1
|
Wang M, Zhang F, Debrah AA, Khan J, Hou H, Yuan Q, Du Z. Selective extraction of phospholipids from human milk using glass fabric modified with zirconium-based metal organic framework. J Chromatogr A 2023; 1710:464435. [PMID: 37820461 DOI: 10.1016/j.chroma.2023.464435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Phospholipids (PLs) are important and complex trace lipids in milk, which have positive effects on the infants' nervous and immune system development. Herein, a new method for selective extraction of PLs using glass fabric @ MOF-808 was proposed. Based on Lewis acid-base interaction, MOF-808 containing abundant Zr-OH groups was selected as the adsorption body, and glass fabric was used as a substrate to make the adsorbent easy to remove and reuse. The influencing factors such as loading solution, extraction time, eluent and elution time were further investigated. The adsorbent showed high adsorption capacity (3.31-6.54 mg/g for PLs) and good reusability (reused at least five times). The method showed low detection limits (1.61 μg/L - 10.24 μg/L) and quantification limits (5.24 μg/L-51.21 μg/L) for eight classes of PLs. The analysis of PLs in human milk at different lactation stages by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry could obtain up to 206 PLs, indicating that the method has extremely high extraction and anti-interference capabilities. This work is the first time to introduce MOF materials to selectively extract PLs and use glass fabric as a substrate for MOF-808, which has the advantages of easy recovery and high sensitivity. It provides technical support for the discovery of more PL species and has potential applications in phospholipidomics.
Collapse
Affiliation(s)
- Mengyu Wang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengxia Zhang
- Corporate Laboratory, Junlebao Dairy Group, Shijiazhuang 050221, China
| | - Augustine Atta Debrah
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jehangir Khan
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiyue Hou
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingbin Yuan
- Corporate Laboratory, Junlebao Dairy Group, Shijiazhuang 050221, China.
| | - Zhenxia Du
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Feng J, Zhong Q, Zhou T. Online Pressure Change Focusing-Supercritical Fluid Selective Extraction Chromatography for Analyzing Chiral Drugs in Microliter-Scale Plasma Samples. Anal Chem 2022; 94:16222-16230. [DOI: 10.1021/acs.analchem.2c03892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jieqing Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, China
| | - Qisheng Zhong
- Guangzhou Analytical Center, Shimadzu (China) Co., Ltd., Guangzhou510010, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
3
|
Dong Y, Lin W, Laaksonen A, Ji X. Complementary Powerful Techniques for Investigating the Interactions of Proteins with Porous TiO2 and Its Hybrid Materials: A Tutorial Review. MEMBRANES 2022; 12:membranes12040415. [PMID: 35448385 PMCID: PMC9029952 DOI: 10.3390/membranes12040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Abstract
Understanding the adsorption and interaction between porous materials and protein is of great importance in biomedical and interface sciences. Among the studied porous materials, TiO2 and its hybrid materials, featuring distinct, well-defined pore sizes, structural stability and excellent biocompatibility, are widely used. In this review, the use of four powerful, synergetic and complementary techniques to study protein-TiO2-based porous materials interactions at different scales is summarized, including high-performance liquid chromatography (HPLC), atomic force microscopy (AFM), surface-enhanced Raman scattering (SERS), and Molecular Dynamics (MD) simulations. We expect that this review could be helpful in optimizing the commonly used techniques to characterize the interfacial behavior of protein on porous TiO2 materials in different applications.
Collapse
Affiliation(s)
- Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
- Correspondence: (Y.D.); (X.J.)
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden;
- Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, ‘‘Petru Poni” Institute of Macromolecular Chemistry, 700469 Iasi, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden;
- Correspondence: (Y.D.); (X.J.)
| |
Collapse
|
4
|
Pascual-Silva C, Alemán A, Pilar Montero M, Carmen Gómez-Guillén M. Extraction and characterization of Argentine red shrimp (Pleoticus muelleri) phospholipids as raw material for liposome production. Food Chem 2021; 374:131766. [PMID: 34883425 DOI: 10.1016/j.foodchem.2021.131766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/14/2023]
Abstract
Phospholipids rich in omega-3 fatty acids from Argentine red shrimp waste were explored as a source to produce food-grade liposomes. Partially purified phospholipids (PL-AS), hexane-soluble (HxSE) and acetone-soluble (Ac-SE) lipid co-extracts, were characterized in terms of extraction yield (2.0%, 1.46% and 4.51%, respectively), chemical composition (fatty acids, tocopherols, sterols, astaxanthin) and thermal stability. Based on lipid fractionation, PL-AS presented 85% phospholipids, while neutral lipids were mostly present in HxSE (75%) and free FA in AcSE (34%), the latter suggesting significant fat hydrolysis. Palmitic, oleic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids predominated in the phospholipid fraction of PL-AS, mainly constituted by phosphatidylcholine (PC) (96%). The most abundant phospholipid was identified at m/z 760.59, composed of PC, with C16:0/C18:1 as the most probable FA combination. Unilamellar spherical liposomes were successfully made of PL-AS (≈140 nm, 0.248 PDI, -68.5 mV ζ potential), showing high stability for 28 days at 4 °C.
Collapse
Affiliation(s)
- Carolina Pascual-Silva
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain
| | - Ailén Alemán
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain
| | - M Pilar Montero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain
| | - M Carmen Gómez-Guillén
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Zhang M, Song G, Zhu Q, Zhao Q, Zhang X, Hu X, Feng J, Wang P, Shen Q, Wang H. Compositional study of plasmalogens in clam (Corbicula fluminea) by TiO2/KCC-1 extraction, enzymatic purification, and lipidomics analysis. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Yu X, Wang Q, Lu W, Zhang M, Chen K, Xue J, Zhao Q, Wang P, Luo P, Shen Q. Fast and Specific Screening of EPA/DHA-Enriched Phospholipids in Fish Oil Extracted from Different Species by HILIC-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7997-8007. [PMID: 34240600 DOI: 10.1021/acs.jafc.1c01709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eicosapentaenoic acid- and docosahexaenoic acid-enriched phospholipids (PLEPA/DHA) have versatile health-beneficial functions and can be well absorbed in the intestine. Herein, a precursor ion scan-driven hydrophilic interaction chromatography mass spectrometry (PreIS-HILIC-MS) method with the fatty acyl moieties of m/z 301.6 and 327.6 locked was established to specifically and selectively screen PLEPA/DHA in different fish oil samples, including saury, grass carp, hairtail, and yellow croaker. Taking saury oil as an example, a total of 24 PLEPA/DHA were successfully identified and quantified, including 20 PCEPA/DHA and 4 PEEPA/DHA. Finally, this method was validated in terms of sensitivity (limit of detection ≤ 4.15 μg·mL-1), linearity (≥0.9979), precision (RSDintraday ≤ 4.65%), and recovery (≥78.6%). The performance of the PreIS-HILIC-MS method was also compared with that of the traditional full-scan mode, and the former demonstrated its unique superiority in targeted screening of PLEPA/DHA in fish oils.
Collapse
Affiliation(s)
- Xina Yu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qingcheng Wang
- Department of Cardiology, Hangzhou Yuhang Hospital of Traditional Chinese Medicine, Yuhang 311106, Zhejiang, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China
| | - Pingya Wang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
7
|
Chen L, Ghiasvand A, Rodriguez ES, Innis PC, Paull B. Applications of nanomaterials in ambient ionization mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Isolation and lipidomics characterization of fatty acids and phospholipids in shrimp waste through GC/FID and HILIC-QTrap/MS. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Shen Q, Wu H, Wang H, Zhao Q, Xue J, Ma J, Wang H. Monodisperse microsphere-based immobilized metal affinity chromatography approach for preparing Antarctic krill phospholipids followed by HILIC-MS analysis. Food Chem 2020; 344:128585. [PMID: 33223290 DOI: 10.1016/j.foodchem.2020.128585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/25/2023]
Abstract
Phospholipids enriched krill is a functional food beneficial in cardiovascular diseases. Herein, monodisperse microsphere-based immobilized metal affinity chromatographic material (MM-IMAC) was synthesized with Ti4+ incorporated to enrich phospholipids from krill by coordination with phosphate group. The extract was profiled by hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) with 154 phospholipid molecular species detected. The parameters were loading solvent n-hexane/isopropanol (2:8, v/v), flow rate 0.8 mL·min-1, and eluting volume 1 mL. Besides, eicosapentaenoic and docosahexaenoic acids structured phospholipids were located, such as phosphatidylcholine (PC) 20:5/22:6, phosphatidylinositol (PI) 18:0/20:5, etc. Finally, this method was validated in linearity (R2 ≥ 0.9953), sensitivity (LOD ≤ 0.53 μg·mL-1 and LOQ ≤ 1.66 μg·mL-1), precision (RSDintraday ≤ 4.86% and RSDinterday ≤ 6.25%), and recovery (58-83%). It indicated that the MM-Ti4+-IMAC-HILIC-MS was reliable and efficient in specific study of phospholipids in food matrix.
Collapse
Affiliation(s)
- Qing Shen
- Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huanming Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food & Drug Control, Zhoushan 316000, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Jianfeng Ma
- Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haixing Wang
- Zhejiang Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Titania-coated fibrous silica (TiO2/KCC-1) core-shell microspheres based solid-phase extraction in clam (Corbicula fluminea) using hydrophilic interaction liquid chromatography and mass spectrometry. Food Res Int 2020; 137:109408. [DOI: 10.1016/j.foodres.2020.109408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
|
11
|
Huang Z, Wu Q, Lu H, Wang Y, Zhang Z. Separation of Glycolipids/Sphingolipids from Glycerophospholipids on TiO 2 Coating in Aprotic Solvent for Rapid Comprehensive Lipidomic Analysis with Liquid Microjunction Surface Sampling-Mass Spectrometry. Anal Chem 2020; 92:11250-11259. [PMID: 32667194 DOI: 10.1021/acs.analchem.0c01870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In lipidomic analysis by direct mass spectrometry (MS), high abundance lipids with high ionizability (such as glycerophospholipids) would cause ion suppression to lipids with poor ionizability and low abundance (such as glycolipids, sphingolipids, or glycerides), which largely limits the detection coverage for lipidomics. In this work, TiO2-based liquid microjunction surface sampling (LMJSS) coupled with MS was used for separation of glycerides, phospholipids and glycolipids/sphingolipids in biological samples and rapid analysis of lipids in different classes with high lipidome coverage. We found that, in nonaqueous aprotic solvents, lipids with a glycosyl or sphingosine group could be selectively separated from lipids with a phosphate group (selectivity >10) after being coenriched on TiO2 by tuning the solvent composition. Accordingly, a selective multistep extraction method was developed by loading the biosamples on TiO2 slides in neutral aprotic solvent, and sequentially eluting glycerides in pure acetonitrile, glycerophospholipids in 6% ammonia-94% acetonitrile (v/v) and glycolipids/sphingolipids in 5% formic acid-95% methanol (v/v) by LMJSS probe from TiO2 slide. Each eluate from TiO2 slide was directly delivered by LMJSS to MS for analysis. The total detection time with three desorption steps would be controlled in 3 min. The method performance for each lipid class was evaluated using lipid standards, including matrix effects (107-128%), RSDs (0.4-16%), linearity (0.98-0.99), detection limits (5-3000 ng/mL), the adsorption equilibrium constants (102-104) and adsorption capacity (1-38 μg/mm2) of TiO2 coated slides to lipids. Finally, the TiO2-based-LMJSS-MS method was applied to lipidomic analysis for blood plasma and brain tissue, and compared with direct infusion MS. Results showed that (2-5)-fold more sphingolipids/glycolipids and 40-50 more glycerophospholipids/glycerides were identified in both plasma and brain extract by the new method comparing with direct infusion MS method. Detected lipids were quantified with standard addition calibration method, and the absolute quantitation results measured by TiO2-based-LMJSS-MS were verified with that by the traditional LC-MS method (correlation coefficient >0.98, slope of correlation line = 0.87-1.05).
Collapse
Affiliation(s)
- Zehui Huang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha 410008, P. R. China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| |
Collapse
|
12
|
Wang J, Liao J, Wang H, Zhu X, Li L, Lu W, Song G, Shen Q. Quantitative and comparative study of plasmalogen molecular species in six edible shellfishes by hydrophilic interaction chromatography mass spectrometry. Food Chem 2020; 334:127558. [PMID: 32711269 DOI: 10.1016/j.foodchem.2020.127558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
Shellfishes contain plasmalogens correlating to the functions of brain, heart, etc. Herein, a mild acid hydrolysis and hydrophilic interaction chromatography (HILIC) tandem mass spectrometry method was developed for analyzing plasmalogens in six shellfish species. A total of 19 plasmalogen molecular species were successfully identified, including nine phosphatidylcholine plasmalogen (plasPC), seven phosphatidylethanolamine plasmalogen (plasPE), and three phosphatidylserine plasmalogen (plasPS). The quantitative results indicated that mussel (32 μg·mg-1) possessed the highest content of plasmalogens, followed by oyster (21 μg·mg-1) and razor clam (15 μg·mg-1). The statistic models showed that the plasPE P-18:0/20:5 (m/z 748), plasPE P-16:0/22:2 & P-18:0/20:2 (m/z 754) and plasPS were the most contributing difference between shellfishes. The results indicated that this method was sensitive and precise to determine plasmalogens in shellfish, and mussel was demonstrated to be a good choice for the large-scale preparation of plasmalogens.
Collapse
Affiliation(s)
- Jie Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jie Liao
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China; Zhejiang Huacai Testing Technology Co., Ltd., Shaoxing, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaofang Zhu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Linqiu Li
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
13
|
Shen Q, Song G, Li L, Wu J, Hu Z, Wang J, Chen K, Wang H. Triazole Hydrophilic Interaction Chromatography Mass Spectrometry–Based Method for Studying the Lipidomic Composition of Largemouth Bass (Micropterus salmoides) with Different Feeds. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01745-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Characterization of lipid composition in the muscle tissue of four shrimp species commonly consumed in China by UPLC−Triple TOF−MS/MS. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Enrichment of phospholipids using magnetic Fe3O4/TiO2 nanoparticles for quantitative detection at single cell levels by electrospray ionization mass spectrometry. Talanta 2020; 212:120769. [DOI: 10.1016/j.talanta.2020.120769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 11/23/2022]
|
16
|
Song G, Wang H, Zhang M, Zhang Y, Wang H, Yu X, Wang J, Shen Q. Real-Time Monitoring of the Oxidation Characteristics of Antarctic Krill Oil ( Euphausia superba) during Storage by Electric Soldering Iron Ionization Mass Spectrometry-Based Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1457-1467. [PMID: 31931568 DOI: 10.1021/acs.jafc.9b07370] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antarctic krill oil (AKO) is susceptible to oxidation due to the high unsaturation degree of bioactive substances. Herein, a lipidomics method for in situ monitoring of the dynamic oxidation characteristics in AKO was explored based on electric soldering iron ion source (ESII) coupling with rapid evaporative ionization mass spectrometry (REIMS). The lipidomics profiles of AKO at different storage periods were successfully acquired. On the basis of principal component analysis and orthogonal partial least-squares analysis, the obtained REIMS data were employed to build a multivariate recognition model. The ions of m/z 707.50, 721.50, 833.49, and 837.54 contributed the most significant effect on the multivariate data model for the authentication of different AKO samples. Besides, the variation of viscosity, astaxanthin, and volatile compounds were also evaluated to corroborate the oxidation characteristics. The results indicated that the ESII-REIMS technology could be applied as an advanced rapid detection method to secure oil and fat quality during storage.
Collapse
Affiliation(s)
- Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Haixing Wang
- Zhejiang Province Key Lab of Anesthesiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Mengna Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Yanping Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Xina Yu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Jie Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310018 , China
| |
Collapse
|
17
|
Zhang H, Lu H, Huang K, Li J, Wei F, Liu A, Chingin K, Chen H. Selective detection of phospholipids in human blood plasma and single cells for cancer differentiation using dispersed solid-phase microextraction combined with extractive electrospray ionization mass spectrometry. Analyst 2020; 145:7330-7339. [DOI: 10.1039/d0an01204a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid and selective determination of phospholipids in microvolume biofluid samples for cancer differentiation was achieved by d-SPME–iEESI-MS.
Collapse
Affiliation(s)
- Hua Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jiajia Li
- Department of Obstetrics and Gynecology
- The First Hospital of Jilin University
- P. R. China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery
- The First Hospital of Jilin University
- P. R. China
| | - Aiying Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| |
Collapse
|
18
|
Song G, Zhang M, Zhang Y, Wang H, Li S, Dai Z, Shen Q. In Situ Method for Real-Time Discriminating Salmon and Rainbow Trout without Sample Preparation Using iKnife and Rapid Evaporative Ionization Mass Spectrometry-Based Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4679-4688. [PMID: 30951305 DOI: 10.1021/acs.jafc.9b00751] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The domestic rainbow trout producers issued a standard with an aquatic association that classified rainbow trout as salmon, which raised the concern of consumers on the fish parasites infection. Herein, an in situ method was developed using "iKnife" and rapid evaporative ionization mass spectrometry based lipidomics for real-time discrimination of salmon and rainbow trout without sample preparation. A total of 12 fatty acids and 37 phospholipid species was identified and imported into statistical analysis for building an in situ and real-time recognition model. The ions with | p(corr)| > 0.5 and | p| > 0.03 were shown to be responsible for allocating samples, and the ions with high correlation values, such as of m/ z 747.50, 771.49, and 863.55, indicated large weights in identification of the salmon and rainbow trout. The results indicated that this technology could be employed as a front-line test method to ensure the authenticity of salmon products.
Collapse
Affiliation(s)
- Gongshuai Song
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Mengna Zhang
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Yiqi Zhang
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Haixing Wang
- Zhejiang Province Key Lab of Anesthesiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Shiyan Li
- Aquatic Products Quality Inspection Center of Zhejiang Province , Hangzhou 310012 , China
| | - Zhiyuan Dai
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Qing Shen
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
| |
Collapse
|
19
|
Zhang H, Chingin K, Li J, Lu H, Huang K, Chen H. Selective Enrichment of Phosphopeptides and Phospholipids from Biological Matrixes on TiO2 Nanowire Arrays for Direct Molecular Characterization by Internal Extractive Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 90:12101-12107. [DOI: 10.1021/acs.analchem.8b03022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Jiajia Li
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Huanwen Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
20
|
Lin Y, Wang H, Rao W, Cui Y, Yu X, Dai Z, Shen Q. Rapid Evaporative Ionization Mass Spectrometry-Based Lipidomics Tracking of Grass Carp ( Ctenopharyngodon idellus) during In Vitro Multiple-Stage Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6246-6253. [PMID: 29806465 DOI: 10.1021/acs.jafc.8b01644] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A rapid evaporative ionization mass spectrometry (REIMS) method was developed for lipidomics tracking of Ctenopharyngodon idellus during in vitro multiple-stage digestion. The REIMS conditions were optimized such that the temperature of the heating probe was 500 °C, sample amount was 30 mg, and the flow rate of auxiliary solvent was 100 μL min-1. The results showed that the phospholipids were detected with variety and quantity in the crude and multiple-stage digested samples. The enzymatic effect on the phospholipids is varied depending on the phospholipid classes, and the hydrolysis rate of phospholipids increased as the degree of unsaturation of the acyl chain increased. The principal component analysis (PCA) indicated that the ions at m/ z 809.61, 811.63, and 857.52 were the most noticeable species digested during the process. This method exhibited great potential in fast lipidomics profiling for inspecting the characteristics of nutritional lipid absorption digestion in human gastrointestin.
Collapse
Affiliation(s)
- Yanan Lin
- Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Haixing Wang
- Zhejiang Province Key Lab of Anesthesiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Wei Rao
- Waters Corporation , Shanghai 201206 , China
| | - Yiwei Cui
- Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Xina Yu
- Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Zhiyuan Dai
- Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province , Hangzhou 310012 , China
| | - Qing Shen
- Institute of Seafood , Zhejiang Gongshang University , Hangzhou 310012 , China
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province , Hangzhou 310012 , China
| |
Collapse
|
21
|
Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: application to human milk samples. Anal Bioanal Chem 2018; 410:4847-4854. [DOI: 10.1007/s00216-018-1121-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
|
22
|
Polymer-based materials modified with magnetite nanoparticles for enrichment of phospholipids. Talanta 2018; 180:162-167. [DOI: 10.1016/j.talanta.2017.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
|
23
|
Marrubini G, Appelblad P, Maietta M, Papetti A. Hydrophilic interaction chromatography in food matrices analysis: An updated review. Food Chem 2018; 257:53-66. [PMID: 29622230 DOI: 10.1016/j.foodchem.2018.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/27/2023]
Abstract
This review focuses on the most recent papers (from 2011 to submission date in 2017) dealing with the analysis of different organic components in foods (i.e. nucleobases, nucleosides, nucleotides, uric acid, and creatinine, amino acids and related compounds, choline-related compounds and phospholipids, carbohydrates, artificial sweeteners and polyphenolic compounds), using hydrophilic interaction liquid chromatography (HILIC) combined with different detection techniques. For each compound class, the investigated food matrices are grouped per: foods of animal origin, vegetables, fruits and related products, baby food, and other matrices such as drinks and mushrooms/fungi. Furthermore, the main advantages of HILIC chromatography respect to the other commonly used techniques are discussed.
Collapse
Affiliation(s)
- Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Mariarosa Maietta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
24
|
Molecularly imprinted polymers for selective solid-phase extraction of phospholipids from human milk samples. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
A graphene tip coupled with liquid chromatography tandem mass spectrometry for the determination of four synthetic adulterants in slimming supplements. Food Chem 2017; 224:329-334. [DOI: 10.1016/j.foodchem.2016.12.091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 12/20/2022]
|
26
|
Jin R, Li L, Feng J, Dai Z, Huang YW, Shen Q. Zwitterionic hydrophilic interaction solid-phase extraction and multi-dimensional mass spectrometry for shotgun lipidomic study of Hypophthalmichthys nobilis. Food Chem 2016; 216:347-54. [PMID: 27596430 DOI: 10.1016/j.foodchem.2016.08.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 02/04/2023]
Abstract
Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) material was used as solid-phase extraction sorbent for purification of phospholipids from Hypophthalmichthys nobilis. The conditions were optimized to be pH 6, flow rate 2.0mL·min(-1), loading breakthrough volume ⩽5mL, and eluting solvent 5mL. Afterwards, the extracts were analyzed by multi-dimensional mass spectrometry (MDMS) based shotgun lipidomics; 20 species of phosphatidylcholine (PC), 22 species of phosphatidylethanoamine (PE), 15 species of phosphatidylserine (PS), and 5 species of phosphatidylinositol (PI) were identified, with content 224.1, 124.1, 27.4, and 34.7μg·g(-1), respectively. The MDMS method was validated in terms of linearity (0.9963-0.9988), LOD (3.7ng·mL(-1)), LOQ (9.8ng·mL(-1)), intra-day precision (<3.64%), inter-day precision (<5.31%), and recovery (78.8-85.6%). ZIC-HILIC and MDMS shotgun lipidomics are efficient for studying phospholipids in H. nobilis.
Collapse
Affiliation(s)
- Renyao Jin
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Linqiu Li
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Junli Feng
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Zhiyuan Dai
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Yao-Wen Huang
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | - Qing Shen
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
27
|
Shen Q, Dai Z, Huang YW, Cheung HY. Lipidomic profiling of dried seahorses by hydrophilic interaction chromatography coupled to mass spectrometry. Food Chem 2016; 205:89-96. [DOI: 10.1016/j.foodchem.2016.02.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 01/15/2023]
|
28
|
ZHU C, LIANG QL, WANG YM, LUO GA, Vreeken RJ, Hankmeimer T. Advance in Analysis and Detection Technologies for Phospholipidomics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60939-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Zheng L, Xu H, Pi F, Zhang Y, Sun X. Synthesis of Fe3O4@mTiO2 nanocomposites for the photocatalytic degradation of Monocrotophos under UV illumination. RSC Adv 2016. [DOI: 10.1039/c6ra13423h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Novel magnetic mesoporous core/shell nanocomposites Fe3O4@mTiO2 were synthetized and characterized by FE-TEM, EDS, PXRD as well as BET, and subsequently tested as photocatalysts for the degradation of Monocrotophos under UV irradiation.
Collapse
Affiliation(s)
- Lingling Zheng
- State Key Laboratory of Food Science and Technology
- School of Food Science of Jiangnan University
- School of Food Science Synergetic Innovation Center of Food Safety and Quality Control
- Wuxi
- China
| | - Hui Xu
- Key Laboratory of Healthy & Intelligent Kitchen System Integration
- Ningbo
- China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology
- School of Food Science of Jiangnan University
- School of Food Science Synergetic Innovation Center of Food Safety and Quality Control
- Wuxi
- China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science of Jiangnan University
- School of Food Science Synergetic Innovation Center of Food Safety and Quality Control
- Wuxi
- China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology
- School of Food Science of Jiangnan University
- School of Food Science Synergetic Innovation Center of Food Safety and Quality Control
- Wuxi
- China
| |
Collapse
|
30
|
Xu L, Qi X, Li X, Bai Y, Liu H. Recent advances in applications of nanomaterials for sample preparation. Talanta 2015; 146:714-26. [PMID: 26695321 DOI: 10.1016/j.talanta.2015.06.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
Abstract
Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes.
Collapse
Affiliation(s)
- Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyue Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianjiang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Shen Q, Yang Q, Cheung HY. Hydrophilic interaction chromatography based solid-phase extraction and MALDI TOF mass spectrometry for revealing the influence of Pseudomonas fluorescens on phospholipids in salmon fillet. Anal Bioanal Chem 2014; 407:1475-84. [PMID: 25492091 DOI: 10.1007/s00216-014-8365-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
Abstract
Salmon is a popular food but it is easily susceptible to spoilage by contamination with microorganisms. In this study, a method using hydrophilic interaction chromatography (HILIC)-based solid-phase extraction (SPE) and matrix-assisted laser desorption and ionization time-of-flight/time-of-flight mass spectrometry was developed and applied to reveal the effect of Pseudomonas fluorescens on salmon fillet during the shelf-life period by measuring the changes in the levels of phosphatidylcholine and phosphatidylethanolamine. Fresh samples were inoculated with P. fluorescens (10(6) cfu g(-1)) for 30 s, and lipids were extracted at 0, 24, 48, and 72 h. A homemade SPE cartridge packed with HILIC sorbent (silica derivatized with 1,2-dihydroxypropane) was used for matrix cleanup prior to analysis by mass spectrometry. In total, 30 phospholipids and 16 lysophospholipids were detected and elucidated. The results revealed that the content of phospholipids decreased significantly, whereas that of lysophospholipids increased initially, followed by a gradual reduction as the cold storage time increased. The contamination by P. fluorescens negatively affected the quality of fresh salmon without obvious physical changes, but it posed a potential threat to human health. This study suggests that the well-established method could be used for detecting phospholipids in salmon fillet and perhaps other foods as well.
Collapse
Affiliation(s)
- Qing Shen
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region, China
| | | | | |
Collapse
|