134786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cistanche deserticola Y. C. Ma (CD), is mainly distributed in the regions of China (Xinjiang, Inner Mongolia, Gansu), Mongolia, Iran and India. Cistanche deserticola polysaccharide (CDPs), as one of the main components and a crucial bioactive substance of CD, has a variety of pharmacological activities, including immunomodulatory, anti-aging, anti-oxidant, hepatoprotective, anti-osteoporotic, anti-inflammatory, intestinal flora regulatory effects. Many polysaccharides have been successfully obtained in the last three decades from CD. However, there is currently no comprehensive review available concerning CDPs. Considering the importance of CDPs for biological study and drug discovery, the present review aims to systematically summarize the recent major studies on extraction and purification methods of polysaccharides from CD, as well as the characterization of their chemical structure, biological activity, structure-activity relationship, and the application of CDPs in pharmaceutical field. Meanwhile, the shortcomings of CDPs research are further discussed in detail, and new valuable insights for future CDPs research as therapeutic agents and functional foods are proposed.
Collapse
Affiliation(s)
- Taotao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Dongxuan Zheng
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Qiang Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Shengqi He
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Haibo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Yuehong Gong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Mingjie Li
- People's Hospital of Shaya, Aksu 842200, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830054, China.
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China.
| |
Collapse
|
5
|
Zhang Z, Sun L, Chen R, Li Q, Lai X, Wen S, Cao J, Lai Z, Li Z, Sun S. Recent insights into the physicochemical properties, bioactivities and their relationship of tea polysaccharides. Food Chem 2024; 432:137223. [PMID: 37669580 DOI: 10.1016/j.foodchem.2023.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Tea polysaccharides (TPS) is receiving global concern in past years due to their therapeutic effects in many diseases such as obesity and diabetes. Many publications imply that the unique physicochemical properties and bioactivities of TPS are prerequisites for its use as a biofilm, drug carrier and emulsifier. Despite numerous healthy benefits, studies on the in-deep structure-activity relationship of TPS still not well explored and explained yet. The main reasons for the research limitation are attributed mainly to the unbreakable advanced structural research technology and the formation of TPS conjugates. The present review also summarizes some similar parameters in primary structure of TPS with better bioactivities, discusses the relationships between their physicochemical properties and bioactivities, and suggests that function-specific TPS would be obtained in the future if the links between preparation methods, physicochemical properties and bioactivities of TPS could be well understood and established.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
6
|
Ghosh K, Takahashi D, Kotake T. Plant type II arabinogalactan: Structural features and modification to increase functionality. Carbohydr Res 2023; 529:108828. [PMID: 37182471 DOI: 10.1016/j.carres.2023.108828] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Type II arabinogalactans (AGs) are a highly diverse class of plant polysaccharides generally encountered as the carbohydrate moieties of certain extracellular proteoglycans, the so-called arabinogalactan-proteins (AGPs), which are found on plasma membranes and in cell walls. The basic structure of type II AG is a 1,3-β-D-galactan main chain with 1,6-β-D-galactan side chains. The side chains are further decorated with other sugars such as α-l-arabinose and β-d-glucuronic acid. In addition, AGs with 1,6-β-D-galactan as the main chain, which are designated as 'type II related AG' in this review, can also be found in several plants. Due to their diverse and heterogenous features, the determination of carbohydrate structures of type II and type II related AGs is not easy. On the other hand, these complex AGs are scientifically and commercially attractive materials whose structures can be modified by chemical and biochemical approaches for specific purposes. In the current review, what is known about the chemical structures of type II and type II related AGs from different plant sources is outlined. After that, structural analysis techniques are considered and compared. Finally, structural modifications that enhance or alter functionality are highlighted.
Collapse
Affiliation(s)
- Kanika Ghosh
- Department of Chemistry, Bidhan Chandra College, Asansol, 713304, West Bengal, India.
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan; Green Bioscience Research Center, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
7
|
Kinoshita A, Nagata T, Furuya F, Nishizawa M, Mukai E. White-skinned sweet potato (Ipomoea batatas L.) acutely suppresses postprandial blood glucose elevation by improving insulin sensitivity in normal rats. Heliyon 2023; 9:e14719. [PMID: 37025833 PMCID: PMC10070533 DOI: 10.1016/j.heliyon.2023.e14719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Long-term administration of Ipomoea batatas L. (white-skinned sweet potato, WSSP) has been reported to help manage type 2 diabetes mellitus (T2DM) in humans and animals; however, the mechanisms of blood glucose regulation by WSSP remain unclear. Therefore, we aimed to investigate the acute effects of WSSP on blood glucose homeostasis under normal conditions and the underlying mechanisms. Three fractions of WSSP (≤10, 10-50, and >50 kDa) were obtained via ultracentrifugation. Rats were subjected to an oral glucose tolerance test (OGTT) after a single administration of WSSP. The insulin tolerance test (ITT) and pyruvate tolerance test (PTT) were performed to evaluate insulin sensitivity and gluconeogenesis, respectively. Single WSSP administration markedly reduced blood glucose levels as revealed by the OGTT. Serum insulin levels were not increased by WSSP treatment. Blood glucose levels during ITT were significantly reduced due to WSSP treatment. WSSP treatment activated the phosphorylation of Akt, thereby activating insulin signaling in the skeletal muscles and liver. The ≤10 kDa fraction considerably reduced blood glucose levels per the OGTT and ITT. In contrast, gluconeogenesis in PTT and the expression of key enzymes in hepatocytes were suppressed by the >50 kDa fraction. This study demonstrated that WSSP acutely reduced postprandial blood glucose levels by improving insulin sensitivity in skeletal muscles in normal rats, which was attributed to constituents with a molecular weight of ≤10 kDa. Moreover, WSSP treatment suppressed gluconeogenesis in the liver, for which constituents of >50 kDa were responsible. Thus, WSSP can acutely regulate blood glucose homeostasis via multiple mechanisms. Since postprandial hyperglycemia leads to the onset of T2DM, WSSP, as a functional food, may possess potential active compounds that prevent T2DM.
Collapse
|
8
|
Yang H, Zhang T, Rayamajhi S, Thapa A, Du W, Meng G, Zhang Q, Liu L, Wu H, Gu Y, Zhang S, Wang X, Li H, Zhang J, Dong J, Zheng X, Cao Z, Zhang X, Dong X, Sun S, Wang X, Zhou M, Jia Q, Song K, Niu K. The longitudinal associations between sweet potato intake and the risk of non-alcoholic fatty liver disease: the TCLSIH cohort study. Int J Food Sci Nutr 2022; 73:809-820. [PMID: 35403524 DOI: 10.1080/09637486.2022.2050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Honghao Yang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Sabina Rayamajhi
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Amrish Thapa
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wenxiu Du
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutrition and Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yeqing Gu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huiping Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Juanjuan Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jun Dong
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoxi Zheng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhixia Cao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinrong Dong
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
9
|
Li S, Hu J, Yao H, Geng F, Nie S. Interaction between four galactans with different structural characteristics and gut microbiota. Crit Rev Food Sci Nutr 2021:1-11. [PMID: 34669541 DOI: 10.1080/10408398.2021.1992605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human gut microbiota played a key role in maintaining and regulating host health. Gut microbiota composition could be altered by daily diet and related nutrients. Diet polysaccharide, an important dietary nutrient, was one kind of biological macromolecules linked by the glycosidic bonds. Galactans were widely used in foods due to their gelling, thickening and stabilizing properties. Recently, effects of different galactans on gut microbiota have attracted much attention. This review described the structural characteristics of 4 kinds of galactans, including porphyran, agarose, carrageenan, and arabinogalactan, along with the effects of different galactans on gut microbiota and production of short-chain fatty acids. The ability of gut microbiota to utilize galactans with different structural characteristics and related degradation mechanism were also summarized. All these four galactans could be used by gut Bacteroides. Besides, the porphyran could be utilized by Lactobacillus and Bifidobacterium, while the arabinogalactan could be utilized by Lactobacillus, Bifidobacterium and Roseburia. Four galactans with significant difference in molecular weight/degree of polymerization, glycosidic linkage, esterification, branching and monosaccharide composition required gut microbes which could utilize them have corresponding genes encoding the corresponding enzymes for decomposition. This review could help to understand the relationship between galactans with different structural characteristics and gut microbiota, and provide information for potential use of galactans as functional foods.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| |
Collapse
|
10
|
Xu A, Lai W, Chen P, Awasthi MK, Chen X, Wang Y, Xu P. A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Li S, Zhang B, Hu J, Zhong Y, Sun Y, Nie S. Utilization of four galactans by
Bacteroides thetaiotaomicron
A4 based on transcriptome. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Baojie Zhang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| |
Collapse
|
12
|
Saeidy S, Petera B, Pierre G, Fenoradosoa TA, Djomdi D, Michaud P, Delattre C. Plants arabinogalactans: From structures to physico-chemical and biological properties. Biotechnol Adv 2021; 53:107771. [PMID: 33992708 DOI: 10.1016/j.biotechadv.2021.107771] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Arabinogalactans (AGs) are plant heteropolysaccharides with complex structures occasionally attached to proteins (AGPs). AGs in cell matrix of different parts of plant are freely available or chemically bound to pectin rhamnogalactan. Type I with predominantly β-d-(1 → 4)-galactan and type II with β-d-(1 → 3) and/or (1 → 6)-galactan structural backbones construct the two main groups of AGs. In the current review, the chemical structure of AGs is firstly discussed focusing on non-traditional plant sources and not including well known industrial gums. After that, processes for their extraction and purification are considered and finally their techno-functional and biological properties are highlighted. The role of AG structure and function on health advantages such as anti-tumor, antioxidant, anti-ulcer- anti-diabetic and other activites and also the immunomodulatory effects on in-vivo model systems are overviewed.
Collapse
Affiliation(s)
- S Saeidy
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - B Petera
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - G Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - T A Fenoradosoa
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| | - P Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - C Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
13
|
Anwar M, Birch EJ, Ding Y, Bekhit AED. Water-soluble non-starch polysaccharides of root and tuber crops: extraction, characteristics, properties, bioactivities, and applications. Crit Rev Food Sci Nutr 2020; 62:2309-2341. [DOI: 10.1080/10408398.2020.1852388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mylene Anwar
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Department of Food Science, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines
| | - Edward John Birch
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
| | | |
Collapse
|
14
|
A R, Zhang M, Lu Y, Zhang H, Bai X. The structural studies of a polysaccharide purified from Oat Lao‐Chao. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rong A
- College of Food Science and Engineering Inner Mongolia Agricultural University Huhhot Inner Mongolia010018China
| | - Meili Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Huhhot Inner Mongolia010018China
| | - Yu Lu
- College of Food Science and Engineering Inner Mongolia Agricultural University Huhhot Inner Mongolia010018China
| | - Huijie Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Huhhot Inner Mongolia010018China
| | - Xue Bai
- College of Food Science and Engineering Inner Mongolia Agricultural University Huhhot Inner Mongolia010018China
| |
Collapse
|
15
|
Abstract
Purpose
Non-communicable diseases such as type 2 diabetes, hypertension, cancers and cardiovascular diseases have become a major health concern globally. As literature claims that frequent consumption of fruits and vegetables can delay the onset of type 2 diabetes and its complications, this paper aims to evaluate the potential hypoglycemic properties in five types of non-leafy vegetables (pumpkin, sweet potato, bitter gourd, onion and lady’s finger), which are commonly available in Malaysia.
Design/methodology/approach
Articles were identified through several main search engines, including Pubmed, Google Scholar, Taylor and Francis Online, EDS, Wiley, ScienceDirect and Scopus. The search was limited to selected keywords to refine the outcome.
Findings
All the five types of non-leafy vegetables demonstrate hypoglycemic properties to some extent. Emerging findings indicate that there are several phytonutrients in the non-leafy vegetables contributing to the hypoglycemic effects. To date, the underlying mechanism of action remains to be elucidated, although a number of potential mechanisms of action have been proposed in the literature.
Originality/value
This review provides some insights into the hypoglycemic properties in non-leafy vegetables. In addition, phytonutrients that are responsible for the hypoglycemic effects and their mechanism of action are also highlighted.
Collapse
|
16
|
Chen CM, Shih CK, Su YJ, Cheang KU, Lo SF, Li SC. Evaluation of white sweet potato tube-feeding formula in elderly diabetic patients: a randomized controlled trial. Nutr Metab (Lond) 2019; 16:70. [PMID: 31636690 PMCID: PMC6796455 DOI: 10.1186/s12986-019-0398-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Elderly people with type 2 diabetes mellitus (T2DM) have an increased risk of diabetes-related microvascular and macrovascular complications, thus diabetic patients with a functioning gastrointestinal tract but without sufficient oral intake require enteral nutrition (EN) formulas to control blood glucose. White sweet potato (WSP) was a kind of sweet potato could provide a healthy carbohydrate source to EN formula. The aim of this study was to examine at risk of malnutrition T2DM patients whether a WSP-EN would attenuate glucose response and elevate nutritional index compared to a standard polymeric formulas. METHODS In this randomized, parallel, placebo-controlled, pilot clinical trial to investigate the effects of EN with WSP on aged residents with T2DM in long-term care institutions. In total, 54 eligible participants were randomly assigned to either the non-WSP-EN or WSP-EN group. For 60 days, the WSP-EN group received a WSP formula through nasogastric tube via a stoma with a large-bore syringe. The participants received EN of standard polymeric formulas without WSP in the non-WSP-EN group. RESULTS The body weight, body mass index, Mini Nutritional Assessment score, and Geriatric Nutritional Risk Index were significantly higher in the WSP-EN group (p < 0.05). Moreover, the WSP-EN intervention reduced glycated hemoglobin levels (6.73% ± 1.47% vs. 6.40% ± 1.16%), but increased transferrin (223.06 ± 38.85 vs. 245.85 ± 46.08 mg/dL), high-density lipoprotein cholesterol (42.13 ± 10.56 vs. 44.25 ± 8.43 mg/dL), and vitamin A (2.45 ± 0.77 vs 2.74 ± 0.93 μM) levels (p < 0.05). In addition, there was no important side effects including gastrointestinal intolerance with prescribed doses in our WSP-EN treated patients when compared with control ones. CONCLUSIONS The results suggest WSP incorporated into enteral formulas can improve nutrition status and glycemic control in elderly diabetic patients. TRIAL REGISTRATION NCT02711839, registered 27 May 2015.
Collapse
Affiliation(s)
- Chiao-Ming Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih-Chien University, No.70, Dazhi St., Zhongshan Dist., Taipei City, 10462 Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Yi-Jing Su
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Kuan-Un Cheang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
| | - Shu-Fang Lo
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, 2 Min-Cheng Road, Chiayi, 60044 Taiwan
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031 Taiwan
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, 2 Min-Cheng Road, Chiayi, 60044 Taiwan
| |
Collapse
|
17
|
Wee MS, Sims IM, Goh KK, Matia-Merino L. Molecular, rheological and physicochemical characterisation of puka gum, an arabinogalactan-protein extracted from the Meryta sinclairii tree. Carbohydr Polym 2019; 220:247-255. [DOI: 10.1016/j.carbpol.2019.05.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/04/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
|
18
|
Fujita K, Sasaki Y, Kitahara K. Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved. Appl Microbiol Biotechnol 2019; 103:7451-7457. [PMID: 31384991 DOI: 10.1007/s00253-019-10049-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Arabinogalactan proteins (AGPs) are complex plant proteoglycans that function as dietary fiber utilized by human intestinal bacteria such as Bifidobacterium and Bacteroides species. However, the degradative mechanism is unknown because of the complexity of sugar chains of AGPs as well as variation among plant species and organs. Recently, AGP degradative enzymes have been characterized in Bifidobacterium and Bacteroides species. In this review, we summarize the characteristics and functions of AGP degradative enzymes in human intestinal bacteria.
Collapse
Affiliation(s)
- Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| | - Yuki Sasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| |
Collapse
|
19
|
Shih CK, Chen CM, Hsiao TJ, Liu CW, Li SC. White Sweet Potato as Meal Replacement for Overweight White-Collar Workers: A Randomized Controlled Trial. Nutrients 2019; 11:165. [PMID: 30646532 PMCID: PMC6356856 DOI: 10.3390/nu11010165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023] Open
Abstract
Overweight and obesity are a global concern. Meal replacements (MRs) are portion- and calorie-controlled meals, which make the food environment part of an individual's weight loss regimen. White sweet potato (WSP; Ipomoea batatas L.), used in traditional medicine in Brazil, Japan, and Taiwan, is a healthy carbohydrate source. In this randomized controlled trial, we assessed the effects of a WSP formula on body weight management in 58 white-collar workers through MR to elucidate the effects of this WSP-MR on factors leading to overweight. The participants consumed either two packs a day for a total of 132 g of WSP (WSP-MR group) or a normal diet daily (non-WSP group) for eight weeks. After eight weeks, body weight, body fat, body mass index, wrist circumference, thigh circumference, calf circumference, mid-arm circumference, and triceps skinfolds decreased significantly in both the groups. Moreover, the WSP-MR group demonstrated a 5% decrease in body weight, body fat, body mass index, and mid-arm circumference and a 3.5% decrease in glycated hemoglobin levels (p < 0.05). The treatment was well tolerated, without side effects or adverse events. Thus, our WSP formula as an MR can facilitate individual weight loss and thus has commercial application in the food industry.
Collapse
Affiliation(s)
- Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| | - Chiao-Ming Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, No. 70, Dazhi St., Zhongshan Dist, Taipei 10462, Taiwan.
| | - Tun-Jen Hsiao
- Chinese Taipei Society for the Study of Obesity, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| | - Ching-Wen Liu
- Department of Food Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 40704, Taiwan.
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| |
Collapse
|
20
|
Dahi A, Abdellahi BML, Deida MF, Hucher N, Malhiac C, Renou F. Chemical and physicochemical characterizations of the water-soluble fraction of the Commiphora Africana exudate. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2017.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Appl Microbiol Biotechnol 2018; 103:1299-1310. [PMID: 30564851 DOI: 10.1007/s00253-018-9566-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Type II arabinogalactan (AG) is a soluble prebiotic fiber stimulating the proliferation of bifidobacteria in the human gut. Larch AG, which is comprised of type II AG, is known to be utilized as an energy source for Bifidobacterium longum subsp. longum (B. longum). We have previously characterized GH43_24 exo-β-1,3-galactanase (Bl1,3Gal) for the degradation of type II AG main chains in B. longum JCM1217. In this study, we characterized GH30_5 exo-β-1,6-galactobiohydrolase (Bl1,6Gal) and GH43_22 α-L-arabinofuranosidase (BlArafA), which are degradative enzymes for type II AG side chains in cooperation with exo-β-1,3-galactanase. The recombinant exo-β-1,6-galactobiohydrolase specifically released β-1,6-galactobiose (β-1,6-Gal2) from the nonreducing terminal of β-1,6-galactooligosaccharides, and the recombinant α-L-arabinofuranosidase released arabinofuranose (Araf) from α-1,3-Araf-substituted β-1,6-galactooligosaccharides. β-1,6-Gal2 was additively released from larch AG by the combined use of type II AG degradative enzymes, including Bl1,3Gal, Bl1,6Gal, and BlArafA. The gene cluster encoding the type II AG degradative enzymes is conserved in all B. longum strains, but not in other bifidobacterial species. The degradative enzymes for type II AG side chains are thought to be important for the acquisition of type II AG in B. longum.
Collapse
|
22
|
Gao J, Lin L, Sun B, Zhao M. Comparison Study on Polysaccharide Fractions from Laminaria japonica: Structural Characterization and Bile Acid Binding Capacity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9790-9798. [PMID: 29023123 DOI: 10.1021/acs.jafc.7b04033] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Our previous study has suggested that the crude polysaccharide obtained from Laminaria japonica by acid assisted extraction (LP-A) have significant bile acid-binding capacity, which probably ascribed to its specific structure characterization. The relationship between structure characterization and bile acid-binding capacity of the purified LP-A fractions are still unknown. This paper conducted a comparison study on the structure characterization and bile acid-binding capacity of three LP-A fractions (LP-A4, LP-A6, and LP-A8). The results indicated that LP-A4, LP-A6, and LP-A8, characterized as mannoglucan, fucomannoglucan, and fucogalactan, had significantly different structure characterization. Furthermore, the bile acid-binding capacity of LP-A8 was obviously higher than the other fractions, which may be attributed to its highly branched structure, abundant sulfate, fucose, and galactose in chemical composition and denser interconnected macromolecule network in molecular morphology. This study provides scientific evidence for the potential utilization of LP-A8 as an attractive functional food supplement candidate for the hyperlipidemia population.
Collapse
Affiliation(s)
- Jie Gao
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510640, P. R. China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510640, P. R. China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University , Beijing 100048, P. R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University , Beijing 100048, P. R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510640, P. R. China
| |
Collapse
|
23
|
Wang M, Ma H, Tian C, Liu S, Ye X, Zhou D, Li Y, Hui N, Li X. Bioassay-guided isolation of glycoprotein SPG-56 from sweet potato Zhongshu-1 and its anti-colon cancer activity in vitro and in vivo. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
24
|
Maruta A, Yamane M, Matsubara M, Suzuki S, Nakazawa M, Ueda M, Sakamoto T. A novel α-galactosidase from Fusarium oxysporum and its application in determining the structure of the gum arabic side chain. Enzyme Microb Technol 2017; 103:25-33. [PMID: 28554382 DOI: 10.1016/j.enzmictec.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/29/2017] [Accepted: 04/21/2017] [Indexed: 11/29/2022]
Abstract
We previously reported that Fusarium oxysporum 12S produces two bifunctional proteins, FoAP1 and FoAP2, with α-d-galactopyranosidase (GPase) and β-l-arabinopyranosidase (APase) activities. The aim of this paper was to purify a third GPase, FoGP1, from culture supernatant of F. oxysporum 12S, to characterize it, and to determine its mode of action towards gum arabic. A cDNA encoding FoGP1 was cloned and the protein was overexpressed in Escherichia coli. Module sequence analysis revealed the presence of a GH27 domain in FoGP1. The recombinant enzyme (rFoGP1) showed a GPase/APase activity ratio of 330, which was quite different from that of FoAP1 (1.7) and FoAP2 (0.2). Among the natural substrates tested, rFoGP1 showed the highest activity towards gum arabic. In contrast to other well-characterized GPases, rFoGP1 released a small amount of galactose from α-galactosyl oligosaccharides such as raffinose and exhibited no activity toward galactomannans, which are highly substituted with α-galactosyl side chains. This indicated that FoGP1 is an unusual type of GPase. rFoGP1 released 30% of the total galactose from gum arabic, suggesting the existence of a large number of α-galactosyl residues at the non-reducing ends of gum arabic side chains. Together, rFoGP1 and α-l-arabinofuranosidase released four times more arabinose than α-l-arabinofuranosidase acting alone. This suggested that a large number of α-l-arabinofuranosyl residues is capped by α-galactosyl residues. 1H NMR experiments revealed that rFoGP1 hydrolyzed the α-1,3-galactosidic linkage within the side chain structure of [α-d-Galp-(1→3)-α-l-Araf-(1→] in gum arabic. In conclusion, rFoGP1 is highly active toward α-1,3-galactosyl linkages but negligibly or not active toward α-1,6-galactosyl linkages. The novel FoGP1 might be used to modify the physical properties of gum arabic, which is an industrially important polysaccharide used as an emulsion stabilizer and coating agent.
Collapse
Affiliation(s)
- Akiho Maruta
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Mirei Yamane
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Midori Matsubara
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Shiho Suzuki
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; International Polysaccharide Engineering Inc., Center for R&D of Bioresources, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.
| | - Masami Nakazawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Mitsuhiro Ueda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
25
|
Nakamura M, Miura S, Takagaki A, Nanjo F. Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide. Int J Food Sci Nutr 2016; 68:321-330. [PMID: 27653217 DOI: 10.1080/09637486.2016.1232376] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crude tea polysaccharide (crude TPS) was prepared from instant green tea by ethanol precipitation followed by ultrafiltration membrane treatment and its effects on blood lipid, liver lipid, and fecal lipid levels were examined with Sprague-Dawley rats fed a high-fat diet. Although crude TPS showed no effects on the serum lipid levels, it suppressed the liver lipid accumulation and increased the fecal excretion of dietary fat. Then, the structural features of crude TPS were investigated. After separation of crude TPS by DEAE-cellulose and gel-filtration column chromatography, two kinds of neutral tea polysaccharides (NTPS-LP and NTPS-HH) and an acidic polysaccharide (ATPS-MH) were obtained. According to monosaccharide composition, methylation, and NMR analyses, NTPS-LP, NPTS-HH, and ATPS-MH were presumed to be starch, arabinogalactan with β-1,3-linked galactosyl backbone blanched at position 6 and with 1,5-linked arabinofuranosyl residues, and α-1,4-linked galacturonic acid backbone with arabinogalactan region, respectively.
Collapse
Affiliation(s)
- Michiko Nakamura
- a Food Research Laboratories , Mitsui Norin Co. Ltd , Shizuoka , Japan
| | - Sayaka Miura
- a Food Research Laboratories , Mitsui Norin Co. Ltd , Shizuoka , Japan
| | - Akiko Takagaki
- a Food Research Laboratories , Mitsui Norin Co. Ltd , Shizuoka , Japan
| | - Fumio Nanjo
- a Food Research Laboratories , Mitsui Norin Co. Ltd , Shizuoka , Japan
| |
Collapse
|
26
|
Wang S, Nie S, Zhu F. Chemical constituents and health effects of sweet potato. Food Res Int 2016; 89:90-116. [PMID: 28460992 DOI: 10.1016/j.foodres.2016.08.032] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022]
Abstract
Sweet potatoes are becoming a research focus in recent years due to their unique nutritional and functional properties. Bioactive carbohydrates, proteins, lipids, carotenoids, anthocyanins, conjugated phenolic acids, and minerals represent versatile nutrients in different parts (tubers, leaves, stems, and stalks) of sweet potato. The unique composition of sweet potato contributes to their various health benefits, such as antioxidative, hepatoprotective, antiinflammatory, antitumor, antidiabetic, antimicrobial, antiobesity, antiaging effects. Factors affecting the nutritional composition and bio-functions of sweet potato include the varieties, plant parts, extraction time and solvents, postharvest storage, and processing. The assays for bio-function evaluation also contribute to the variations among different studies. This review summarizes the current knowledge of the chemical composition of sweet potato, and their bio-functions studied in vitro and in vivo. Leaves, stems, and stalks of sweet potato remain much underutilized on commercial levels. Sweet potato can be further developed as a sustainable crop for diverse nutritionally enhanced and value-added food products to promote human health.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario, Canada L0S 1J0; School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
27
|
Raja W, Bera K, Ray B. Polysaccharides from Moringa oleifera gum: structural elements, interaction with β-lactoglobulin and antioxidative activity. RSC Adv 2016. [DOI: 10.1039/c6ra13279k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural highlights of an antioxidative arabinogalactan from Moringa oleifera gum that interacts with β-lactoglobulin.
Collapse
Affiliation(s)
- Washim Raja
- Natural Products Laboratory
- Department of Chemistry
- The University of Burdwan
- Golapbag
- India
| | - Kaushik Bera
- Natural Products Laboratory
- Department of Chemistry
- The University of Burdwan
- Golapbag
- India
| | - Bimalendu Ray
- Natural Products Laboratory
- Department of Chemistry
- The University of Burdwan
- Golapbag
- India
| |
Collapse
|
28
|
Ghosh K, Ray S, Bera K, Ray B. Isolation and structural elements of a water-soluble free radical scavenger from Nyctanthes arbor-tristis leaves. PHYTOCHEMISTRY 2015; 115:20-6. [PMID: 25749618 DOI: 10.1016/j.phytochem.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/02/2014] [Accepted: 02/05/2015] [Indexed: 05/21/2023]
Abstract
The leaves of Nyctanthes arbor-tristis L. (Oleaceae) are used in Ayurvedic medicine for the management of a range of diseases, but reports on its phytochemicals and pharmacological properties are inadequate. Herein, we report purification of an antioxidative polysaccharide (F2) extracted from its leaves by water. The presence of a highly branched polysaccharide (75 kDa) containing esterified phenolic acids was revealed by chemical, chromatographic and spectroscopic analyses. Particularly, ESMS analysis of per acetylated oligomeric fragments derived by Smith degradation provides important structural information on a spectrum of glycerol tagged oligosaccharides. This polysaccharide showed dose dependent free radical scavenging capacity as evidenced by DPPH and Ferric reducing power assay. This pharmacologically active compound (F2) formed a water soluble complex with bovine serum albumin over pH 4.0-7.4. Accordingly, traditional aqueous extraction method provides a molecular entity that induces a pharmacological effect: this could epitomize a smart approach in phytotherapeutic management.
Collapse
Affiliation(s)
- Kanika Ghosh
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Sayani Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Kaushik Bera
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Bimalendu Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India.
| |
Collapse
|
29
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
30
|
Chemical structure of the arabinogalactan protein from gum ghatti and its interaction with bovine serum albumin. Carbohydr Polym 2015; 117:370-376. [DOI: 10.1016/j.carbpol.2014.09.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 11/17/2022]
|
31
|
Xia X, Li G, Zheng J, Wu J, Kan J. Immune activity of sweet potato (Ipomoea batatas L.) glycoprotein after enzymatic and chemical modifications. Food Funct 2015; 6:2026-32. [DOI: 10.1039/c5fo00314h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immune activity of SPG-1 after its protein or carbohydrate portions modified by enzymatic or chemical treatments. Note: a and b: P < 0.01 and 0.05 compared with NC group, respectivily; c and d: P < 0.01 and 0.05 compared with untreated group, respectivily.
Collapse
Affiliation(s)
- Xuejuan Xia
- College of Food Science
- Southwest University
- Chongqing 400715
- China
| | - Guannan Li
- College of Biotechnology
- Southwest University
- Chongqing 400715
- China
| | - Jiong Zheng
- College of Food Science
- Southwest University
- Chongqing 400715
- China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing)
| | - Jinsong Wu
- College of Food Science
- Southwest University
- Chongqing 400715
- China
| | - Jianquan Kan
- College of Food Science
- Southwest University
- Chongqing 400715
- China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing)
| |
Collapse
|
32
|
Raja W, Nosalova G, Ghosh K, Sivova V, Nosal S, Ray B. In vivo antitussive activity of a pectic arabinogalactan isolated from Solanum virginianum L. in Guinea pigs. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:41-46. [PMID: 25150526 DOI: 10.1016/j.jep.2014.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum virginianum L. is used for the management of fever, bronchial asthma and cough for thousands of years. While the link to a particular indication has been established in human, the active principle of the formulation remains unknown. Herein, we have investigated a polysaccharide isolated from its leaves. MATERIALS AND METHODS Utilizing traditional aqueous extraction protocol and using chemical, chromatographic, spectroscopic and biological methods we have analysed an antitussive pectic arabinogalactan isolated from its leaves. RESULTS The water extracted polymer (WEP) is a highly branched arabinogalactan containing, inter alia, (1,3)-, (1,6)- and (1,3,6)-linked β-Galp residues, terminal-, (1,5)- and (1,3,5)-linked units of α-Araf together with (1,2)- and (1,2,4)-linked Rhap. In vivo investigation on the citric-acid induced cough efforts in guinea pigs shows that the antitussive activity of the orally administered pectic arabinogalactan is greater than codeine phosphate. Remarkably, this macromolecule neither altered specific airway smooth muscle reactivity significantly nor it induced considerable change on levels of NO in expiratory flow in guinea pigs. CONCLUSIONS Thus, traditional aqueous extraction method provides a molecular entity, which induces antitussive activity without addiction: this could represent an attractive approach in phytotherapeutic management.
Collapse
Affiliation(s)
- Washim Raja
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Gabriela Nosalova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Sklabinska 26, 03601 Martin, Slovakia
| | - Kanika Ghosh
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Veronika Sivova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Sklabinska 26, 03601 Martin, Slovakia
| | - Slavomir Nosal
- Clinic of Pediatric Anesthesiology and Intensive Medicine, Jessenius Faculty of Medicine and Martin University Hospital, Kollárova 2, 03601 Martin, Slovakia
| | - Bimalendu Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India.
| |
Collapse
|
33
|
Antitussive arabinogalactan of Andrographis paniculata demonstrates synergistic effect with andrographolide. Int J Biol Macromol 2014; 69:151-7. [DOI: 10.1016/j.ijbiomac.2014.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/17/2014] [Accepted: 05/14/2014] [Indexed: 12/18/2022]
|
34
|
Zhang L, Deng W. Structure Characterization and Adhesive Ability of a Polysaccharide from Tendrils of Parthenocissus heterophylla. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to reveal the structure of the polysaccharide and its contribution to the biological adhesion system of Parthenocissus heterophylla, a water-soluble polysaccharide (PT-A) was isolated from tendrils using DEAE-cellulose and Sephadex G-100 columns. PT-A mainly consisted of a backbone of (1→3)-linked-β-D-Galp residues and substituted at O-6 with side chains of (1→5)-linked-α-L-Ara f residues and glucomannopyranosyl residues. Individual polysaccharide chains of PT-A with the approximately height of 0.75 nm were observed by AFM. The analysis of force curves indicated that PT-A was a kind of elastic polysaccharide with a maximum adhesion force of 279.98 nN, which could be applied as a potential bio-adhesive.
Collapse
Affiliation(s)
- Li Zhang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenli Deng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
35
|
Peng Q, Xu Q, Yin H, Huang L, Du Y. Characterization of an immunologically active pectin from the fruits of Lycium ruthenicum. Int J Biol Macromol 2014; 64:69-75. [DOI: 10.1016/j.ijbiomac.2013.11.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
|
36
|
Interaction with bovine serum albumin of an anti-oxidative pectic arabinogalactan from Andrographis paniculata. Carbohydr Polym 2014; 101:342-8. [DOI: 10.1016/j.carbpol.2013.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 01/24/2023]
|
37
|
Antitussive Activity of the Water-Extracted Carbohydrate Polymer from Terminalia chebula on Citric Acid-Induced Cough. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:650134. [PMID: 23878602 PMCID: PMC3708419 DOI: 10.1155/2013/650134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 11/18/2022]
Abstract
Terminalia chebula, a medicinal plant, is widely used in the management of various diseases. As the water extract of its dried ripe fruit is a frequently used preparation, we decided to look for bioactive polysaccharide in this extract. We demonstrate that the obtained polysaccharide fraction, CP, contained a highly branched arabinogalactan protein having a (1 → 3)-, (1 → 6)- and (1 → 3, 6)-linked β-D-Galp together with (1 → 5)- and (1 → 3)-linked α-L-Araf and nonreducing end units of α-L-Araf. This polymer possesses strong antitussive property. Our results showed that the number of citric acid-induced cough efforts decreased significantly after the oral application of polysaccharide fraction in a dose of 50 mg kg−1 body weight. Its antitussive efficacy was higher than cough suppressive effect of standard drug codeine. Therefore, traditional aqueous extraction method provides a major polysaccharide, which induces a pharmacological effect: this could represent an attractive approach in phytotherapeutic managements.
Collapse
|
38
|
Ghosh D, Ray S, Ghosh K, Micard V, Chatterjee UR, Ghosal PK, Ray B. Antioxidative Carbohydrate Polymer from Enhydra fluctuans and Its Interaction with Bovine Serum Albumin. Biomacromolecules 2013; 14:1761-8. [PMID: 23635005 DOI: 10.1021/bm4001316] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Debjani Ghosh
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Sayani Ray
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Kanika Ghosh
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Valérie Micard
- MontpellierSupAgro-INRA-UMII-CIRAD, UMR IATE,
2, Place Pierre Viala, 34060 Montpellier Cedex 01, France
| | - Udipta R. Chatterjee
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Pradyot K. Ghosal
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Bimalendu Ray
- Natural Products
Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| |
Collapse
|
39
|
Maloney KP, Truong VD, Allen JC. Chemical Optimization of Protein Extraction from Sweet Potato (Ipomoea batatas) Peel. J Food Sci 2012; 77:E307-12. [DOI: 10.1111/j.1750-3841.2012.02921.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
The effects of an arabinogalactan-protein from the white-skinned sweet potato (Ipomoea batatas L.) on blood glucose in spontaneous diabetic mice. Biosci Biotechnol Biochem 2011; 75:596-8. [PMID: 21389600 DOI: 10.1271/bbb.100711] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined the effects of an arabinogalactanprotein (WSSP-AGP) from Ipomoea batatas L. on hyperglycemia in db/db mice. An oral glucose tolerance test indicated significantly decreased plasma glucose levels by WSSP-AGP. Additionally, an insulin tolerance test found improvement in insulin sensitivity due to treatment with WSSP-AGP. This suggests that amelioration of insulin resistance by WSSP-AGP causes to lead its hypoglycemic effects.
Collapse
|