1
|
Wang J, Jiang H, Chen S, Li Y, Hamouda HI, Balah MA, Xue C, Mao X. Strategy for preparing of glucosinolate derivatives with outstanding functional activities based on myrosinase. Food Chem 2025; 479:143778. [PMID: 40081071 DOI: 10.1016/j.foodchem.2025.143778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Glucosinolates are a class of sulfur- and nitrogen-containing secondary metabolites that are widely present in cruciferous vegetables. Degradation products of glucosinolate, glucosinolate derivatives such as sulforaphane, sulforaphene, and iberin, have garnered interest due to their promising functional activities including anticancer, antioxidant, and antibacterial activities. As a result, these glucosinolate derivatives have substantial implications in the realms of food, medicine, and agriculture. Among the methods for preparing glucosinolate derivatives, enzymatic approach based on myrosinase stands out as a greener and more efficient alternative to chemical synthesis, underscoring the scientific and practical significance of developing myrosinase with high catalytic activity. This paper provides a systematic overview of the origin, catalytic properties, and catalytic mechanism of the key myrosinase applied for glucosinolate derivatives preparation. Meanwhile, the glucosinolate derivatives prepared via myrosinase and their functional activities are also illustrated and discussed. Furthermore, it also anticipates future research directions in myrosinase and glucosinolate derivatives.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Sanya Ocean Research Institute, Ocean University of China, Sanya 572025, China.
| | - Suxue Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Yan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Mohamed A Balah
- Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Sanya Ocean Research Institute, Ocean University of China, Sanya 572025, China
| |
Collapse
|
2
|
Barnum C, Cho MJ, Markel K, Shih PM. Engineering Brassica Crops to Optimize Delivery of Bioactive Products Postcooking. ACS Synth Biol 2024; 13:736-744. [PMID: 38412618 PMCID: PMC10949231 DOI: 10.1021/acssynbio.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Glucosinolates are plant-specialized metabolites that can be hydrolyzed by glycosyl hydrolases, called myrosinases, creating a variety of hydrolysis products that benefit human health. While cruciferous vegetables are a rich source of glucosinolates, they are often cooked before consumption, limiting the conversion of glucosinolates to hydrolysis products due to the denaturation of myrosinases. Here we screen a panel of glycosyl hydrolases for high thermostability and engineer the Brassica crop, broccoli (Brassica oleracea L.), for the improved conversion of glucosinolates to chemopreventive hydrolysis products. Our transgenic broccoli lines enabled glucosinolate hydrolysis to occur at higher cooking temperatures, 20 °C higher than in wild-type broccoli. The process of cooking fundamentally transforms the bioavailability of many health-relevant bioactive compounds in our diet. Our findings demonstrate the promise of leveraging genetic engineering to tailor crops with novel traits that cannot be achieved through conventional breeding and improve the nutritional properties of the plants we consume.
Collapse
Affiliation(s)
- Collin
R. Barnum
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94270, United States
- Department
of Plant Biology, University of California
Davis, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California 95616, United States
| | - Myeong-Je Cho
- Innovative
Genomics Institute, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Kasey Markel
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94270, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Patrick M. Shih
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94270, United States
- Innovative
Genomics Institute, University of California,
Berkeley, Berkeley, California 94720, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94710, United States
- Feedstocks
Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
| |
Collapse
|
3
|
Sougrakpam Y, Deswal R. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111932. [PMID: 38030037 DOI: 10.1016/j.plantsci.2023.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Myrosinases constitute an important component of the glucosinolate-myrosinase system responsible for interaction of plants with microorganisms, insects, pest, and herbivores. It is a distinctive feature of Brassicales. Multiple isozymes of myrosinases are present in the vacuoles. Active myrosinases are also present in the apoplast and the nucleus however, the similarity or difference in the biochemical properties with the vacuolar myrosinases are not known. Here, we have attempted to isolate, characterize, and identify myrosinases from seeds, seedlings, apoplast, and nucleus to understand these forms. 2D-CN/SDS-PAGE coupled with western blotting and MS have shown low abundant myrosinases (65/70/72/75 kDa) in seeds and seedlings and apoplast & nucleus of seedlings to exist as dimers, oligomers, and as protein complex. Nuclear membrane associated form of myrosinase was also identified. The present study for the first time has shown enzymatically active myrosinase-alpha-mannosidase complex in seedlings. Both 65 and 70 kDa myrosinase in seedlings were S-nitrosated. Nitric oxide donor treatment (GSNO) led to 25% reduction in myrosinase activity which was reversed by DTT suggesting redox regulation of myrosinase. These S-nitrosated myrosinases might be a component of NO signalling in B. juncea.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
4
|
Mahn A, Pérez CE, Zambrano V, Barrientos H. Maximization of Sulforaphane Content in Broccoli Sprouts by Blanching. Foods 2022; 11:foods11131906. [PMID: 35804720 PMCID: PMC9266238 DOI: 10.3390/foods11131906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Broccoli sprouts are a recognized source of health-promoting compounds, such as glucosinolates, glucoraphanin, and sulforaphane (SFN). Maximization of SFN content can be achieved by technological processing. We investigated the effect of blanching conditions to determine the optimal treatment that maximizes sulforaphane content in broccoli sprouts. Broccoli seeds (cv. Traditional) grown under controlled conditions were harvested after 11 days from germination and subjected to different blanching conditions based on a central composite design with temperature and time as experimental factors. Results were analyzed by ANOVA followed by a Tukey test. The optimum conditions were identified through response surface methodology. Blanching increased sulforaphane content compared with untreated sprouts, agreeing with a decrease in total glucosinolates and glucoraphanin content. Temperature significantly affected SFN content. Higher temperatures and shorter immersion times favor glucoraphanin hydrolysis, thus increasing SFN content. The optimum conditions were blanching at 61 °C for 4.8 min, resulting in 54.3 ± 0.20 µmol SFN/g dry weight, representing a 3.3-fold increase with respect to untreated sprouts. This is the highest SFN content reported for sprouts subjected to any treatment so far. The process described in this work may contribute to developing functional foods and nutraceuticals that provide sulforaphane as an active principle.
Collapse
Affiliation(s)
- Andrea Mahn
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Santiago 9170019, Chile;
- Correspondence: ; Tel.: +56-227-181-833
| | - Carmen Elena Pérez
- Department of Agro Industrial Engineering, Pontificia Bolivariana University, Cra. 6 No. 97A-99, Montería 230001, Colombia;
| | - Víctor Zambrano
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Santiago 9170019, Chile;
| | - Herna Barrientos
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170019, Chile;
| |
Collapse
|
5
|
Kinetic Study and Modeling of Wild-Type and Recombinant Broccoli Myrosinase Produced in E. coli and S. cerevisiae as a Function of Substrate Concentration, Temperature, and pH. Catalysts 2022. [DOI: 10.3390/catal12070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The myrosinase enzyme hydrolyzes glucosinolates, among which is glucoraphanin, the precursor of the anticancer isothiocyanate sulforaphane (SFN). The main source of glucoraphanin is Brassicaceae; however, its natural concentration is relatively low, limiting the availability of SFN. An option to obtain SFN is its exogenous production, through enzymatic processes and under controlled conditions, allowing complete conversion of glucoraphanin to SFN. We characterized the kinetics of wild-type (BMYR) and recombinant broccoli myrosinases produced in E. coli (EMYR) and S. cerevisiae (SMYR) in terms of the reaction conditions. Kinetics was adjusted using empirical and mechanistic models that describe reaction rate as a function of substrate concentration, temperature, and pH, resulting in R2 values higher than 90%. EMYR kinetics differed significantly from those of BMYR and SMYR probably due to the absence of glycosylations in the enzyme produced in E. coli. BMYR and SMYR were subjected to substrate inhibition but followed different kinetic mechanisms attributed to different glycosylation patterns. EMYR (inactivation Ea = 76.1 kJ/mol) was more thermolabile than BMYR and SMYR. BMYR showed the highest thermostability (inactivation Ea = 52.8 kJ/mol). BMYR and EMYR showed similar behavior regarding pH, with similar pK1 (3.4 and 3.1, respectively) and pK2 (5.4 and 5.0, respectively), but differed considerably from SMYR.
Collapse
|
6
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
7
|
Galádová H, Polozsányi Z, Breier A, Šimkovič M. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules 2022; 12:biom12030406. [PMID: 35327598 PMCID: PMC8945721 DOI: 10.3390/biom12030406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane and other natural isothiocyanates released from the respective plant glucosinolates by the plant enzyme myrosinase (β-thioglucoside glucohydrolase) show extensive anticancer and antimicrobial effects. In this study, myrosinase from garden cress (Lepidium sativum) seeds was purified to electrophoretic homogeneity by a fast and easy strategy consisting of fractionation by isoelectric precipitation with ammonium sulphate (AS) and affinity chromatography using sulforaphane (SFN) attached to cellulose resin. The overall purification of enzyme with respect to crude extract was 169-fold and recovery of 37%. Under non-reducing conditions, two protein bands exhibiting myrosinase activity with masses of about 114 and 122 kDa, respectively, and a 58 kDa protein band with no activity were detected by SDS-PAGE and zymography on polyacrylamide gel. MALDI-Tof/Tof of tryptic fragments obtained from the respective protein bands detected sequence motifs homologous to the regions responsible for glycoside-substrate binding and similarities to members of the enzyme subfamilies β-glucosidases and myrosinases GH. The enzyme hydrolyzed both the natural (sinigrin, sinalbin, glucoraphanin) and the synthetic (p-nitrophenol-β-D-glucopyranoside (pNPG)) substrates. The highest catalytic activity of purified enzyme was achieved against sinigrin. The KM and Vmax values of the enzyme for sinigrin were found to be 0.57 mM, and 1.3 mM/s, respectively. The enzyme was strongly activated by 30 μM ascorbic acid. The optimum temperature and pH for enzyme was 50 °C and pH 6.0, respectively. The purified enzyme could be stored at 4 °C and slightly acidic pH for at least 45 days without a significant decrease in specific activity.
Collapse
Affiliation(s)
- Helena Galádová
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Zoltán Polozsányi
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Albert Breier
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Correspondence:
| |
Collapse
|
8
|
Broccoli Myrosinase cDNA Expression in Escherichia coli and Saccharomyces cerevisiae. Biomolecules 2022; 12:biom12020233. [PMID: 35204734 PMCID: PMC8961631 DOI: 10.3390/biom12020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Myrosinases (EC 3.2.1.147) are enzymes known for the generation of hydrolysis products that have a potential beneficial effect on human health. Their reaction mechanisms are widely studied, in order to improve and optimize secondary metabolite production processes. In this work, kinetic and biochemical properties of the broccoli myrosinase enzyme produced from its cDNA cloned in Escherichia coli and Saccharomyces cerevisiae were investigated. The results revealed that the thermal stability of the enzyme produced in S. cerevisiae was slightly higher (30 to 60 °C) than that of myrosinase produced in E. coli (20 to 50 °C). The effect of pH on the enzymatic activity was similar in both enzymes, with pH 3 being the optimum value under the reaction conditions used. The kinetic behavior of both enzymes was adjusted to the Michaelis–Menten model. The catalytic efficiency was up to 4 times higher in myrosinase produced in S. cerevisiae, compared to myrosinase produced in E. coli. The glycosylations present in the enzyme would be related to the formation of a dimeric quaternary structure and would not play an essential role in enzymatic activity, since both enzymes were biologically active. These results will probably allow the development of strategies for the production of bioactive metabolites of medical interest.
Collapse
|
9
|
Memon AH, Wei B, Shams S, Jiang Y, Jiao M, Su M, Liang H. Construction of robust bienzyme-mimicking nanocatalysts for dye degradation by self-assembly of hematin, metal ions, and nucleotides. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growing proportion of the textile industry has led to an increase in the concentration of colored dyes in aquatic systems.
Collapse
Affiliation(s)
- Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- Government Boys High School Manjhand, Education and Literary Department, Govt of Sindh, Pakistan
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Saira Shams
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yucui Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengzhao Jiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingming Su
- School of Environment and Natural Resources, Renmin University of China, Beijing, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
10
|
Shekarri Q, Dekker M. A Physiological-Based Model for Simulating the Bioavailability and Kinetics of Sulforaphane from Broccoli Products. Foods 2021; 10:foods10112761. [PMID: 34829040 PMCID: PMC8620288 DOI: 10.3390/foods10112761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
There are no known physiological-based digestion models that depict glucoraphanin (GR) to sulforaphane (SR) conversion and subsequent absorption. The aim of this research was to make a physiological-based digestion model that includes SR formation, both by endogenous myrosinase and gut bacterial enzymes, and to simulate the SR bioavailability. An 18-compartment model (mouth, two stomach, seven small intestine, seven large intestine, and blood compartments) describing transit, reactions and absorption was made. The model, consisting of differential equations, was fit to data from a human intervention study using Mathwork’s Simulink and Matlab software. SR urine metabolite data from participants who consumed different broccoli products were used to estimate several model parameters and validate the model. The products had high, medium, low, and zero myrosinase content. The model’s predicted values fit the experimental values very well. Parity plots showed that the predicted values closely matched experimental values for the high (r2 = 0.95), and low (r2 = 0.93) products, but less so for the medium (r2 = 0.85) and zero (r2 = 0.78) myrosinase products. This is the first physiological-based model to depict the unique bioconversion processes of bioactive SR from broccoli. This model represents a preliminary step in creating a predictive model for the biological effect of SR, which can be used in the growing field of personalized nutrition.
Collapse
|
11
|
Wang L, Jiang H, Liang X, Zhou W, Qiu Y, Xue C, Sun J, Mao X. Preparation of Sulforaphene from Radish Seed Extracts with Recombinant Food-Grade Yarrowia lipolytica Harboring High Myrosinase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5363-5371. [PMID: 33929187 DOI: 10.1021/acs.jafc.1c01400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulforaphene prepared from glucoraphenin by myrosinase is one of the main active ingredients of radish, which has various biological activities and brilliant potential for food and pharmaceutical applications. In this paper, a recombinant food-grade yeast transformant 20-8 with high-level myrosinase activity was constructed by over-expressing a myrosinase gene from Arabidopsis thaliana in Yarrowia lipolytica. The highest myrosinase activity produced by the transformant 20-8 reached 44.84 U/g dry cell weight when it was cultivated in a 10 L fermentor within 108 h. Under the optimal reaction conditions, 6.1 mg of sulforaphene was yielded from 1 g of radish seeds under the catalysis of the crude myrosinase preparation (4.95 U) at room temperature within 1.5 h. What is more is that when the whole yeast cells harboring myrosinase activity were reused 10 times, the sulforaphene yield still reached 92.53% of the initial level. Therefore, this efficient approach has broad application prospects in recyclable and large-scale preparation of sulforaphene.
Collapse
Affiliation(s)
- Lili Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| | - Xingxing Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenting Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanjun Qiu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| |
Collapse
|
12
|
Li Z, Liu Y, Yuan S, Han F, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Wang Y, Ji J. Fine mapping of the major QTLs for biochemical variation of sulforaphane in broccoli florets using a DH population. Sci Rep 2021; 11:9004. [PMID: 33903705 PMCID: PMC8076207 DOI: 10.1038/s41598-021-88652-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/15/2021] [Indexed: 11/09/2022] Open
Abstract
Glucoraphanin is a major secondary metabolite found in Brassicaceae vegetables, especially broccoli, and its degradation product sulforaphane plays an essential role in anticancer. The fine mapping of sulforaphane metabolism quantitative trait loci (QTLs) in broccoli florets is necessary for future marker-assisted selection strategies. In this study, we utilized a doubled haploid population consisting of 176 lines derived from two inbred lines (86,101 and 90,196) with significant differences in sulforaphane content, coupled with extensive genotypic and phenotypic data from two independent environments. A linkage map consisting of 438 simple sequence repeats markers was constructed, covering a length of 1168.26 cM. A total of 18 QTLs for sulforaphane metabolism in broccoli florets were detected, 10 were detected in 2017, and the other 8 were detected in 2018. The LOD values of all QTLs ranged from 3.06 to 14.47, explaining 1.74-7.03% of the biochemical variation between two years. Finally, 6 QTLs (qSF-C3-1, qSF-C3-2, qSF-C3-3, qSF-C3-5, qSF-C3-6 and qSF-C7) were stably detected in more than one environment, each accounting for 4.54-7.03% of the phenotypic variation explained (PVE) and a total of 30.88-34.86% of PVE. Our study provides new insights into sulforaphane metabolism in broccoli florets and marker-assisted selection breeding in Brassica oleracea crops.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suxia Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengqing Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Yuanfeng W, Chengzhi L, Ligen Z, Juan S, Xinjie S, Yao Z, Jianwei M. Approaches for enhancing the stability and formation of sulforaphane. Food Chem 2020; 345:128771. [PMID: 33601652 DOI: 10.1016/j.foodchem.2020.128771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
The isothiocyanate sulforaphane (SF) is one of the most potent naturally occurring Phase 2 enzymes inducers derived from brassica vegetables like broccoli, cabbage, brussel sprouts, etc. Ingestion of broccoli releases SF via hydrolysis of glucoraphanin (GRP) by plant myrosinase and/or intestinal microbiota. However, both SF and plant myrosinase are thermal-labile, and the epithiospecifier protein (ESP) directs the hydrolysis of GRP toward formation of sulforaphane nitrile instead of SF. In addition, bacterial myrosinase has low hydrolyzing efficiency. In this review, we discuss strategies that could be employed to improve the stability of SF, increase SF formation during thermal and non-thermal processing of broccoli, and enhance the myrosinase-like activity of the gut microbiota. Furthermore, new cooking methods or blanching technologies should be developed to maintain myrosinase activity, and novel thermostable myrosinase and/or microbes with high SF producing abilities should also be developed.
Collapse
Affiliation(s)
- Wu Yuanfeng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Lv Chengzhi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zou Ligen
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| | - Sun Juan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Song Xinjie
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zhang Yao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Mao Jianwei
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China; Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China.
| |
Collapse
|
14
|
Lv X, Wang Q, Wang X, Zheng X, Fan D, Espinoza‐Pinochet CA, Cespedes‐Acuña CL. Selection and microencapsulation of myrosinase enzyme from broccoli sprouts of different varieties and characteristics evaluation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingang Lv
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Qilei Wang
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Xiao Wang
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Xiaohua Zheng
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Xi'an PR China
| | | | - Carlos L. Cespedes‐Acuña
- Chemistry and Biotechnology of Bioactive Natural Products, Department of Basic Sciences Faculty of Sciences, Universidad del Bio Bio Chillan Chile
| |
Collapse
|
15
|
Sulforaphane in broccoli-based matrices: Effects of heat treatment and addition of oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Mandrich L, Caputo E. Brassicaceae-Derived Anticancer Agents: Towards a Green Approach to Beat Cancer. Nutrients 2020; 12:nu12030868. [PMID: 32213900 PMCID: PMC7146209 DOI: 10.3390/nu12030868] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the main cause of mortality and morbidity worldwide. Although a large variety of therapeutic approaches have been developed and translated into clinical protocols, the toxic side effects of cancer treatments negatively impact patients, allowing cancer to grow. Brassica metabolites are emerging as new weapons for anti-cancer therapeutics. The beneficial role of the consumption of brassica vegetables, the most-used vegetables in the Mediterranean diet, particularly broccoli, in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, has been well-documented. In this review, we discuss the anti-tumor effects of the bioactive compounds from Brassica vegetables with regard to the compounds and types of cancer against which they show activity, providing current knowledge on the anti-cancer effects of Brassica metabolites against major types of tumors. In addition, we discuss the impacts of industrial and domestic processing on the compounds’ functional properties before their consumption as well as the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification. Finally, the impacts of microbiota on the compounds’ bioactivity are considered. This information will be helpful for the further development of efficacious anti-cancer drugs.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino, 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics (I.G.B.) “A. Buzzati-Traverso”, CNR, Via Pietro Castellino, 111, I-80131 Naples, Italy
- Correspondence:
| |
Collapse
|
17
|
Covalent immobilization of thioglucosidase from radish seeds for continuous preparation of sulforaphene. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Bhat R, Vyas D. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions. Crit Rev Biotechnol 2019; 39:508-523. [PMID: 30939944 DOI: 10.1080/07388551.2019.1576024] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucosinolate-myrosinase is a substrate-enzyme defense mechanism present in Brassica crops. This binary system provides the plant with an efficient system against herbivores and pathogens. For humans, it is well known for its anti-carcinogenic, anti-inflammatory, immunomodulatory, anti-bacterial, cardio-protective, and central nervous system protective activities. Glucosinolate and myrosinase are spatially present in different cells that upon tissue disruption come together and result in the formation of a variety of hydrolysis products with diverse physicochemical and biological properties. The myrosinase-catalyzed reaction starts with cleavage of the thioglucosidic linkage resulting in release of a D-glucose and an unstable thiohydroximate-O-sulfate. The outcome of this thiohydroximate-O-sulfate has been shown to depend on the structure of the glucosinolate side chain, the presence of supplementary proteins known as specifier proteins and/or on the physiochemical condition. Myrosinase was first reported in mustard seed during 1939 as a protein responsible for release of essential oil. Until this date, myrosinases have been characterized from more than 20 species of Brassica, cabbage aphid, and many bacteria residing in the human intestine. All the plant myrosinases are reported to be activated by ascorbic acid while aphid and bacterial myrosinases are found to be either neutral or inhibited. Myrosinase catalyzes hydrolysis of the S-glycosyl bond, O-β glycosyl bond, and O-glycosyl bond. This review summarizes information on myrosinase, an essential component of this binary system, including its structural and molecular properties, mechanism of action, and its regulation and will be beneficial for the research going on the understanding and betterment of the glucosinolate-myrosinase system from an ecological and nutraceutical perspective.
Collapse
Affiliation(s)
- Rohini Bhat
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| | - Dhiraj Vyas
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| |
Collapse
|
19
|
Román J, Castillo A, Mahn A. Molecular Docking of Potential Inhibitors of Broccoli Myrosinase. Molecules 2018; 23:molecules23061313. [PMID: 29849002 PMCID: PMC6100158 DOI: 10.3390/molecules23061313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/29/2023] Open
Affiliation(s)
- J Román
- Doctorado en Ciencia y Tecnología de Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Obispo Manuel Umaña 050 Estación Central, Santiago 9170019, Chile.
| | - A Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile.
| | - A Mahn
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile.
| |
Collapse
|
20
|
Tian S, Liu X, Lei P, Zhang X, Shan Y. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1255-1260. [PMID: 28869285 DOI: 10.1002/jsfa.8654] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/24/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Isothiocyanates (ITCs), such as sulforaphane (SFN), exhibit powerful biological functions in fighting cancers, and cardiovascular and neurodegenerative diseases. They normally exist as glucosinolates (GLSs) in cruciferous vegetables, which are not themselves bioactive until they are degraded by myrosinase to form ITCs. Myrosinase coexists in the same plants but is normally kept apart from GLSs in different apparatus. A key point is that myrosinase is temperature sensitive and can be inactivated upon exposure to temperatures over 60 °, as typically occurs during cooking. However, studies using animal models and population trials have suggested that human gut bacteria might act like an 'organ' in that they can secrete their own myrosinase. In this review, the hydrolysis of GLS by myrosinase is discussed, with an important focus on the gut microflora and their myrosinase-producing roles. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sicong Tian
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaodong Liu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Peng Lei
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaohong Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Zhejiang, China
| | - Yujuan Shan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
21
|
Román J, Castillo A, Cottet L, Mahn A. Kinetic and structural study of broccoli myrosinase and its interaction with different glucosinolates. Food Chem 2018; 254:87-94. [PMID: 29548477 DOI: 10.1016/j.foodchem.2018.01.179] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 11/17/2022]
Abstract
Myrosinase is a glycosylated enzyme present in the Brassicaceae family that catalyzes the hydrolysis of glucoraphanin to yield sulforaphane, recognized as a health-promoting compound found in cruciferous foods. Broccoli myrosinase has been poorly characterized. In this work, the enzyme was purified from broccoli florets and its kinetic behaviour was analyzed. The cDNA of broccoli myrosinase was isolated and sequenced to obtain the amino acids sequence of the enzyme. A three-dimensional structural model of a broccoli myrosinase subunit was built and used to perform molecular docking simulations with glucoraphanin and other glucosinolates. Kinetic data were adjusted to the Two-Binding Sites Model that describes substrate inhibition, obtaining R2 higher than 97%. The docking simulations confirmed the existence of two substrate-binding sites in the monomer, and allowed identifying the residues that interact with the substrate in each site. Our findings will help to design strategies to better exploit the health-promoting properties of broccoli.
Collapse
Affiliation(s)
- Juan Román
- Doctorate Program in Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Chile.
| | - Antonio Castillo
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile.
| | - Luis Cottet
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile.
| | - Andrea Mahn
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Chile.
| |
Collapse
|
22
|
Albaser A, Kazana E, Bennett MH, Cebeci F, Luang-In V, Spanu PD, Rossiter JT. Discovery of a Bacterial Glycoside Hydrolase Family 3 (GH3) β-Glucosidase with Myrosinase Activity from a Citrobacter Strain Isolated from Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1520-7. [PMID: 26820976 DOI: 10.1021/acs.jafc.5b05381] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A Citrobacter strain (WYE1) was isolated from a UK soil by enrichment using the glucosinolate sinigrin as sole carbon source. The enzyme myrosinase was purified using a combination of ion exchange and gel filtration to give a pure protein of approximately 66 kDa. The N-terminal amino acid and internal peptide sequence of the purified protein were determined and used to identify the gene, which, based on InterPro sequence analysis, belongs to the family GH3, contains a signal peptide, and is a periplasmic protein with a predicted molecular mass of 71.8 kDa. A preliminary characterization was carried out using protein extracts from cell-free preparations. The apparent KM and Vmax were 0.46 mM and 4.91 mmol dm(-3) min(-1) mg(-1), respectively, with sinigrin as substrate. The optimum temperature and pH for enzyme activity were 25 °C and 6.0, respectively. The enzyme was marginally activated with ascorbate by a factor of 1.67.
Collapse
Affiliation(s)
- Abdulhadi Albaser
- Faculty of Life Sciences, Imperial College London , London SW7 2AZ, United Kingdom
| | - Eleanna Kazana
- Faculty of Life Sciences, Imperial College London , London SW7 2AZ, United Kingdom
| | - Mark H Bennett
- Faculty of Life Sciences, Imperial College London , London SW7 2AZ, United Kingdom
| | - Fatma Cebeci
- Food and Health Programme, Institute of Food Research , Norwich NR4 7UA, United Kingdom
| | - Vijitra Luang-In
- Faculty of Life Sciences, Imperial College London , London SW7 2AZ, United Kingdom
| | - Pietro D Spanu
- Faculty of Life Sciences, Imperial College London , London SW7 2AZ, United Kingdom
| | - John T Rossiter
- Faculty of Life Sciences, Imperial College London , London SW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Bhat R, Kaur T, Khajuria M, Vyas R, Vyas D. Purification and Characterization of a Novel Redox-Regulated Isoform of Myrosinase (β-Thioglucoside Glucohydrolase) from Lepidium latifolium L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10218-10226. [PMID: 26527478 DOI: 10.1021/acs.jafc.5b04468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Myrosinase (ExPASy entry EC 3.2.1.147) is involved in the hydrolysis of glucosinolates to isothiocyanates, nitriles, and thiocyanates that are responsible for various ecological and health benefits. Myrosinase was purified from the leaves of Lepidium latifolium, a high-altitude plant, to homogeneity in a three-step purification process. Purified enzyme exists as dimer in native form (∼160 kDa) with a subunit size of ∼70 kDa. The enzyme exhibited maximum activity at pH 6.0 and 50 °C. With sinigrin as substrate, the enzyme showed Km and Vmax values of 171 ± 23 μM and 0.302 μmol min(-1) mg(-1), respectively. The enzyme was found to be redox-regulated, with an increase in Vmax and Kcat in the presence of GSH. Reduced forms of the enzyme were found to be more active. This thiol-regulated kinetic behavior of myrosinase signifies enzyme's strategy to fine-tune its activity in different redox environments, thus regulating its biological effects.
Collapse
Affiliation(s)
- Rohini Bhat
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Tarandeep Kaur
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Manu Khajuria
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Ruchika Vyas
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, ‡Formulation and Drug Development Division, and §Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu, Jammu and Kashmir 180001, India
| |
Collapse
|
24
|
Yi XW, Yang F, Liu JX, Wang JK. Effects of Replacement of Concentrate Mixture by Broccoli Byproducts on Lactating Performance in Dairy Cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1449-53. [PMID: 26323401 PMCID: PMC4554852 DOI: 10.5713/ajas.15.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/23/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to determine the effects of feeding pelletized broccoli byproducts (PBB) on milk yield and milk composition in dairy cows. In Trial 1, an in vitro gas test determined the optimal replacement level of PBB in a concentrate mixture in a mixed substrate with Chinese wild ryegrass hay (50:50, w/w) at levels of 0, 10%, 20%, 30%, or 40% (dry matter basis). When the concentrate was replaced by PBB at a level of 20%, no adverse effects were found on the gas volume or its rate constant during ruminal fermentation. In trial 2, 24 lactating cows (days in milk = 170.4±35; milk yield = 30±3 kg/d; body weight = 580 ±13 kg) were divided into 12 blocks based on day in milk and milk yield and randomly allocated to two dietary treatments: a basic diet with or without PBB replacing 20% of the concentrate mixture. The feeding trial lasted for 56 days; the first week allowed for adaptation to the diet. The milk composition was analyzed once a week. No significant difference in milk yield was observed between the two groups (23.5 vs 24.2 kg). A significant increase was found in milk fat content in the PBB group (p<0.05). Inclusion of PBB did not affect milk protein, lactose, total solids or solids-not-fat (p>0.05). These results indicated that PBB could be included in dairy cattle diets at a suitable level to replace concentrate mixture without any adverse effects on dairy performance.
Collapse
|