1
|
Piergiovanni M, Gosetti F, Rocío-Bautista P, Termopoli V. Aroma determination in alcoholic beverages: Green MS-based sample preparation approaches. MASS SPECTROMETRY REVIEWS 2024; 43:660-682. [PMID: 35980114 DOI: 10.1002/mas.21802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Aroma determination in alcoholic beverages has become a hot research topic due to the ongoing effort to obtain quality products, especially in a globalized market. Consumer satisfaction is mainly achieved by balancing several aroma compounds, which are mixtures of numerous volatile molecules enclosed in challenging matrices. Thus, sample preparation strategies for quality control and product development are required. They involve several steps including copious amounts of hazardous solvents or time-consuming procedures. This is bucking the trend of the ever-increasing pressure to reduce the environmental impact of analytical chemistry processes. Hence, the evolution of sample preparation procedures has directed towards miniaturized techniques to decrease or avoid the use of hazardous solvents and integrating sampling, extraction, and enrichment of the targeted analytes in fewer steps. Mass spectrometry coupled to gas or liquid chromatography is particularly well suited to address the complexity of these matrices. This review surveys advancements of green miniaturized techniques coupled to mass spectrometry applied on all categories of odor-active molecules in the most consumed alcoholic beverages: beer, wine, and spirits. The targeted literature consider progresses over the past 20 years.
Collapse
Affiliation(s)
- Maurizio Piergiovanni
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Fabio Gosetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Priscilla Rocío-Bautista
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Veronica Termopoli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
2
|
Piergiovanni M, Carlin S, Lotti C, Vrhovsek U, Mattivi F. Development of a Fully Automated Method HS-SPME-GC-MS/MS for the Determination of Odor-Active Carbonyls in Wines: a "Green" Approach to Improve Robustness and Productivity in the Oenological Analytical Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1995-2007. [PMID: 36848621 PMCID: PMC10835727 DOI: 10.1021/acs.jafc.2c07083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was the optimization and validation of a green, robust, and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines that could be added as a new quality control tool for the evaluation of a complete fermentation, correct winemaking style, and proper bottling and storage. A HS-SPME-GC-MS/MS method was optimized and automated using the autosampler to improve overall performance. A solvent-less technique and a strong minimization of all volumes were implemented to comply with the green analytical chemistry principles. There were as many as 44 VCC (mainly linear aldehydes, Strecker aldehydes, unsaturated aldehydes, ketones, and many other) analytes under investigation. All compounds showed a good linearity, and the LOQs were abundantly under the relevant perception thresholds. Intraday, 5-day interday repeatability, and recovery performances in a spiked real sample were evaluated showing satisfactory results. The method was applied to determine the evolution of VCCs in white and red wines after accelerated aging for 5 weeks at 50 °C. Furans and linear and Strecker aldehydes were the compounds that showed the most important variation; many VCCs increased in both classes of samples, whereas some showed different behaviors between white and red cultivars. The obtained results are in strong accordance with the latest models on carbonyl evolution related to wine aging.
Collapse
Affiliation(s)
- Maurizio Piergiovanni
- Center
Agriculture Food Environment (C3A), University
of Trento, San Michele
all’Adige (TN) 38010, Italy
| | - Silvia Carlin
- Center
Research and Innovation, Edmund Mach Foundation, San Michele all’Adige (TN) 38010, Italy
| | - Cesare Lotti
- Center
Research and Innovation, Edmund Mach Foundation, San Michele all’Adige (TN) 38010, Italy
| | - Urska Vrhovsek
- Center
Research and Innovation, Edmund Mach Foundation, San Michele all’Adige (TN) 38010, Italy
| | - Fulvio Mattivi
- Center
Research and Innovation, Edmund Mach Foundation, San Michele all’Adige (TN) 38010, Italy
| |
Collapse
|
3
|
Derivatization Strategies in Flavor Analysis: An Overview over the Wine and Beer Scenario. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wine and beer are the most appreciated and consumed beverages in the world. This success is mainly due to their characteristic taste, smell, and aroma, which can delight consumer’s palates. These olfactory characteristics are produced from specific classes of volatile compounds called “volatile odor-active compounds” linked to different factors such as age and production. Given the vast market of drinking beverages, the characterization of these odor compounds is increasingly important. However, the chemical complexity of these beverages has led the scientific community to develop several analytical techniques for extracting and quantifying these molecules. Even though the recent “green-oriented” trend is directed towards direct preparation-free procedures, for some class of analytes a conventional step like derivatization is unavoidable. This review is a snapshot of the most used derivatization strategies developed in the last 15 years for VOAs’ determination in wine and beer, the most consumed fermented beverages worldwide and among the most complex ones. A comprehensive overview is provided for every method, whereas pros and cons are critically analyzed and discussed. Emphasis was given to miniaturized methods which are more consistent with the principles of “green analytical chemistry”.
Collapse
|
4
|
Headspace Solid-Phase Microextraction/Gas Chromatography-Mass Spectrometry for the Determination of 2-Nonenal and Its Application to Body Odor Analysis. Molecules 2021; 26:molecules26195739. [PMID: 34641283 PMCID: PMC8510471 DOI: 10.3390/molecules26195739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The odors and emanations released from the human body can provide important information about the health status of individuals and the presence or absence of diseases. Since these components often emanate from the body surface in very small quantities, a simple sampling and sensitive analytical method is required. In this study, we developed a non-invasive analytical method for the measurement of the body odor component 2-nonenal by headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry by selective ion monitoring. Using a StableFlex PDMS/DVB fiber, 2-nonenal was efficiently extracted and enriched by fiber exposition at 50 °C for 45 min and was separated within 10 min using a DB−1 capillary column. Body odor sample was easily collected by gauze wiping. The limit of detection of 2-nonenal collected in gauze was 22 pg (S/N = 3), and the linearity was obtained in the range of 1–50 ng with a correlation coefficient of 0.991. The method successfully analyzed 2-nonenal in skin emissions and secretions and was applied to the analysis of body odor changes in various lifestyles, including the use of cosmetics, food intake, cigarette smoking, and stress load.
Collapse
|
5
|
Duan N, Yang S, Tian H, Sun B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem 2021; 358:129839. [PMID: 33940297 DOI: 10.1016/j.foodchem.2021.129839] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
The beverage industry is confronted with tremendous challenges in terms of quality assurance. The allowed contents of common ingredients such as copper ions, hydrogen sulfide, cysteine and caffeine are stipulated by various governing bodies, and the beverage industry must ensure that it meets these requirements. Due to its unique advantages of high sensitivity, low cost and relatively low toxicity over high-performance liquid chromatography, atomic absorption spectrometry and nanomaterials, the use of organic fluorescent probes for the rapid detection of beverage contents has become a hot research topic. This review summarizes the detection of common substances in wine, tea, mineral water, milk and other beverages. Furthermore, the preparation of test paper and simple colour comparison are discussed to display the rapid qualitative capability of designed probes. To improve the current state of beverage safety, future trends and strategies for fast organic fluorescent probe detection in the beverage industry are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
6
|
Kishikawa N, El-Maghrabey MH, Kuroda N. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. J Pharm Biomed Anal 2019; 175:112782. [DOI: 10.1016/j.jpba.2019.112782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
|
7
|
Determination of 5-Hydroxymethyl-2-Furaldehyde in Cooked Japonica Rice Using a Modified QuEChERS Method Combined with Dispersive Liquid-Liquid Microextraction Followed by UPLC-ESI-MS/MS. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01533-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Durán-Guerrero E, Chinnici F, Natali N, Riponi C. Evaluation of volatile aldehydes as discriminating parameters in quality vinegars with protected European geographical indication. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2395-2403. [PMID: 25315151 DOI: 10.1002/jsfa.6958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Thirty-six high-quality vinegars with geographical indication belonging to Sherry and Modena areas (vinegars of Jerez, balsamic vinegars of Modena and traditional balsamic vinegars of Modena) with all possible aging periods were analyzed to determine the content of volatile aldehydes. A solid-phase extraction method with in-cartridge derivatization using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine followed by gas chromatography-mass spectrometry was employed. RESULTS Twenty-two volatile aldehydes were identified and determined in the samples. Analysis of variance provided significant differences among the samples as a function of the type of vinegar, aging time and raw material. Principal component analysis and linear discriminant analysis demonstrated the possibility of discriminating the samples in terms of aging time and raw material. Linear aldehydes and compounds such as furfural, methional, nonenal, hexenal, 2-methylbutanal and i-butyraldehyde were the most significant variables able to discriminate the samples. CONCLUSION Aldehyde content of premium quality vinegars is a function of both ageing time and raw material. Their evaluation could be a useful tool with a view to ascertaining vinegar origin and genuineness.
Collapse
Affiliation(s)
- Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences, CAIV, University of Cádiz Agrifood Campus of International Excellence, Puerto Real, 11510 Cádiz, Spain
| | - Fabio Chinnici
- Agricultural and Food Sciences Department, University of Bologna, Piazza Goidanich, 60-47521, Cesena (FC), Italy
| | - Nadia Natali
- Agricultural and Food Sciences Department, University of Bologna, Piazza Goidanich, 60-47521, Cesena (FC), Italy
| | - Claudio Riponi
- Agricultural and Food Sciences Department, University of Bologna, Piazza Goidanich, 60-47521, Cesena (FC), Italy
| |
Collapse
|
9
|
Characterization of Aroma-Active Compounds of Pu-erh Tea by Headspace Solid-Phase Microextraction (HS-SPME) and Simultaneous Distillation-Extraction (SDE) Coupled with GC-Olfactometry and GC-MS. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0303-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Vítová E, Sůkalová K, Mahdalová M, Butorová L, Babák L, Matějíček A. Comparison of Flavour and Volatile Flavour Compounds of Mixed Elderberry Juices. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2015. [DOI: 10.11118/actaun201563010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Vortex-assisted liquid–liquid microextraction coupled with high performance liquid chromatography for the determination of furfurals and patulin in fruit juices. Talanta 2014; 120:47-54. [DOI: 10.1016/j.talanta.2013.11.081] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022]
|
12
|
Du L, Wang C, Li J, Xiao D, Li C, Xu Y. Optimization of headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry for detecting methoxyphenolic compounds in pu-erh tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:561-568. [PMID: 23268690 DOI: 10.1021/jf304470k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A method based on headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry was developed for the analysis of volatile methoxyphenolic compounds in pu-erh tea. Six fibers with different polarities were initially evaluated. The 75 μm carboxen/polydimethylsiloxane fiber exhibited the highest extraction efficiency and was selected for further optimization. A Plackett-Burman design was used to screen for the brewing proportion of tea and water, amount of pu-erh tea, ionic strength, extraction time, extraction temperature, desorption time, rate of agitation, and equilibrium time. A Box-Behnken design was then applied to optimize the significant factors. Under optimal conditions, the proposed method affords a wide range of linearity, high linear regression coefficients (0.996-0.999), less than 9.0% repeatability of relative standard deviation, and limits of detection ranging from 2.31 to 21.80 ng/g. The proposed method has satisfactory accuracy, with recoveries of 79.08-113.9%. This method was successfully applied for the analysis of pu-erh tea samples.
Collapse
Affiliation(s)
- Liping Du
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Capone DL, Black CA, Jeffery DW. Effects on 3-mercaptohexan-1-ol precursor concentrations from prolonged storage of Sauvignon blanc grapes prior to crushing and pressing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3515-3523. [PMID: 22435800 DOI: 10.1021/jf300054h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Formation of wine thiol precursors is a dynamic process, which can be influenced by vineyard and winery processing operations. With the aim of increasing thiol precursor concentrations, a study of the effects of storing machine-harvested Sauvignon blanc grapes prior to crushing and pressing was undertaken on a commercial scale. 3-Mercaptohexan-1-ol (3-MH) precursors, 2-S-glutathionylcaftaric acid (grape reaction product, GRP), glutathione (GSH) and a number of C6 compounds were assessed at several time points during the experiment. The concentration of the cysteine precursor to 3-MH doubled within 8 h and tripled after 30 h while the GSH and cysteinylglycine precursors increased in concentration roughly 1.5 times. (E)-2-Hexenal and GSH levels decreased as thiol precursors, GRP and C6 alcohols increased during storage. Principal component analysis revealed that precursors contributed to most of the variation within the samples over the storage period, with additional influence, primarily from GSH and GRP, as well as (E)-2-hexenal and (Z)-3-hexen-1-ol. Early storage time points were associated with higher concentrations of GSH and some unsaturated C6 compounds while longer storage times were most closely associated with higher thiol precursor and GRP concentrations. This study provides a detailed overview of interactions related to thiol precursor formation on a commercial scale and highlights the ability to manipulate precursor concentrations prior to grape crushing.
Collapse
Affiliation(s)
- Dimitra L Capone
- The Australian Wine Research Institute, Glen Osmond, South Australia 5064, Australia
| | | | | |
Collapse
|
14
|
Sefton MA, Skouroumounis GK, Elsey GM, Taylor DK. Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9717-46. [PMID: 21866982 DOI: 10.1021/jf201450q] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Among plant-derived odorants, damascenone is one of the most ubiquitous, sometimes occurring as an apparent natural product but more commonly occurring in processed foodstuffs and beverages. It has been widely reported as a component of alcoholic beverages, particularly of wines made from the grape Vitis vinifera . Although damascenone has one of the lowest ortho- and retronasal detection thresholds of any odorant, its contribution to the sensory properties of most products remains poorly understood. Damascenone can be formed by acid-catalyzed hydrolyses of plant-derived apocarotenoids, in both aglycon and glycoconjugated forms. These reactions can account for the formation of damascenone in some, but not all, products. In wine, damascenone can also be subject to degradation processes, particularly by reaction with sulfur dioxide.
Collapse
Affiliation(s)
- Mark A Sefton
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
15
|
Olivero SJP, Trujillo JPP. A new method for the determination of short-chain fatty acids from the aliphatic series in wines by headspace solid-phase microextraction-gas chromatography-ion trap mass spectrometry. Anal Chim Acta 2011; 696:59-66. [PMID: 21621033 DOI: 10.1016/j.aca.2011.03.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 11/16/2022]
Abstract
A new analytical method for the determination of nine short-chain fatty acids (acetic, propionic, isobutyric, butyric, isovaleric, 2-methylbutyric, hexanoic, octanoic and decanoic acids) in wines using the automated HS/SPME-GC-ITMS technique was developed and optimised. Five different SPME fibers were tested and the influence of different factors such as temperature and time of extraction, temperature and time of desorption, pH, strength ionic, tannins, anthocyans, SO(2), sugar and ethanol content were studied and optimised using model solutions. Some analytes showed matrix effect so a study of recoveries was performed. The proposed HS/SPME-GC-ITMS method, that covers the concentration range of the different analytes in wines, showed wide linear ranges, values of repeatability and reproducibility lower than 4.0% of RSD and detection limits between 3 and 257 μgL(-1), lower than the olfactory thresholds. The optimised method is a suitable technique for the quantitative analysis of short-chain fatty acids from the aliphatic series in real samples of white, rose and red wines.
Collapse
Affiliation(s)
- Sergio J Pérez Olivero
- Department of Analytical Chemistry, Nutrition and Food Science, University of La Laguna, Tenerife, Spain
| | | |
Collapse
|