1
|
Liu L, Zhao Y, Huang Z, Long Z, Qin H, Lin H, Zhou S, Kong L, Ma J, Lin Y, Li Z. Dietary supplementation of Lycium barbarum polysaccharides alleviates soybean meal-induced enteritis in spotted sea bass Lateolabrax maculatus. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:1-22. [PMID: 39949731 PMCID: PMC11815959 DOI: 10.1016/j.aninu.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/22/2024] [Accepted: 10/24/2024] [Indexed: 02/16/2025]
Abstract
The aim of this experiment was to investigate the effect of Lycium barbarum polysaccharides (LBP) on alleviating soybean meal-induced enteritis (SBMIE) in spotted sea bass Lateolabrax maculatus. The diet with 44% fishmeal (FM) content was used as a blank control, and soybean meal (SM) was used to replace 50% FM as an experimental control to induce enteritis. Then, on the basis of experimental control, 0.10%, 0.15%, and 0.20% LBP were added as experimental diets. A total of 225 spotted sea bass (44.52 ± 0.24 g) were randomly divided into 5 groups and fed the corresponding diets for 52 d. The results showed that 0.15% LBP decreased serum D-lactic acid (D-LA) content and diamine oxidase (DAO) activity (P < 0.05). In addition, in all LBP supplementation groups, the intestinal tissue morphology was significantly improved (P < 0.05); the intestinal microbial structure gradually recovered to a level close to that without adding SM; and the microbial species richness and diversity were significantly increased (P < 0.05). Through transcriptomic and metabolomic analysis, it was found that the expression of proinflammatory factors such as interleukin-1β (IL-1β), interleukin-12 (IL-12), nuclear factor kappa B subunit 2 (NF-κB2), and Toll-like receptor 2 (TLR2) were significantly down-regulated in the mitogen-activated protein kinase (MAPK) and Toll-like receptor signaling pathways (P < 0.05), and the important tight junction protein gene Occludin was up-regulated (P < 0.05). In addition, LBP down-regulated saponin metabolites and up-regulated amino acid metabolites (P < 0.05). In conclusion, LBP demonstrated a significant alleviating effect on SBMIE of spotted sea bass L. maculatus.
Collapse
Affiliation(s)
- Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yanbo Zhao
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| |
Collapse
|
2
|
Dentice Maidana S, Argañaraz Aybar JN, Albarracin L, Imamura Y, Arellano-Arriagada L, Namai F, Suda Y, Nishiyama K, Villena J, Kitazawa H. Modulation of the Gut-Lung Axis by Water Kefir and Kefiran and Their Impact on Toll-like Receptor 3-Mediated Respiratory Immunity. Biomolecules 2024; 14:1457. [PMID: 39595633 PMCID: PMC11591811 DOI: 10.3390/biom14111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The beneficial effect of milk kefir on respiratory heath has been previously demonstrated; however, water kefir and kefiran in the context of respiratory viral infections have not been investigated. Water kefir and kefiran could be alternatives to milk kefir for their application in persons with lactose intolerance or milk allergy and could be incorporated into vegan diets. Using mice models, this work demonstrated that the oral administration of water kefir or kefiran can modulate the respiratory Toll-like receptor (TLR3)-mediated innate antiviral immunity and improve the resistance to respiratory syncytial virus (RSV) infection. The treatment of mice with water kefir or kefiran for 6 days improved the production of interferons (IFN-β and IFN-γ) and antiviral factors (Mx2, OAS1, RNAseL, and IFITM3) in the respiratory tract after the activation of the TLR3 signaling pathway, differentially modulated the balance of pro- and anti-inflammatory cytokines, reduced RSV replication, and diminished lung tissue damage. Maintaining a proper balance between anti-inflammatory and pro-inflammatory mediators is vital for ensuring an effective and safe antiviral immune response, and the results of this work show that water kefir and kefiran would help to maintain that balance promoting a controlled inflammatory response that defends against infection while minimizing tissue damage.
Collapse
Affiliation(s)
- Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (S.D.M.); (L.A.)
| | - Julio Nicolás Argañaraz Aybar
- Cátedra de Inmunología, Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán 4000, Argentina;
| | - Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (S.D.M.); (L.A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Luciano Arellano-Arriagada
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (S.D.M.); (L.A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
3
|
Zhang J, Xiao Y, Wang H, Zhang H, Chen W, Lu W. Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol Res 2023; 274:127432. [PMID: 37320895 DOI: 10.1016/j.micres.2023.127432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB) have implications for host health and act as food ingredients. Due to the variability of LAB-EPS (lactic acid bacteria-derived exopolysaccharide) gene clusters, especially the glycosyltransferase genes that determine monosaccharide composition, the structure of EPS is very rich. EPSs are synthesized by LAB through the extracellular synthesis pathway and the Wzx/Wzy-dependent pathway. LAB-EPS has a strong immunomodulatory ability. The EPSs produced by different genera of LAB, especially Lactobacillus, Leuconostoc, and Streptococcus, have different immunomodulatory abilities because of their specific structures. LAB-EPS possesses other health effects, including antitumor, antioxidant, intestinal barrier repair, antimicrobial, antiviral, and cholesterol-lowering activities. The bioactivities of LAB-EPS are tightly related to their structures such us monosaccharide composition, glycosidic bonds, and molecular weight (MW). For the excellent physicochemical property, LAB-EPS acts as product improvers in dairy, bakery food, and meat in terms of stability, emulsification, thickening, and gelling. We systematically summarize the detailed process of EPS from synthesis to application, with emphasis on physiological mechanisms of EPS, and specific structure-function relationship, which provides theoretical support for the potential commercial value in the pharmaceutical, chemical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
5
|
Gagliarini N, Figoli CB, Piermaria J, Bosch A, Abraham AG. Unraveling molecular interactions in whey protein-kefiran composite films to understand their physicochemical and mechanical properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Chen W, Wang J, Du L, Chen J, Zheng Q, Li P, Du B, Fang X, Liao Z. Kefir microbiota and metabolites stimulate intestinal mucosal immunity and its early development. Crit Rev Food Sci Nutr 2022; 64:1371-1384. [PMID: 36039934 DOI: 10.1080/10408398.2022.2115975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Kefir consists of a large number of probiotics, which can regulate or shape the balance of intestinal microbiota, and enhance the host's immune response. Kefir microbiota can shape the mucosal immunity of the body through SCFAs, EPS, polypeptides, lactic acid, and other metabolites and microbial antigens themselves, and this shaping may have time windows and specific pathways. Kefir can regulate antibody SIgA and IL-10 levels to maintain intestinal homeostasis, and its secreted SIgA can shape the stable microbiota system by wrapping and binding different classes of microorganisms. The incidence of intestinal inflammation is closely linked to the development and maturation of intestinal mucosal immunity. Based on summarizing the existing research results on Kefir, its metabolites, and immune system development, this paper proposes to use Kefir, traditional fermented food with natural immune-enhancing components and stable functional microbiota, as an intervention method. Early intervention in the immune system may seize the critical window period of mucosal immunity and stimulate the development and maturation of intestinal mucosal immunity in time.
Collapse
Affiliation(s)
- Weizhe Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Junjie Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qikai Zheng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Culpepper T. The Effects of Kefir and Kefir Components on Immune and Metabolic Physiology in Pre-Clinical Studies: A Narrative Review. Cureus 2022; 14:e27768. [PMID: 36106262 PMCID: PMC9450431 DOI: 10.7759/cureus.27768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
Kefir, a fermented beverage made from kefir grains, has gained immense popularity around the world due to its potential health-promoting properties. Kefir beverages are both marketed commercially and brewed privately by individuals. Both milk and sugar solutions can be used as substrates with various additives included based on consumer preference. Fermentation occurs via microorganisms including lactic acid bacteria, acetic acid bacteria, and yeasts, which are naturally present in kefir grains. Health-promoting effects of kefir are thought to occur through immune, gastrointestinal, and metabolic regulation. Both clinical trials and mechanistic studies in cell culture and animal models have explored these effects. Studies in vitro and in animals have shown the ability of kefir and kefir components to antagonize pathogens, reduce proinflammatory cytokine production, contribute to cytotoxicity of tumor cell lines and reduce tumor burden, and improve serum glycemic and lipid profiles. However, some data from clinical trials are conflicting, and the precise mechanisms by which kefir promotes well-being are not completely defined. This review summarizes the current body of evidence in both cell culture and animal models that provide insight into the mechanisms by which kefir beverages may protect consumers from enteric infections and improve immune and metabolic health. We believe that readers will gain knowledge helpful for both developing more targeted mechanistic studies and selecting informative outcomes when designing clinical studies.
Collapse
|
8
|
Georgalaki M, Zoumpopoulou G, Anastasiou R, Kazou M, Tsakalidou E. Lactobacillus kefiranofaciens: From Isolation and Taxonomy to Probiotic Properties and Applications. Microorganisms 2021; 9:2158. [PMID: 34683479 PMCID: PMC8540521 DOI: 10.3390/microorganisms9102158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
One of the main lactic acid bacterial species found in the kefir grain ecosystem worldwide is Lactobacillus kefiranofaciens, exhibiting strong auto-aggregation capacity and, therefore, being involved in the mechanism of grain formation. Its occurrence and dominance in kefir grains of various types of milk and geographical origins have been verified by culture-dependent and independent approaches using multiple growth media and regions of the 16S rRNA gene, respectively, highlighting the importance of their combination for its taxonomic identification. L. kefiranofaciens comprises two subspecies, namely kefiranofaciens and kefirgranum, but only the first one is responsible for the production of kefiran, the water-soluble polysaccharide, which is a basic component of the kefir grain and famous for its technological as well as health-promoting properties. L. kefiranofaciens, although very demanding concerning its growth conditions, can be involved in mechanisms affecting intestinal health, immunomodulation, control of blood lipid levels, hypertension, antimicrobial action, and protection against diabetes and tumors. These valuable bio-functional properties place it among the most exquisite candidates for probiotic use as a starter culture in the production of health-beneficial dairy foods, such as the kefir beverage.
Collapse
Affiliation(s)
- Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.Z.); (R.A.); (M.K.); (E.T.)
| | | | | | | | | |
Collapse
|
9
|
Mendes E, Casaro MB, Fukumori C, Ribeiro WR, Dos Santos AL, Sartorelli P, Lazarini M, Bogsan CSB, Oliveira MA, Ferreira CM. Preventive oral kefir supplementation protects mice from ovariectomy-induced exacerbated allergic airway inflammation. Benef Microbes 2021; 12:187-197. [PMID: 33789554 DOI: 10.3920/bm2020.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Asthma is an inflammatory lung disease that affects more women than men in adulthood. Clinical evidence shows that hormonal fluctuation during the menstrual cycle and menopause are related to increased asthma severity in women. Considering that life expectancy has increased and that most women now undergo menopause, strategies to prevent the worsening of asthma symptoms are particularly important. A recent study from our group showed that re-exposure of ovariectomised allergic mice to antigen (ovalbumin) leads to an exacerbation of lung inflammation that is similar to clinical conditions. However, little is known about the role of probiotics in the prevention of asthma exacerbations during the menstrual cycle or menopause. Thus, our objective was to evaluate the effects of supplementation with kefir, a popular fermented dairy beverage, as a preventive strategy for modulating allergic disease. The results show that the preventive kefir administration decreases the influx of inflammatory cells in the airways and exacerbates the production of mucus and the interleukin 13 cytokine. Additionally, kefir changes macrophage polarisation by decreasing the number of M2 macrophages, as shown by RT-PCR assay. Thus, kefir is a functional food that potentially prevents allergic airway inflammation exacerbations in ovariectomised mice.
Collapse
Affiliation(s)
- E Mendes
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - M B Casaro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - C Fukumori
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - W R Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - A L Dos Santos
- Chemistry Department, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP 09972-270, Brazil
| | - P Sartorelli
- Chemistry Department, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP 09972-270, Brazil
| | - M Lazarini
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| | - C S B Bogsan
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, B-16, Sao Paulo, SP 05508-900, Brazil
| | - M A Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences I, University of Sao Paulo, Sao Paulo, Av. Prof. Lineu Prestes, 1374, SP 05508-000, Brazil
| | - C M Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, R. Sao Nicolau, 210, Diadema, SP 09913-03, Brazil
| |
Collapse
|
10
|
Piermaria J, López‐Castejón ML, Bengoechea C, Guerrero A, Abraham AG. Prebiotic emulsions stabilised by whey protein and kefiran. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Judith Piermaria
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET La Plata, UNLP, CIC) 47 and 116 La Plata Argentina
- Área Bioquímica y Control de Alimentos Facultad de Ciencias Exactas UNLP 47 and 115 La Plata Argentina
| | - María Luisa López‐Castejón
- Departamento de Ingeniería Química Facultad de Química Universidad de Sevilla Calle Profesor García González 1 41012 Sevilla España
| | - Carlos Bengoechea
- Departamento de Ingeniería Química Facultad de Química Universidad de Sevilla Calle Profesor García González 1 41012 Sevilla España
| | - Antonio Guerrero
- Departamento de Ingeniería Química Facultad de Química Universidad de Sevilla Calle Profesor García González 1 41012 Sevilla España
| | - Analía Graciela Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET La Plata, UNLP, CIC) 47 and 116 La Plata Argentina
- Área Bioquímica y Control de Alimentos Facultad de Ciencias Exactas UNLP 47 and 115 La Plata Argentina
| |
Collapse
|
11
|
Egea MB, Santos DCD, Oliveira Filho JGD, Ores JDC, Takeuchi KP, Lemes AC. A review of nondairy kefir products: their characteristics and potential human health benefits. Crit Rev Food Sci Nutr 2020; 62:1536-1552. [PMID: 33153292 DOI: 10.1080/10408398.2020.1844140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional foods are foods that, in addition to having nutrients, contain in their composition ingredients that act specifically on body functions associated with the control and reduction of the risk of developing some diseases. In this sense, kefir, a group of microorganisms in symbiosis, mainly yeasts and lactic acid bacteria, stands out. The trend of ingesting kefir has been focused on the development of products that serve specific consumers, such as those who are lactose-intolerant, vegans and vegetarians, and consumers in general who seek to combine the consumption of functional products with the improvement of their health and lifestyle. This overview provides an insight into kefir, presenting the technological process to produce a nondairy beverage and evidence of the benefits of its use to reduce the risk of disease. We also discuss regulatory aspects of products fermented using kefir. Until now, the use of kefir (isolated microorganism, kefiran, or fermented product) has demonstrated the potential to promote an increase in the number of bifidobacteria in the colon and an increase in the glycemic control while reducing the blood cholesterol and balancing the intestinal microbiota, which helps in reducing constipation and diarrhea, improving intestinal permeability, and stimulating and balancing the immune system. However, the literature still has gaps that need to be clarified, such as the consumption dose of kefir or its products to cause some health benefit.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | - Daiane Costa Dos Santos
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | | | - Joana da Costa Ores
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | - Katiuchia Pereira Takeuchi
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil.,Faculty of Nutrition, Department of Food and Nutrition, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Ailton Cesar Lemes
- School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Marangoni Júnior L, Vieira RP, Anjos CAR. Kefiran-based films: Fundamental concepts, formulation strategies and properties. Carbohydr Polym 2020; 246:116609. [DOI: 10.1016/j.carbpol.2020.116609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
|
13
|
Bahari A, Shahabi-Ghahfarrokhi I, Koolivand D. Kefiran ameliorates malfunctions in primary and functional immune cells caused by lipopolysaccharides. Int J Biol Macromol 2020; 165:619-624. [PMID: 33007323 DOI: 10.1016/j.ijbiomac.2020.09.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 11/28/2022]
Abstract
Kefiran is a water-soluble polysaccharide well recognized as a bioactive ingredient to enhance nutritional and health-promoting features. Also, some therapeutic properties have made this macromolecule an active ingredient in ointments and oral anti-inflammatory drugs. However, the details of the molecular and cellular aspects of these effects have not been addressed. In this study, lipopolysaccharides (LPS)-induced monocytes, lymphocytes, and monocyte-derived dendritic cells (MDDCs) as representative cells for both innate and adaptive immunity were treated with kefiran for 2 h. Kefiran had an anti-inflammatory effect on monocytes to reduce pro-inflammatory cytokines, interleukin 1 β (IL-1β) & tumor necrosis factor α (TNF-α), as well as nuclear factor kappa b (NF-kb). However, it did not affect lymphocytes. Overexpression of Toll-like receptor 4 (TLR4) in LPS-induced cells was not reduced after kefiran treatment. Kefiran balanced MDDCs secretion of pro/anti-inflammatory cytokines by reducing and enhancing the expression of IL-1β and interleukin 10 (IL-10), respectively. Also, kefiran decreased the number of apoptotic immature MDDCs and promoted dose-dependent phagocytosis capacity of MDDCs. According to the results of the current study, it may be concluded that the immunomodulatory effects of kefiran are due to antagonist against innate immune receptors especially TLR4. The results of this study can be used as a guide to developing kefiran-based non-aggressive anti-inflammatory drugs. Furthermore, understanding the immunobiological effects of kefiran on monocytes and lymphocytes was another outcome of this study.
Collapse
Affiliation(s)
- Abbas Bahari
- Research Institute of Modern Biological Techniques, University of Zanjan, 45371-38791 Zanjan, Iran.
| | - Iman Shahabi-Ghahfarrokhi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Davoud Koolivand
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, 45371-38791 Zanjan, Iran
| |
Collapse
|
14
|
Kefir peptides alleviate high-fat diet-induced atherosclerosis by attenuating macrophage accumulation and oxidative stress in ApoE knockout mice. Sci Rep 2020; 10:8802. [PMID: 32472055 PMCID: PMC7260220 DOI: 10.1038/s41598-020-65782-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
In the past decade, the high morbidity and mortality of atherosclerotic disease have been prevalent worldwide. High-fat food consumption has been suggested to be an overarching factor for atherosclerosis incidence. This study aims to investigate the effects of kefir peptides on high-fat diet (HFD)-induced atherosclerosis in apolipoprotein E knockout (ApoE−/−) mice. 7-week old male ApoE−/− and normal C57BL/6 mice were randomly divided into five groups (n = 8). Atherosclerotic lesion development in ApoE−/− mice was established after fed the HFD for 12 weeks compared to standard chow diet (SCD)-fed C57BL/6 and ApoE−/− control groups. Kefir peptides oral administration significantly improved atherosclerotic lesion development by protecting against endothelial dysfunction, decreasing oxidative stress, reducing aortic lipid deposition, attenuating macrophage accumulation, and suppressing the inflammatory immune response compared with the HFD/ApoE−/− mock group. Moreover, the high dose of kefir peptides substantially inhibited aortic fibrosis and restored the fibrosis in the aorta root close to that observed in the C57BL/6 normal control group. Our findings show, for the first time, anti-atherosclerotic progression via kefir peptides consumption in HFD-fed ApoE−/− mice. The profitable effects of kefir peptides provide new perspectives for its use as an anti-atherosclerotic agent in the preventive medicine.
Collapse
|
15
|
Kefiran/poly(vinyl alcohol)/poly(vinyl pyrrolidone) composite nanofibers: fabrication, characterization and consideration of effective parameters in electrospinning. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2714-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
Tan KX, Chamundeswari VN, Loo SCJ. Prospects of kefiran as a food-derived biopolymer for agri-food and biomedical applications. RSC Adv 2020; 10:25339-25351. [PMID: 35517442 PMCID: PMC9055270 DOI: 10.1039/d0ra02810j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
There is a huge demand for food-derived polysaccharides in the field of materials research due to the increasing concerns posed by synthetic biopolymers.
Collapse
Affiliation(s)
- Kei-Xian Tan
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | | | - Say Chye Joachim Loo
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Nanyang Technological University
| |
Collapse
|
17
|
Moradi Z, Kalanpour N. Kefiran, a branched polysaccharide: Preparation, properties and applications: A review. Carbohydr Polym 2019; 223:115100. [DOI: 10.1016/j.carbpol.2019.115100] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
|
18
|
Sugawara T, Furuhashi T, Shibata K, Abe M, Kikuchi K, Arai M, Sakamoto K. Fermented product of rice with Lactobacillus kefiranofaciens induces anti-aging effects and heat stress tolerance in nematodes via DAF-16. Biosci Biotechnol Biochem 2019; 83:1484-1489. [DOI: 10.1080/09168451.2019.1606696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Rice kefiran is superior in functionality, has high concentration of mucilaginous polysaccharide, and low lipid content, compared to conventional kefiran. However, reports on its physiological functionality, especially studies on life expectancy and aging, in model organisms are rare. In this study, nematodes were used as model organisms that were fed rice kefiran, along with Escherichia coli OP50, as a result of which, the lifespan of nematodes was extended and age-related retardation of mobility was suppressed. It also increased the heat stress resistance in nematodes. Experiments using daf-16 deletion mutant revealed that rice kefiran functions via DAF-16. Thus, this study revealed the longevity, anti-aging and heat stress tolerance effects of rice kefiran in nematodes.
Collapse
Affiliation(s)
- Takaya Sugawara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tsubasa Furuhashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenji Shibata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Abe
- The College of Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - Keita Kikuchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masato Arai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
|
20
|
Taheri S, Khomeiri M. Psychobiotics and Brain-Gut Microbiota Axis. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2019. [DOI: 10.30699/ijmm.13.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Xie SZ, Liu B, Ye HY, Li QM, Pan LH, Zha XQ, Liu J, Duan J, Luo JP. Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice. Carbohydr Polym 2019; 206:149-162. [DOI: 10.1016/j.carbpol.2018.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
|
22
|
Kuroda R, Higuchi H, Yoshida K, Yonejima Y, Hisa K, Utsuyama M, Osawa K, Hirokawa K. Effects of chocolate containing Leuconostoc mesenteroides strain NTM048 on immune function: a randomized, double-blind, placebo-controlled trial. IMMUNITY & AGEING 2018; 15:29. [PMID: 30479641 PMCID: PMC6247524 DOI: 10.1186/s12979-018-0139-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022]
Abstract
Background Previous reports showed that oral administration of Leuconostoc mesenteroides strain NTM048 increases IgA levels and CD4+ T cell population in feces and mice, respectively, as revealed by flow cytometric analysis of splenocytes. This study aimed to evaluate the effect of chocolate supplemented with L. mesenteroides strain NTM048 (> 1.00 × 109 CFU/day, NTM048) on the immune parameters of healthy subjects, using a randomized, placebo-controlled, double-blinded study design. Methods Participants (mean age: 46.3 years) ingested 28 g of test food daily, at a time of their own choice, for 4 weeks. The immunological parameters of all participants were evaluated two times (pre- and post- ingestion). At the end of the study, various immunological parameters of the participants were measured and scoring of immunological vigor (SIV) was performed using a comprehensive algorithm. Results Ingestion of NTM048-supplemented chocolate significantly improved SIV in the NTM048 group (18.6 ± 1.6) compared to that in the placebo group (17.8 ± 2.0) after 4 weeks (p = 0.049). Several immunological parameters (CD8+T cells, CD8+CD28+ T cells, and memory T cells) were significantly elevated in the NTM048 group as compared to the placebo group (all p < 0.05). In addition, T cell proliferation index at post-ingestion significantly increased compared with that at pre-ingestion in the NTM048 (p = 0.017) and placebo groups (p = 0.037), although no differences were observed between the two groups. Conclusion Our results suggest that ingestion of chocolate supplemented with NTM048 is effective against the age-related decline in T cell-related immune functions. Trial registration UMIN Clinical Trials Registry UMIN000021989. Registered 19 April 2016, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000025321
Collapse
Affiliation(s)
- Reiko Kuroda
- Central Laboratory, LOTTE Co., Ltd., 1-1, Numakage 3-chome, Minami-ku, Saitama, 336-8601 Japan
| | - Hiroaki Higuchi
- Central Laboratory, LOTTE Co., Ltd., 1-1, Numakage 3-chome, Minami-ku, Saitama, 336-8601 Japan
| | - Keishirou Yoshida
- Central Laboratory, LOTTE Co., Ltd., 1-1, Numakage 3-chome, Minami-ku, Saitama, 336-8601 Japan
| | - Yasunori Yonejima
- Nitto Pharmaceutical Industries, Ltd., 35-3, Minamibiraki, Kamiueno-cho, Muko, Kyoto, 617-0006 Japan
| | - Keiko Hisa
- Nitto Pharmaceutical Industries, Ltd., 35-3, Minamibiraki, Kamiueno-cho, Muko, Kyoto, 617-0006 Japan
| | - Masanori Utsuyama
- 3Institute for Health and Life Science, Tokyo Medical & Dental University, 3-10, Kandasurugadai 10-chome, Chiyoda-ku, Tokyo, 101-0062 Japan.,4Department of Comprehensive Pathology, Tokyo Medical & Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Kenji Osawa
- Central Laboratory, LOTTE Co., Ltd., 1-1, Numakage 3-chome, Minami-ku, Saitama, 336-8601 Japan
| | - Katsuiku Hirokawa
- 3Institute for Health and Life Science, Tokyo Medical & Dental University, 3-10, Kandasurugadai 10-chome, Chiyoda-ku, Tokyo, 101-0062 Japan.,4Department of Comprehensive Pathology, Tokyo Medical & Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| |
Collapse
|
23
|
Bengoa A, Iraporda C, Garrote G, Abraham A. Kefir micro-organisms: their role in grain assembly and health properties of fermented milk. J Appl Microbiol 2018; 126:686-700. [DOI: 10.1111/jam.14107] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- A.A. Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET); La Plata Argentina
| | - C. Iraporda
- Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería; UNCPBA; Olavarría Argentina
| | - G.L. Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET); La Plata Argentina
| | - A.G. Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET); La Plata Argentina
- Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas; UNLP; La Plata Argentina
| |
Collapse
|
24
|
Blandón LM, Noseda MD, Islan GA, Castro GR, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Optimization of culture conditions for kefiran production in whey: The structural and biocidal properties of the resulting polysaccharide. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2018.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Kim DH, Jeong D, Kim H, Seo KH. Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Crit Rev Food Sci Nutr 2018; 59:1782-1793. [DOI: 10.1080/10408398.2018.1428168] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dong-Hyeon Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Dana Jeong
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul, Korea
| | - Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
26
|
Wu CH, Wang PM, Lin KW. Quality of Semi-dry Fermented Sausage Containing Sugary Kefir Grains. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Pei-Ming Wang
- Department of Food and Nutrition, Providence University No. 200
| | - Kuo-Wei Lin
- Department of Food and Nutrition, Providence University No. 200
| |
Collapse
|
27
|
Lim J, Kale M, Kim DH, Kim HS, Chon JW, Seo KH, Lee HG, Yokoyama W, Kim H. Antiobesity Effect of Exopolysaccharides Isolated from Kefir Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10011-10019. [PMID: 29084388 DOI: 10.1021/acs.jafc.7b03764] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Physiological properties of water-soluble exopolysaccharides (EPS) and residues after EPS removal (Res) from the probiotic kefir were determined in high-fat (HF) diet-fed C57BL/6J mice. EPS solutions showed rheological properties and lower viscosity compared to those of β-glucan (BG). EPS significantly suppressed the adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. Mice were fed HF diets containing 5% EPS, 5% BG, 8% Res, or 5% microcrystalline cellulose (control) for 4 weeks. Compared with the control, EPS supplementation significantly reduced HF diet-induced body weight gain, adipose tissue weight, and plasma very-low-density lipoprotein cholesterol concentration (P < 0.05). Res and BG significantly reduced body weight gain; however, reduction in adipose tissue weight was not statistically significant, suggesting that the antiobesity effect of EPS occurs due to viscosity and an additional factor. EPS supplementation significantly enhanced abundance of Akkermansia spp. in feces. These data indicate that EPS shows significant antiobesity effects possibly via intestinal microbiota alterations.
Collapse
Affiliation(s)
- Juha Lim
- Department of Food and Nutrition, Hanyang University , Seoul 04763, Republic of Korea
| | - Madhuvanti Kale
- Western Research Center, United States Department of Agriculture , Albany, California 94710, United States
| | - Dong-Hyeon Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University , Seoul 05029, Republic of Korea
| | - Hong-Seok Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University , Seoul 05029, Republic of Korea
| | - Jung-Whan Chon
- Center for One Health, College of Veterinary Medicine, Konkuk University , Seoul 05029, Republic of Korea
| | - Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University , Seoul 05029, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University , Seoul 04763, Republic of Korea
| | - Wallace Yokoyama
- Western Research Center, United States Department of Agriculture , Albany, California 94710, United States
| | - Hyunsook Kim
- Department of Food and Nutrition, Hanyang University , Seoul 04763, Republic of Korea
| |
Collapse
|
28
|
Gangoiti M, Puertas A, Hamet M, Peruzzo P, Llamas M, Medrano M, Prieto A, Dueñas M, Abraham A. Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains. Carbohydr Polym 2017; 170:52-59. [DOI: 10.1016/j.carbpol.2017.04.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
|
29
|
Choi JW, Kang HW, Lim WC, Kim MK, Lee IY, Cho HY. Kefir prevented excess fat accumulation in diet-induced obese mice. Biosci Biotechnol Biochem 2017; 81:958-965. [DOI: 10.1080/09168451.2016.1258984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Excessive body fat accumulation can result in obesity, which is a serious health concern. Kefir, a probiotic, has recently shown possible health benefits in fighting obesity. This study investigated the inhibitory effects of 0.1 and 0.2% kefir powder on fat accumulation in adipose and liver tissues of high-fat diet (HFD)-induced obese mice. Kefir reduced body weight and epididymal fat pad weight and decreased adipocyte diameters in HFD-induced obese mice. This was supported by decreased expression of genes related to adipogenesis and lipogenesis as well as reduced proinflammatory marker levels in epididymal fat. Along with reduced hepatic triacylglycerol concentrations and serum alanine transaminase and aspartate transaminase activities, genes related to lipogenesis and fatty acid oxidation were downregulated and upregulated, respectively, in liver tissue. Kefir also decreased serum triacylglycerol, total cholesterol, and low-density lipoprotein–cholesterol concentrations. Overall, kefir has the potential to prevent obesity.
Collapse
Affiliation(s)
- Jae-Woo Choi
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Hye Won Kang
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Won-Chul Lim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | | | | | - Hong-Yon Cho
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| |
Collapse
|
30
|
Abstract
Kefir is fermented milk produced from grains that comprise a specific and complex mixture of bacteria and yeasts that live in a symbiotic association. The nutritional composition of kefir varies according to the milk composition, the microbiological composition of the grains used, the time/temperature of fermentation and storage conditions. Kefir originates from the Caucasus and Tibet. Recently, kefir has raised interest in the scientific community due to its numerous beneficial effects on health. Currently, several scientific studies have supported the health benefits of kefir, as reported historically as a probiotic drink with great potential in health promotion, as well as being a safe and inexpensive food, easily produced at home. Regular consumption of kefir has been associated with improved digestion and tolerance to lactose, antibacterial effect, hypocholesterolaemic effect, control of plasma glucose, anti-hypertensive effect, anti-inflammatory effect, antioxidant activity, anti-carcinogenic activity, anti-allergenic activity and healing effects. A large proportion of the studies that support these findings were conducted in vitro or in animal models. However, there is a need for systematic clinical trials to better understand the effects of regular use of kefir as part of a diet, and for their effect on preventing diseases. Thus, the present review focuses on the nutritional and microbiological composition of kefir and presents relevant findings associated with the beneficial effects of kefir on human and animal health.
Collapse
|
31
|
Sayar GH, Cetin M. Psychobiotics: The Potential Therapeutic Promise of Microbes in Psychiatry. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20160531111208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Gokben Hizli Sayar
- Uskudar University NP Istanbul Hospital, Psychiatry Clinic, Istanbul - Turkey
| | - Mesut Cetin
- Klinik Psikofarmakoloji Bulteni-Bulletin of Clinical Pychopharmacology, Istanbul - Turkey
| |
Collapse
|
32
|
Piermaría J, Bengoechea C, Abraham AG, Guerrero A. Shear and extensional properties of kefiran. Carbohydr Polym 2016; 152:97-104. [DOI: 10.1016/j.carbpol.2016.06.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 11/17/2022]
|
33
|
Desrouillères K, Millette M, Jamshidian M, Maherani B, Fortin O, Lacroix M. Cancer preventive effect of a specific probiotic fermented milk components and cell walls extracted from a biomass containing L. acidophilus CL1285, L. casei LBC80R, and L. rhamnosus CLR2 on male F344 rats treated with 1,2-dimethylhydrazine. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
Paiva IMD, Steinberg RDS, Lula IS, Souza-Fagundes EMD, Mendes TDO, Bell MJV, Nicoli JR, Nunes ÁC, Neumann E. Lactobacillus kefiranofaciens and Lactobacillus satsumensis isolated from Brazilian kefir grains produce alpha-glucans that are potentially suitable for food applications. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Hamet M, Medrano M, Pérez P, Abraham A. Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota. Benef Microbes 2016; 7:237-46. [DOI: 10.3920/bm2015.0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity of kefiran, the exopolysaccharide present in kefir grains, was evaluated on intestinal bacterial populations in BALB/c mice. Animals were orally administered with kefiran and Eubacteria, lactobacilli and bifidobacteria populations were monitored in faeces of mice at days 0, 2, 7, 14 and 21. Profiles obtained by Denaturing Gradient Gel Electrophoresis (DGGE) with primers for Eubacteria were compared by principal component analysis and clearly defined clusters, correlating with the time of kefiran consumption, were obtained. Furthermore, profile analysis of PCR products amplified with specific oligonucleotides for bifidobacteria showed an increment in the number of DGGE bands in the groups administered with kefiran. Fluorescent In Situ Hybridisation (FISH) with specific probes for bifidobacteria showed an increment of this population in faeces, in accordance to DGGE results. The bifidobacteria population was also studied on distal colon content after 0, 2 and 7 days of kefiran administration. Analysis of PCR products by DGGE with Eubacteria primers showed an increment in the number and intensity of bands with high GC content of mice administered with kefiran. Sequencing of DGGE bands confirmed that bifidobacteria were one of the bacterial populations modified by kefiran administration. DGGE profiles of PCR amplicons obtained by using Bifidobacterium or Lactobacillus specific primers confirmed that kefiran administration enhances bifidobacteria, however no changes were observed in Lactobacillus populations. The results of the analysis of bifidobacteria populations assessed on different sampling sites in a murine model support the use of this exopolysaccharide as a bifidogenic functional ingredient.
Collapse
Affiliation(s)
- M.F. Hamet
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata 1900, Argentina
| | - M. Medrano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata 1900, Argentina
| | - P.F. Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata 1900, Argentina
- Cátedra de Microbiología, Facultad de Ciencias Exactas, UNLP, 47 y 115, La Plata 1900, Argentina
| | - A.G. Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata 1900, Argentina
- Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
36
|
Xie SZ, Liu B, Zhang DD, Zha XQ, Pan LH, Luo JP. Intestinal immunomodulating activity and structural characterization of a new polysaccharide from stems of Dendrobium officinale. Food Funct 2016; 7:2789-99. [DOI: 10.1039/c6fo00172f] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly branched Dendrobium officinale polysaccharide (DOP-W3-b) with a high intestinal immunomodulating activity and a relatively low molecular weight was obtained through a bioactivity-guided sequential isolation procedure.
Collapse
Affiliation(s)
- Song-Zi Xie
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
| | - Bing Liu
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
| | - Dan-Dan Zhang
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
| | - Xue-Qiang Zha
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
| | - Li-Hua Pan
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
| | - Jian-Ping Luo
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
| |
Collapse
|
37
|
Dias PA, Rosa JVD, Tejada TS, Timm CD. Propriedades antimicrobianas do kefir. ARQUIVOS DO INSTITUTO BIOLÓGICO 2016. [DOI: 10.1590/1808-1657000762013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO: Os leites fermentados têm sido amplamente consumidos desde a Antiguidade e, atualmente, comercializados em todo o mundo. Kefir é um leite fermentado, ácido, levemente alcoólico, produzido artesanalmente a partir da fermentação do leite pelos grãos de kefir, os quais contêm uma população estável de micro-organismos. O processo fermentativo gera uma série de compostos que conferem sabor e aroma característicos ao kefir, além de substâncias bioativas, responsáveis por propriedades nutracêuticas. A utilização de micro-organismos com propriedades antimicrobianas como conservantes naturais é uma alternativa que tem como vantagem a inibição do desenvolvimento de bactérias deteriorantes e patogênicas sem o uso de substâncias químicas indesejáveis. O interesse em tais espécies aumentou nos últimos anos, viabilizando o uso desses micro-organismos probióticos como conservantes e inibidores naturais em vários produtos de origem animal, como leites, carnes e derivados. O objetivo deste trabalho foi apresentar uma revisão da literatura sobre as propriedades antimicrobianas atribuídas ao kefir.
Collapse
|
38
|
|
39
|
Gradova NB, Khokhlacheva AA, Murzina ED, Myasoyedova VV. Microbial components of kefir grains as exopolysaccharide kefiran producers. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815090045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Hamet MF, Piermaria JA, Abraham AG. Selection of EPS-producing Lactobacillus strains isolated from kefir grains and rheological characterization of the fermented milks. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
O'Brien KV, Stewart LK, Forney LA, Aryana KJ, Prinyawiwatkul W, Boeneke CA. The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training. J Dairy Sci 2015; 98:7446-9. [PMID: 26298752 DOI: 10.3168/jds.2015-9392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/25/2015] [Indexed: 11/19/2022]
Abstract
This study was designed to determine whether kefir accentuates the positive health benefits assessed by measures in fitness, body composition, or both, as a measure of cardiovascular disease risk as well as the biomarker C-reactive protein (CRP). Sixty-seven adult males and females aged 18 to 24 yr were assigned to 1 of 4 groups: (1) endurance training + control beverage, (2) endurance training +kefir beverage,(3) active control + control beverage, or (4) active control + kefir beverage. The exercise groups completed 15 wk of structured endurancetraining while the active control groups maintained their usual exercise routine. Additionally, each group was assigned to either a kefir or a calorie/macronutrient matched placebo beverage that was consumed twice per week. No significant interactions were found among groups with respect to outcome variables with the exception of serum CRP. The endurance training was effective in improving 1.5-mile (2.41 km) times and kefir supplementation may have been a factor in attenuating the increase in CRP that was observed over the course of the intervention period. This preliminary study suggests that kefir may be involved in improving the risk profile for cardiovascular disease as defined by CRP.
Collapse
Affiliation(s)
- K V O'Brien
- School of Animal Sciences, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge 70803.
| | - L K Stewart
- Rocky Mountain Cancer Rehabilitation Institute, School of Sport and Exercise Science, University of Northern Colorado, Greeley 80639
| | - L A Forney
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge 70808
| | - K J Aryana
- School of Animal Sciences, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge 70803
| | - W Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge 70803
| | - C A Boeneke
- School of Animal Sciences, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge 70803
| |
Collapse
|
42
|
Dailin DJ, Elsayed EA, Othman NZ, Malek R, Phin HS, Aziz R, Wadaan M, El Enshasy HA. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor. Saudi J Biol Sci 2015; 23:495-502. [PMID: 27298582 PMCID: PMC4890193 DOI: 10.1016/j.sjbs.2015.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022] Open
Abstract
Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L−1, respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L−1 concomitant with kefiran production of 1.91 g L−1.
Collapse
Affiliation(s)
- Daniel Joe Dailin
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Elsayed Ahmed Elsayed
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Saudi Arabia; Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nor Zalina Othman
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Roslinda Malek
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Hiew Siaw Phin
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Ramlan Aziz
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Mohamad Wadaan
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia; City of Scientific Research and Technology Application, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
43
|
Zanirati DF, Abatemarco M, Sandes SHDC, Nicoli JR, Nunes ÁC, Neumann E. Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. Anaerobe 2014; 32:70-76. [PMID: 25542841 DOI: 10.1016/j.anaerobe.2014.12.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022]
Abstract
Brazilian kefir is a homemade fermented beverage that is obtained by incubating milk or a brown sugar solution with kefir grains that contribute their different microbiological compositions. It is highly important to isolate and characterize microorganisms from Brazilian kefir grains to obtain starter cultures for the industrial production of a standardized commercial kefir. Thus, the present study aimed to isolate lactic acid bacteria from eight kefir grains that were propagated in milk or sugar solutions from five different locations in Brazil and to select Lactobacillus isolates based on desirable in vitro probiotic properties. One hundred eight isolates from both substrates were identified by amplified ribosomal DNA restriction analysis and/or 16S rRNA gene sequencing and were determined to belong to the following 11 species from the genera: Lactococcus, Leuconostoc, Lactobacillus (L.), and Oenococcus. Leuconostoc mesenteroides, Lactobacillus kefiri, and Lactobacillus kefiranofaciens were isolated only from milk grains, whereas Lactobacillus perolens, Lactobacillus parafarraginis, Lactobacillus diolivorans, and Oenococcus oeni were isolated exclusively from sugar water grains. When the microbial compositions of four kefir grains were evaluated with culture-independent analyses, L. kefiranofaciens was observed to predominant in milk grains, whereas Lactobacillus hilgardii was most abundant in sugar water kefir. Unfortunately, L. hilgardii was not isolated from any grain, although this bacteria was detected with a culture-independent methodology. Fifty-two isolated Lactobacilli were tested for gastric juice and bile salt tolerance, antagonism against pathogens, antimicrobial resistance, and surface hydrophobicity. Three Lactobacillus strains (L. kefiranofaciens 8U, L. diolivorans 1Z, and Lactobacillus casei 17U) could be classified as potential probiotics. In conclusion, several lactic acid bacteria that could be used in combination with yeasts as starter cultures for both milk kefir and sugar water kefir were characterized, and the functional properties of several of the lactobacilli isolated from the kefir grains were suggestive of their possible use as probiotics in both kefir and other dairy products.
Collapse
Affiliation(s)
- Débora Ferreira Zanirati
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Abatemarco
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sávio Henrique de Cicco Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacques Robert Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Álvaro Cantini Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
44
|
Arslan S. A review: chemical, microbiological and nutritional characteristics of kefir. CYTA - JOURNAL OF FOOD 2014. [DOI: 10.1080/19476337.2014.981588] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Gómez AV, Ferrero C, Puppo C, Tadini CC, Abraham AG. Fermented milk obtained with kefir grains as an ingredient in breadmaking. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Analía V. Gómez
- CIDCA (CONICET - Facultad Ciencias Exactas - UNLP) 47 y 116; 1900 La Plata Argentina
- LIPA (Facultad Ciencias Agrarias y Forestales - UNLP), 60 y 119; 1900 La Plata Argentina
| | - Cristina Ferrero
- CIDCA (CONICET - Facultad Ciencias Exactas - UNLP) 47 y 116; 1900 La Plata Argentina
| | - Cecilia Puppo
- CIDCA (CONICET - Facultad Ciencias Exactas - UNLP) 47 y 116; 1900 La Plata Argentina
- LIPA (Facultad Ciencias Agrarias y Forestales - UNLP), 60 y 119; 1900 La Plata Argentina
| | - Carmen C. Tadini
- Chemical Eng. Department; Escola Politécnica; University of São Paulo; P.O. Box 61548 05424-970 São Paulo Brasil
| | - Analía G. Abraham
- CIDCA (CONICET - Facultad Ciencias Exactas - UNLP) 47 y 116; 1900 La Plata Argentina
| |
Collapse
|
46
|
Gelling ability of kefiran in the presence of sucrose and fructose and physicochemical characterization of the resulting cryogels. Journal of Food Science and Technology 2014; 52:5039-47. [PMID: 26243924 DOI: 10.1007/s13197-014-1577-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/20/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
In this work, the influence of sucrose and fructose on the gel-forming capacity of kefiran was investigated as well as the physicochemical characteristics of the resulting gels. The addition of sugar to gel-forming solutions did not alter the pseudoplastic flow properties of kefiran solutions and after one freeze-thaw cycle translucent gels with high water-holding capability were obtained. A highly porous matrix was revealed by microscopy whose pore size varied with sugar concentration. Sucrose and fructose had different effects on the rheological characteristics of sugar-kefiran gels. An increment in the strength of the gels with progressive concentrations of sucrose was evidenced by an increase in the elastic modulus (G'), indicating that sucrose reinforces the binding interactions between the polymer molecules (p ≤ 0.05). A drastic reduction in elastic modulus occurred, however, when 50.0 % w/w sucrose was added to kefiran gels, resulting in less elasticity. In contrast, when fructose was added to kefiran gels, elastic modulus decreased slightly with progressive sugar concentrations up to 10 %, thereafter increasing up to 50 % (p ≤ 0.05). Supplementation with up to 30 % sugar contributed to water retention and increased the viscous modulus. The relative increment in the elastic and viscous moduli elevated the loss tangent (tanδ) depending on the type and concentration of sugar. Sugars (sucrose, fructose) present in the matrix of the polysaccharide networks modified water-polymer and polymer-polymer interactions and consequently changed the gels' physicochemical characteristics, thus allowing the possibility of selecting the appropriate formulation through tailor-made kefiran cryogels.
Collapse
|
47
|
Rolny IS, Minnaard J, Racedo SM, Pérez PF. Murine model of Bacillus cereus gastrointestinal infection. J Med Microbiol 2014; 63:1741-1749. [PMID: 25231625 DOI: 10.1099/jmm.0.079939-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus cereus is a spore-forming micro-organism responsible for foodborne illness. In this study, we focus on the host response following intragastric challenge with a pathogenic B. cereus strain (B10502) isolated from a foodborne outbreak. C57BL/6J female mice were infected by gavage with strain B10502. Controls were administered with PBS. Infection leads to significant modification in relevant immune cells in the spleen, Peyer's patches (PP) and mesenteric lymph nodes (MLN). These findings correlated with an increase in the size of PP as compared with uninfected controls. Histological studies showed that B. cereus infection increased the ratio of intestinal goblet cells and induces mononuclear cell infiltrates in spleen at 5 days post-infection. Evaluation of cytokine mRNA expression demonstrated a significant increase in IFN-γ in MLN after 2 days of infection. The present work demonstrates that infection of mice with vegetative B. cereus is self-limited. Our findings determined relevant cell populations that were involved in the control of the pathogen through modification of the ratio and/or activation.
Collapse
Affiliation(s)
- Ivanna S Rolny
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| | - Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-CCT La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina
| | - Silvia M Racedo
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| | - Pablo F Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-CCT La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina.,Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| |
Collapse
|
48
|
Hamet MF, Londero A, Medrano M, Vercammen E, Van Hoorde K, Garrote GL, Huys G, Vandamme P, Abraham AG. Application of culture-dependent and culture-independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains. Food Microbiol 2013; 36:327-34. [DOI: 10.1016/j.fm.2013.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/11/2013] [Accepted: 06/29/2013] [Indexed: 01/28/2023]
|
49
|
de Oliveira Leite AM, Miguel MAL, Peixoto RS, Rosado AS, Silva JT, Paschoalin VMF. Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Braz J Microbiol 2013; 44:341-9. [PMID: 24294220 PMCID: PMC3833126 DOI: 10.1590/s1517-83822013000200001] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/10/2012] [Indexed: 12/02/2022] Open
Abstract
Kefir is a fermented milk beverage produced by the action of bacteria and yeasts that exist in symbiotic association in kefir grains. The artisanal production of the kefir is based on the tradition of the peoples of Caucasus, which has spread to other parts of the world, from the late 19th century, and nowadays integrates its nutritional and therapeutic indications to the everyday food choices of several populations. The large number of microorganisms present in kefir and their microbial interactions, the possible bioactive compounds resulting of microbial metabolism, and the benefits associated with the use this beverage confers kefir the status of a natural probiotic, designated as the 21th century yoghurt. Several studies have shown that kefir and its constituents have antimicrobial, antitumor, anticarcinogenic and immunomodulatory activity and also improve lactose digestion, among others. This review includes data on the technological aspects, the main beneficial effects on human health of kefir and its microbiological composition. Generally, kefir grains contain a relatively stable and specific microbiota enclosed in a matrix of polysaccharides and proteins. Microbial interactions in kefir are complex due to the composition of kefir grains, which seems to differ among different studies, although some predominant Lactobacillus species are always present. Besides, the specific populations of individual grains seem to contribute to the particular sensory characteristics present in fermented beverages. This review also includes new electron microscopy data on the distribution of microorganisms within different Brazilian kefir grains, which showed a relative change in its distribution according to grain origin.
Collapse
|
50
|
Franco MC, Golowczyc MA, De Antoni GL, Pérez PF, Humen M, Serradell MDLA. Administration of kefir-fermented milk protects mice against Giardia intestinalis infection. J Med Microbiol 2013; 62:1815-1822. [PMID: 24072759 DOI: 10.1099/jmm.0.068064-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Giardiasis, caused by the protozoan Giardia intestinalis, is one of the most common intestinal diseases worldwide and constitutes an important problem for the public health systems of various countries. Kefir is a probiotic drink obtained by fermenting milk with 'kefir grains', which consist mainly of bacteria and yeasts that coexist in a complex symbiotic association. In this work, we studied the ability of kefir to protect mice from G. intestinalis infection, and characterized the host immune response to this probiotic in the context of the intestinal infection. Six- to 8-week-old C75BL/6 mice were separated into four groups: controls, kefir mice (receiving 1 : 100 dilution of kefir in drinking water for 14 days), Giardia mice (infected orally with 4×10(7) trophozoites of G. intestinalis at day 7) and Giardia-kefir mice (kefir-treated G. intestinalis-infected mice), and killed at 2 or 7 days post-infection. Kefir administration was able to significantly reduce the intensity of Giardia infection at 7 days post-infection. An increase in the percentage of CD4(+) T cells at 2 days post-infection was observed in the Peyer's patches (PP) of mice belonging to the Giardia group compared with the control and kefir groups, while the percentage of CD4(+) T cells in PP in the Giardia-kefir group was similar to that of controls. At 2 days post-infection, a reduction in the percentage of B220-positive major histocompatibility complex class II medium cells in PP was observed in infected mice compared with the other groups. At 7 days post-infection, Giardia-infected mice showed a reduction in RcFcε-positive cells compared with the control group, suggesting a downregulation of the inflammatory response. However, the percentages of RcFcε-positive cells did not differ from controls in the kefir and Giardia-kefir groups. An increase in IgA-positive cells was observed in the lamina propria of the kefir group compared with controls at 2 days post-infection. Interestingly, the diminished number of IgA-positive cells registered in the Giardia group at 7 days post-infection was restored by kefir feeding, although the increase in IgA-positive cells was no longer observed in the kefir group at that time. No significant differences in CXCL10 expression were registered between groups, in concordance with the absence of inflammation in small-intestinal tissue. Interestingly, a slight reduction in CCL20 expression was observed in the Giardia group, suggesting that G. intestinalis might downregulate its expression as a way of evading the inflammatory immune response. On the other hand, a trend towards an increase in TNF-α expression was observed in the kefir group, while the Giardia-kefir group showed a significant increase in TNF-α expression. Moreover, kefir-receiving mice (kefir and Giardia-kefir groups) showed an increase in the expression of IFN-γ, the most relevant Th1 cytokine, at 2 days post-infection. Our results demonstrate that feeding mice with kefir reduces G. intestinalis infection and promotes the activation of different mechanisms of humoral and cellular immunity that are downregulated by parasitic infection, thus contributing to protection.
Collapse
Affiliation(s)
- Mariana Correa Franco
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, Argentina.,Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET, 47 y 116, La Plata, Argentina
| | - Marina A Golowczyc
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET, 47 y 116, La Plata, Argentina
| | - Graciela L De Antoni
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, Argentina.,Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET, 47 y 116, La Plata, Argentina
| | - Pablo F Pérez
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, Argentina.,Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET, 47 y 116, La Plata, Argentina
| | - Martín Humen
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET, 47 y 116, La Plata, Argentina
| | - María de Los Angeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, Argentina
| |
Collapse
|