1
|
Zhang X, Zheng F, Zhao C, Li Z, Li C, Xia Y, Zheng S, Wang X, Sun X, Zhao X, Lin X, Lu X, Xu G. Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics. Anal Chem 2022; 94:16604-16613. [DOI: 10.1021/acs.analchem.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Chao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- Dalian University of Technology, Dalian116024, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Yueyi Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xiaoshan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xiaohui Lin
- Dalian University of Technology, Dalian116024, P. R. China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| |
Collapse
|
2
|
Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, Prasad M. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3147-3165. [PMID: 34091694 DOI: 10.1007/s00122-021-03878-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement. Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hunger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.
Collapse
Affiliation(s)
- P Sushree Shyamli
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Sumi Rana
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sandhya Suranjika
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Vieira KCDO, Silva HRAD, Rocha IPM, Barboza E, Eller LKW. Foodborne pathogens in the omics era. Crit Rev Food Sci Nutr 2021; 62:6726-6741. [PMID: 33783282 DOI: 10.1080/10408398.2021.1905603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outbreaks and deaths related to Foodborne Diseases (FBD) occur constantly in the world, as a result of the consumption of contaminated foodstuffs with pathogens such as Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella spp, Clostridium spp. and Campylobacter spp. The purpose of this review is to discuss the main omic techniques applied in foodborne pathogen and to demonstrate their functionalities through the food chain and to guarantee the food safety. The main techniques presented are genomic, transcriptomic, secretomic, proteomic, and metabolomic, which together, in the field of food and nutrition, are known as "Foodomics." This review had highlighted the potential of omics to integrate variables that contribute to food safety and to enable us to understand their application on foodborne diseases. The appropriate use of these techniques had driven the definition of critical parameters to achieve successful results in the improvement of consumers health, costs and to obtain safe and high-quality products.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barboza
- Health Sciences Faculty, University of Western Sao Paulo, Presidente Prudente, Sao Paulo, Brazil
| | | |
Collapse
|
4
|
Nissen L, Casciano F, Gianotti A. Plant Volatiles of Lettuce and Chicory Cultivated in Aquaponics Are Associated to Their Microbial Community. Microorganisms 2021; 9:microorganisms9030580. [PMID: 33808993 PMCID: PMC7998580 DOI: 10.3390/microorganisms9030580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, an aquaponic cultivation system for Lactuca sativa (L.) and Chicorium intybus (L.) was compared to a hydroponic one, focusing on the main microbial populations related to food safety and their volatile compounds (VOCs), concluding with Spearman correlations among the microbes and VOCs. Different sections of both systems were sampled at the end of the commercial development of the plants. Plants cultivated in aquaponics were in general more contaminated than those from hydroponics, while for the cultivation waters a higher contamination of the hydroponics than aquaponics system was unexpectedly observed. Furthermore, the chicory exhibited higher levels of all microbial groups compared to lettuce grown under the same cultivation system. The results obtained also showed correlations between the distribution of some VOCs and microbial groups in the phyllosphere, while some examples of positive correlations between 2-nonanone (a positive phytostimulant compound) and anaerobic bacilli of the rhizosphere in lettuce were reported. So far, multivariate analysis of VOCs was able to discriminate on the basis of varieties but not on the cultivation systems. In conclusion, the microbial characteristics of the two ecosystems depended both on plant variety and cultivation method but further studies will need to deeply investigate the variables influencing the microbial quality of vegetable foods obtained by aquaponics. On the other hand, the analysis of the VOCs was more related to the microbial community of each plant variety considered, whatever the cultivation system. In precision agriculture, metabolomics may represent an opportunity to study the holobiome and through it the interactions between plants and their microbial populations, to possibly provide for a tool to assess the microbiological quality of vegetable foods obtained by aquaponic systems.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI—Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum—University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy;
| | - Flavia Casciano
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy;
| | - Andrea Gianotti
- CIRI—Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum—University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy;
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy;
- Correspondence:
| |
Collapse
|
5
|
Tamura Y, Mori T, Nakabayashi R, Kobayashi M, Saito K, Okazaki S, Wang N, Kusano M. Metabolomic Evaluation of the Quality of Leaf Lettuce Grown in Practical Plant Factory to Capture Metabolite Signature. FRONTIERS IN PLANT SCIENCE 2018; 9:665. [PMID: 29997631 PMCID: PMC6030546 DOI: 10.3389/fpls.2018.00665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 05/11/2023]
Abstract
Vegetables produce metabolites that affect their taste and nutritional value and compounds that contribute to human health. The quality of vegetables grown in plant factories under hydroponic cultivation, e.g., their sweetness and softness, can be improved by controlling growth factors including the temperature, humidity, light source, and fertilizer. However, soil is cheaper than hydroponic cultivation and the visual phenotype of vegetables grown under the two conditions is different. As it is not clear whether their metabolite composition is also different, we studied leaf lettuce raised under the hydroponic condition in practical plant factory and strictly controlled soil condition. We chose two representative cultivars, "black rose" (BR) and "red fire" (RF) because they are of high economic value. Metabolite profiling by comprehensive gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) resulted in the annotation of 101 metabolites from 223 peaks detected by GC-MS; LC-MS yielded 95 peaks. The principal component analysis (PCA) scatter plot showed that the most distinct separation patterns on the first principal component (PC1) coincided with differences in the cultivation methods. There were no clear separations related to cultivar differences in the plot. PC1 loading revealed the discriminant metabolites for each cultivation method. The level of amino acids such as lysine, phenylalanine, tryptophan, and valine was significantly increased in hydroponically grown leaf lettuce, while soil-cultivation derived leaf lettuce samples contained significantly higher levels of fatty-acid derived alcohols (tetracosanol and hexacosanol) and lettuce-specific sesquiterpene lactones (lactucopicrin-15-oxalate and 15-deoxylactucin-8-sulfate). These findings suggest that the metabolite composition of leaf lettuce is primarily affected by its cultivation condition. As the discriminant metabolites reveal important factors that contribute to the nutritional value and taste characteristics of leaf lettuce, we performed comprehensive metabolite profiling to identify metabolite compositions, i.e., metabolite signature, that directly improve its quality and value.
Collapse
Affiliation(s)
- Yoshio Tamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Central Research Institute for Feed and Livestock, National Federation of Agricultural Co-operative Associations, Tsukuba, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Seiichi Okazaki
- Keystone Technology, Yokohama, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Ning Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Miyako Kusano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Miyako Kusano,
| |
Collapse
|
6
|
Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N, Charcosset A, Moing A, Gibon Y. Fortune telling: metabolic markers of plant performance. Metabolomics 2016; 12:158. [PMID: 27729832 PMCID: PMC5025497 DOI: 10.1007/s11306-016-1099-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/16/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND In the last decade, metabolomics has emerged as a powerful diagnostic and predictive tool in many branches of science. Researchers in microbes, animal, food, medical and plant science have generated a large number of targeted or non-targeted metabolic profiles by using a vast array of analytical methods (GC-MS, LC-MS, 1H-NMR….). Comprehensive analysis of such profiles using adapted statistical methods and modeling has opened up the possibility of using single or combinations of metabolites as markers. Metabolic markers have been proposed as proxy, diagnostic or predictors of key traits in a range of model species and accurate predictions of disease outbreak frequency, developmental stages, food sensory evaluation and crop yield have been obtained. AIM OF REVIEW (i) To provide a definition of plant performance and metabolic markers, (ii) to highlight recent key applications involving metabolic markers as tools for monitoring or predicting plant performance, and (iii) to propose a workable and cost-efficient pipeline to generate and use metabolic markers with a special focus on plant breeding. KEY MESSAGE Using examples in other models and domains, the review proposes that metabolic markers are tending to complement and possibly replace traditional molecular markers in plant science as efficient estimators of performance.
Collapse
Affiliation(s)
- Olivier Fernandez
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Maria Urrutia
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Stéphane Bernillon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| | | | | | | | - Nicolas Langlade
- UMR LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Alain Charcosset
- UMR GQE, INRA, CNRS, Université Paris Sud, AgroParisTech, Ferme du Moulon, 91190 Gif-Sur-Yvette, France
| | - Annick Moing
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| |
Collapse
|
7
|
Venkatesh TV, Chassy AW, Fiehn O, Flint-Garcia S, Zeng Q, Skogerson K, Harrigan GG. Metabolomic Assessment of Key Maize Resources: GC-MS and NMR Profiling of Grain from B73 Hybrids of the Nested Association Mapping (NAM) Founders and of Geographically Diverse Landraces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2162-72. [PMID: 26923484 DOI: 10.1021/acs.jafc.5b04901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study expands metabolomic assessments of maize beyond commercial lines to include two sets of hybrids used extensively in the scientific community. One set included hybrids derived from the nested association mapping (NAM) founder lines, a collection of 25 inbreds selected on the basis of genetic diversity and used to investigate the genetic basis of complex plant traits. A second set included 24 hybrids derived from a collection of landraces representative of native diversity from North and South America that may serve as a source of new alleles for improving modern maize hybrids. Metabolomic analysis of grain harvested from these hybrids utilized gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) techniques. Results highlighted extensive metabolomic variation in grain from both hybrid sets, but also demonstrated that, within each hybrid set, subpopulations could be differentiated in a pattern consistent with the known genetic and compositional variation of these lines. Correlation analysis did not indicate a strong association of the metabolomic data with grain nutrient composition, although some metabolites did show moderately strong correlations with agronomic features such as plant and ear height. Overall, this study provides insights into the extensive metabolomic diversity associated with conventional maize germplasm.
Collapse
Affiliation(s)
| | - Alexander W Chassy
- Genome Center - Metabolomics, University of California at Davis , Davis, California 95616, United States
| | - Oliver Fiehn
- Genome Center - Metabolomics, University of California at Davis , Davis, California 95616, United States
- Biochemistry Department, King Abudalaziz University , Jeddah, Saudi-Arabia
| | - Sherry Flint-Garcia
- Agricultural Research Service, U.S. Department of Agriculture , Columbia, Missouri 65211, United States
- Division of Plant Sciences, University of Missouri , Columbia, Missouri 65211, United States
| | - Qin Zeng
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kirsten Skogerson
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - George G Harrigan
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| |
Collapse
|
8
|
Reaser BC, Yang S, Fitz BD, Parsons BA, Lidstrom ME, Synovec RE. Non-targeted determination of 13C-labeling in the Methylobacterium extorquens AM1 metabolome using the two-dimensional mass cluster method and principal component analysis. J Chromatogr A 2016; 1432:111-21. [DOI: 10.1016/j.chroma.2015.12.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/04/2015] [Accepted: 12/20/2015] [Indexed: 11/15/2022]
|
9
|
Juarez P, Fernandez-del-Carmen A, Rambla JL, Presa S, Mico A, Granell A, Orzaez D. Evaluation of unintended effects in the composition of tomatoes expressing a human immunoglobulin A against rotavirus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8158-8168. [PMID: 25065456 DOI: 10.1021/jf502292g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The production of neutralizing immunoglobulin A (IgA) in edible fruits as a means of oral passive immunization is a promising strategy for the inexpensive treatment of mucosal diseases. This approach is based on the assumption that the edible status remains unaltered in the immunoglobulin-expressing fruit, and therefore extensive purification is not required for mucosal delivery. However, unintended effects associated with IgA expression such as toxic secondary metabolites and protein allergens cannot be dismissed a priori and need to be investigated. This paper describes a collection of independent transgenic tomato lines expressing a neutralizing human IgA against rotavirus, a mucosal pathogen producing severe diarrhea episodes. This collection was used to evaluate possible unintended effects associated with recombinant IgA expression. A comparative analysis of protein and secondary metabolite profiles using wild type lines and other commercial varieties failed to find unsafe features significantly associated with IgA expression. Preliminary, the data indicate that formulations derived from IgA tomatoes are as safe for consumption as equivalent formulations derived from wild type tomatoes.
Collapse
MESH Headings
- Allergens/adverse effects
- Allergens/genetics
- Allergens/metabolism
- Antibodies, Neutralizing/adverse effects
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Dietary Proteins/adverse effects
- Dietary Proteins/metabolism
- Food, Genetically Modified/adverse effects
- Fruit/adverse effects
- Fruit/chemistry
- Fruit/genetics
- Fruit/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Humans
- Immunization, Passive/adverse effects
- Immunoglobulin A/adverse effects
- Immunoglobulin A/genetics
- Immunoglobulin A/metabolism
- Least-Squares Analysis
- Solanum lycopersicum/adverse effects
- Solanum lycopersicum/chemistry
- Solanum lycopersicum/genetics
- Solanum lycopersicum/metabolism
- Plant Proteins/adverse effects
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/adverse effects
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Principal Component Analysis
- Recombinant Proteins/adverse effects
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Rotavirus/growth & development
- Rotavirus/immunology
- Rotavirus Infections/immunology
- Rotavirus Infections/prevention & control
- Rotavirus Infections/virology
- Secondary Metabolism
- Spain
Collapse
Affiliation(s)
- Paloma Juarez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientı́ficas, Universidad Politécnica de Valencia , Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|