1
|
Manzano Vela DR, Villegas Freire CN, Zabala Vizuete RF, Flores Mancheno AC. Utilization of Forest Residues for Cellulose Extraction from Timber Species in the High Montane Forest of Chimborazo, Ecuador. Polymers (Basel) 2024; 16:2713. [PMID: 39408424 PMCID: PMC11478712 DOI: 10.3390/polym16192713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The present study explored the extraction of cellulose from forest residues of four timber species, namely Cedrela montana Moritz ex Turcz, Buddleja incana Ruiz & Pav, Vallea stipularis L. f. and Myrsine andina (Mez) Pipoly, in the high montane forest of Chimborazo province, Ecuador, for the sustainable utilization of leaves, branches, and flowers. An alkaline extraction method was used on the residues without the need for prior degreasing. An ANOVA analysis was applied to evaluate significant differences in cellulose extraction yields among the species' residues. The characterization techniques used were Fourier transform infrared spectroscopy (FTIR) and polarized light optical microscopy, which confirmed the successful extraction of cellulose with characteristics comparable to standard cotton cellulose and other traditional species. The results showed significant variations in cellulose yield among the species, with Vallea stipularis L. f achieving the highest yield of 80.83%. The crystallinity of the samples was clearly evidenced by the polarity of the light in the samples during microscopy, demonstrating that the residues can be a viable and sustainable source of cellulose, contributing to a circular economy and reducing the environmental impact of forest waste.
Collapse
Affiliation(s)
- Dennis Renato Manzano Vela
- Facultad de Recursos Naturales, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060150, Ecuador; (C.N.V.F.); (R.F.Z.V.); (A.C.F.M.)
| | | | | | | |
Collapse
|
2
|
Cheng X, Du J, Li Z, Zhang W, Zhu L, Jiang J. Comprehensive characterization of hemicelluloses obtained from Gleditsia sinensis Lam. pods and the application of moderately degraded hemicelluloses in galactomannan film. Int J Biol Macromol 2024; 271:132733. [PMID: 38821298 DOI: 10.1016/j.ijbiomac.2024.132733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
The Gleditsia sinensis Lam. pods (GSP) are consistently discarded as waste after saponin extraction due to a lack of industrial or high-value utilization. Herein, the hemicelluloses were extracted from two varieties of GSP and subjected to comprehensive characterization. The molar mass of DMSO-soluble hemicelluloses (53.3-66.0 kDa) was higher compared to that of alkali-soluble ones (24.9-32.6 kDa). The presence of minimal acetyl substitution (3.85-4.49 %) on xylan was unequivocally confirmed. NMR spectroscopic analysis indicated that the hemicelluloses in GSP predominantly consist of a 1,4-β-ᴅ-Xyl backbone with arabinose substituents at O-3 and 4-O-methyl-α-ᴅ-GlcA substituents at O-2 of the xylose residues. p-Coumaric acid substitution also occurred on the 1,4-β-ᴅ-Xyl backbone. Hydrothermal treatment significantly reduced the hemicelluloses' relative molar mass and produced 7-10 % xylo-oligosaccharides. Furthermore, the moderately degraded hemicelluloses exhibited significantly enhanced biological activity. Finally, the incorporation of the moderately degraded hemicelluloses imparted the galactomannan film with exceptional antioxidant properties (81.1 % DPPH scavenging activity), while negligibly affecting its transparency. Our study's findings will contribute to a comprehensive understanding of the structural and biochemical properties of hemicellulose in waste G. sinensis pods, thereby facilitating their enhanced utilization in industrial applications.
Collapse
Affiliation(s)
- Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Juan Du
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Zhiqiang Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing Co-built on Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Weiwei Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Liwei Zhu
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Shen W, Zhang C, Wang G, Li Y, Zhang X, Cui Y, Hu Z, Shen S, Xu X, Cao Y, Li X, Wen J, Lin J. Variation pattern in the macromolecular (cellulose, hemicelluloses, lignin) composition of cell walls in Pinus tabulaeformis tree trunks at different ages as revealed using multiple techniques. Int J Biol Macromol 2024; 268:131619. [PMID: 38692998 DOI: 10.1016/j.ijbiomac.2024.131619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: β-O-4, β-β, and β-5. Furthermore, the C-O bond (β-O-4) signals of lignin decreased while the C-C bonds (β-β and β-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.
Collapse
Affiliation(s)
- Weiwei Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guangchao Wang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yujian Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zijian Hu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shiya Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiuping Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jinxing Lin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Rabelo Aparício R, Machado Dos Santos G, Siqueira Magalhães Rebelo V, Mansanares Giacon V, Gomes da Silva C. Performance of castor oil polyurethane resin in composite with the piassava fibers residue from the Amazon. Sci Rep 2024; 14:6679. [PMID: 38509122 PMCID: PMC10955110 DOI: 10.1038/s41598-024-54000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
The use of castor oil in producing polyurethane resins has been identified as one of the most promising options for the industry. The piassava fibers waste generated by the industry on a large scale presents excellent properties as a reinforcing agent due to its high lignin content characterized by chemical tests and FTIR. Composite boards consisting of a higher content of mercerized piassava fibers (10 mm, 85 wt.%) reinforced polyurethane castor oil-based resin (prepolymer (PP) and polyol (OM)) exhibited excellent performance. Composites with these properties have strong potential for medium-density applications ranging from biomedical prosthetics to civil partition walls and insulation linings. Alkali treatment removed the superficial impurities of piassava fibers, activating polar groups, and physical characterization reported excellent performance for all composites. Among the composites, the CP3 sample (composite reinforced with piassava fibers (85 wt.% fibers; 1.2:1-PP:OM)) stood out with higher density and lower swelling and water absorption percentage than other composites. FTIR results indicated NCO traces after the resin cured in the PU3 (1.2:1-PP:OM), possibly contributing to the interaction with the fibers. DMA results reported relevant information about more flexibility to CP1 (composite reinforced with piassava fibers (85 wt.% fibers; 0.8:1-PP:OM)) and CP3 than CP2 (composite reinforced with piassava fibers (85 wt.% fibers; 1:1-PP:OM)). The results suggest that the proper combination with natural products must lead to composites with potential applications as engineering materials.
Collapse
Affiliation(s)
- Rosinaldo Rabelo Aparício
- Programa de Pós-Graduação Em Ciência E Engenharia de Materiais, Universidade Federal Do Amazonas, Manaus, Brazil
| | - Gabrielle Machado Dos Santos
- Programa de Pós-Graduação Em Ciência E Engenharia de Materiais, Universidade Federal Do Amazonas, Manaus, Brazil
| | | | - Virgínia Mansanares Giacon
- Programa de Pós-Graduação Em Ciência E Engenharia de Materiais, Universidade Federal Do Amazonas, Manaus, Brazil
| | - Cristina Gomes da Silva
- Programa de Pós-Graduação Em Ciência E Engenharia de Materiais, Universidade Federal Do Amazonas, Manaus, Brazil.
| |
Collapse
|
5
|
Zheng B, Yang H, Xu X, Xiang Z, Hong Z, Zheng H, Wu A, Li H. Characterization of hemicellulose in Cunninghamia lanceolata stem during xylogenesis. Int J Biol Macromol 2023; 246:125530. [PMID: 37355061 DOI: 10.1016/j.ijbiomac.2023.125530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
In this study, hemicellulose was isolated from the apical, middle and basal segments of C. lanceolata stem to investigate the dynamic change of its structure during xylogenesis. Results showed that the C. lanceolata hemicellulose is mainly consisted of O-acetylgalactoglucomannan (GGM) which backbone is alternately linked by β-d-mannopyranosyl (Manp) and β-d-glucopyranosyl (Glcp) via (1 → 4)-glycosidic bond, while the side chains are α-d-galactopyranosyl (Galp) and acetyl. In addition, 4-O-methylglucuronoarabinoxylan (GAX) is another dominant structure of C. lanceolata hemicellulose which contains a linear backbone of (1 → 4)-β-d-xylopyranosyl (Xylp) and side chains of 4-O-Me-α-d-glucuronic acid (MeGlcpA) and α-L-arabinofuranose (Araf). The thickness of the cell wall, the ratio of GGM/GAX and the molecular weight of hemicellulose were increased as the extension of growth time. The degree of glycosyl substitutions of xylan and mannan was decreased from 10.34 % (apical) to 8.38 % (basal) and from 15.63 % (apical) to 10.49 % (basal), respectively. However, the total degree of acetylation was enhanced from 0.28 (apical) to 0.37 (basal). Transcriptome analysis showed that genes (CSLA9, IRX9H1, IRX10L, IRX15L, GMGT1, TBL19, TBL25, GUX2, GUX3, GXM1, F8H1 and F8H2) related to hemicellulose biosynthesis are mainly expressed in mature part. This study is of great significance for genetic breeding and high-value utilization of C. lanceolata.
Collapse
Affiliation(s)
- Biao Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Haoqiang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Xu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhou Hong
- Research institute of tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Huiquan Zheng
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Sun Q, Wang HM, Ma CY, Hong S, Sun Z, Yuan TQ. Dynamic structural evolution of lignin macromolecules and hemicelluloses during Chinese pine growth. Int J Biol Macromol 2023; 235:123688. [PMID: 36801284 DOI: 10.1016/j.ijbiomac.2023.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
To comprehend the biosynthesis processes of conifers, it is essential to investigate the disparity between the cell wall shape and the interior chemical structures of polymers throughout the development of Chinese pine. In this study, branches of mature Chinese pine were separated according to their growth time (2, 4, 6, 8 and 10 years). The variation of cell wall morphology and lignin distribution was comprehensively monitored by scanning electron microscopy (SEM) and confocal Raman microscopy (CRM), respectively. Moreover, the chemical structures of lignin and alkali-extracted hemicelluloses were extensively characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The thickness of latewood cell walls increased steadily from 1.29 μm to 3.38 μm, and the structure of the cell wall components became more complicated as the growth time increased. Based on the structural analysis, it was found that the content of β-O-4 (39.88-45.44/100 Ar), β-β (3.20-10.02/100 Ar) and β-5 (8.09-15.35/100 Ar) linkages as well as the degree of polymerization of lignin increased with the growth time. The complication propensity increased significantly over 6 years before slowing to a trickle over 8 and 10 years. Furthermore, alkali-extracted hemicelluloses of Chinese pine mainly consist of galactoglucomannans and arabinoglucuronxylan, in which the relative content of galactoglucomannans increased with the growth of the pine, especially from 6 to 10 years.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Han-Min Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Si Hong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Yang Z, Hu Y, Yue P, Li H, Wu Y, Hao X, Peng F. Structure, stability, antioxidant activity, and controlled-release of selenium nanoparticles decorated with lichenan from Usnea longissima. Carbohydr Polym 2023; 299:120219. [PMID: 36876820 DOI: 10.1016/j.carbpol.2022.120219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Selenium nanoparticles (SeNPs) have attracted widespread attention, but the poor water dispersibility restricted their applications seriously. Herein, Usnea longissima lichenan decorated selenium nanoparticles (L-SeNPs) were constructed. The formation, morphology, particle size, stability, physicochemical characteristics, and stabilization mechanism of L-SeNPs were investigated via TEM, SEM, AFM, EDX, DLS, UV-Vis, FT-IR, XPS, and XRD. The results indicated that the L-SeNPs displayed orange-red, amorphous, zero-valent, and uniform spherical nanoparticles with an average diameter of 96 nm. Due to the formation of CO⋯Se bonds or the hydrogen bonding interaction (OH⋯Se) between SeNPs and lichenan, L-SeNPs exhibited better heating and storage stability, which kept stable for more than one month at 25 °C in an aqueous solution. The decoration of the SeNPs surface with lichenan endowed the L-SeNPs with superior antioxidant capability, and their free radicals scavenging ability exhibited in a dose-dependent manner. Furthermore, L-SeNPs showed excellent selenium controlled-release performance. In simulated gastric liquids, selenium release kinetics from L-SeNPs followed the Linear superimposition model, which was governed by the polymeric network retardation of macromolecular, while in simulated intestinal liquids, it was well fitted to the Korsmeyer-Peppas model and followed a Fickian mechanism controlled by diffusion.
Collapse
Affiliation(s)
- Ziying Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Yajie Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Panpan Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Huiling Li
- JALA Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Yuying Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China.
| |
Collapse
|
8
|
Transcriptomic Evidence Reveals Low Gelatinous Layer Biosynthesis in Neolamarckia cadamba after Gravistimulation. Int J Mol Sci 2022; 24:ijms24010268. [PMID: 36613711 PMCID: PMC9820806 DOI: 10.3390/ijms24010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Trees can control their shape and resist gravity by producing tension wood (TW), which is a special wood that results from trees being put under stress. TW is characterized by the presence of a gelatinous layer (G layer) and the differential distribution of cell wall polymers. In this study, we investigated whether or not gravistimulation in N. cadamba resulted in TW with an obvious G layer. The results revealed an absence of an obvious G layer in samples of the upper side of a leaning stem (UW), as well as an accumulation of cellulose and a decrease in lignin content. A negligible change in the content of these polymers was recorded and compared to untreated plant (NW) samples, revealing the presence of a G layer either in much lower concentrations or in a lignified form. A transcriptomic investigation demonstrated a higher expression of cell wall esterase- and hydrolase-related genes in the UW, suggesting an accumulation of noncellulosic sugars in the UW, similar to the spectroscopy results. Furthermore, several G-layer-specific genes were also downregulated, including fasciclin-like arabinogalactan proteins (FLA), beta-galactosidase (BGAL) and chitinase-like proteins (CTL). The gene coexpression network revealed a strong correlation between cell-wall-synthesis-related genes and G-layer-synthesis-specific genes, suggesting their probable antagonistic role during G layer formation. In brief, the G layer in N. cadamba was either synthesized in a very low amount or was lignified during an early stage of growth; further experimental validation is required to understand the exact mechanism and stage of G layer formation in N. cadamba during gravistimulation.
Collapse
|
9
|
Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102520. [PMID: 34510571 PMCID: PMC11468898 DOI: 10.1002/adma.202102520] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Collapse
Affiliation(s)
- Caio G. Otoni
- Department of Materials Engineering (DEMa)Federal University of São Carlos (UFSCar)Rod. Washington Luiz, km 235São CarlosSP13565‐905Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria TropicalRua Dra. Sara Mesquita 2270FortalezaCE60511‐110Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Marco Beaumont
- Department of ChemistryUniversity of Natural Resources and Life SciencesVienna (BOKU), Konrad‐Lorenz‐Str. 24TullnA‐3430Austria
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Bioproducts InstituteDepartments of Chemical & Biological Engineering, Chemistry and Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
10
|
Yang Z, Hu Y, Yue P, Luo H, Li Q, Li H, Zhang Z, Peng F. Physicochemical Properties and Skin Protection Activities of Polysaccharides from Usnea longissima by Graded Ethanol Precipitation. ACS OMEGA 2021; 6:25010-25018. [PMID: 34604681 PMCID: PMC8482769 DOI: 10.1021/acsomega.1c04163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Four Usnea longissima polysaccharides (ULPs; ULP15, ULP30, ULP50, and ULP70) were obtained from the lichen U. longissima via water extraction and graded ethanol precipitation. The obtained ULPs were all heteropolysaccharides with a few proteins, with which glucose was the major monosaccharide composition. With the increase in the precipitated ethanol concentrations, the content of galactose, xylose, and mannose increased, whereas that of glucose decreased. Moreover, the antioxidant activity test demonstrated that ULP15 exhibited better reducing power and stronger scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl free radicals. Importantly, ULP15 also had a better proliferative effect on human HaCaT keratinocytes and dermal fibroblasts. Meanwhile, ULP15 protected HaCaT keratinocytes from UVB-induced proliferation inhibition and exhibited tyrosinase inhibition activity. Therefore, this work provides interesting insight into the preparation of cosmetic ingredients using the polysaccharide ULP15.
Collapse
Affiliation(s)
- Ziying Yang
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yajie Hu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Panpan Yue
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Hongdan Luo
- Department
of Dermatology, Zunyi Hospital of Traditional
Chinese Medicine, Zunyi, Guizhou 563000, China
| | - Qisui Li
- Meteorological
Bureau of Meishan City, Meishan, Sichuan 620010, China
| | - Huiling Li
- JALA
Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Zhang Zhang
- JALA
Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Feng Peng
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Yang H, Yi N, Zhao S, Xiang Z, Qaseem MF, Zheng B, Li H, Feng JX, Wu AM. Characterization of hemicellulose in Cassava (Manihot esculenta Crantz) stem during xylogenesis. Carbohydr Polym 2021; 264:118038. [PMID: 33910721 DOI: 10.1016/j.carbpol.2021.118038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022]
Abstract
Cassava is one of the three major potato crops due to the high starch content in its tubers. Unlike most current studies on the utilization of cassava tubers, our research is mainly focused on the stem of cassava plant. Through nuclear magnetic resonance (NMR), fourier transform infrared spectrometer (FTIR) and other methods, we found that cassava stalk hemicellulose consists of β-1,4 glycosidic bond-linked xylan backbone with a tetrasaccharide reducing end and decorated with methylated glucuronic acid, acetyl groups and a high degree of arabinose substitutions. Hemicellulose content gradually increased from the upper to the lower parts of the stem. The apical part of cassava stalk contained more branched and heterogeneous glycans than the middle and basal parts, and the molecular weight of hemicellulose increased from top to bottom. Our findings will be helpful in understanding of structural variations of cassava hemicellulose during xylogenesis, as well as in better utilization of cassava plant waste in industry.
Collapse
Affiliation(s)
- Haoqiang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Na Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Biao Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Seekram P, Thammasittirong A, Thammasittirong SNR. Evaluation of spent mushroom substrate after cultivation of Pleurotus ostreatus as a new raw material for xylooligosaccharides production using crude xylanases from Aspergillus flavus KUB2. 3 Biotech 2021; 11:176. [PMID: 33927967 PMCID: PMC7979848 DOI: 10.1007/s13205-021-02725-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Xylooligosaccharides (XOS), a novel functional food and feed ingredient, can be produced from lignocellulosic biomass. In this study, spent mushroom substrate (SMS) gathered after Pleurotus ostreatus cultivation was investigated for its potential as a new raw material for XOS production using crude xylanases produced in-house from Aspergillus flavus KUB2. Xylan was extracted from SMS using the alkaline extraction method. The highest true recovery of xylan (20.76%) and the relative recovery of xylan (83.73%) were obtained from SMS extracted with 4 M NaOH. Enzymatic hydrolysis of SMS-extracted xylan using crude fungal xylanases from A. flavus KUB2 produced a maximum total XOS in the range 1.37-1.48 mg/ml, which was mainly composed of XOS with a low degree of polymerization (xylobiose and xylotriose). XOS derived from SMS-extracted xylan positively influenced the growth of probiotic bacteria, suggesting the prebiotic nature of XOS. The results indicated that XOS with prebiotic properties can be produced from SMS xylan using crude xylanases without any purification, which offers economic potential for food and feed applications.
Collapse
Affiliation(s)
- Preeyaporn Seekram
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Anon Thammasittirong
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Sutticha Na-Ranong Thammasittirong
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| |
Collapse
|
13
|
Chen T, Liu H, Liu J, Li J, An Y, Zhu M, Chen B, Liu F, Liu R, Si C, Zhang M. Carboxymethylation of polysaccharide isolated from Alkaline Peroxide Mechanical Pulping (APMP) waste liquor and its bioactivity. Int J Biol Macromol 2021; 181:211-220. [PMID: 33771550 DOI: 10.1016/j.ijbiomac.2021.03.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 01/22/2023]
Abstract
In recent years, the biological activity of polysaccharides and their derivatives has been widely studied. However, in addition to the natural polysaccharides directly extracted from plants and animals, there are rich polysaccharides in the pulping waste liquor that have not been fully utilized. The extracted polysaccharide from eucalyptus Alkaline Peroxide Mechanical Pulping (APMP) waste liquor was used as a raw material. For the production of carboxymethyl polysaccharide, the effects of temperature (T), the amount of alkali (NaOH) and the amount of etherifying agent (ClCH2COOH) on the degree of substitution (DS) were investigated, the optimal preparation conditions are: reaction time 2 h, temperature 75 °C, and the molar ratio of polysaccharide, NaOH and ClCH2COOH is 1:1:2, the highest DS is 1.47; FT-IR, NMR and GPC were used to characterize the structure and Molecular weight, the results show that the polysaccharide of APMP waste liquor is rich in xylan, and it was proved that the carboxymethyl substitution was successful and the positions of the substituent group were determined. The characterization and biological activity research of xylan polysaccharide (XP) and carboxymethyl xylan polysaccharide (CMXP), such as antioxidation, moisture absorption/retention, bacteriostatic action and cytotoxicity were discussed. CMXP shows better effects compared with XP.
Collapse
Affiliation(s)
- Ting Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haitang Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yongzhen An
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingqiang Zhu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, 712100, China
| | - Beibei Chen
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Fufeng Liu
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Rui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chuanling Si
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
14
|
Hoang MT, Pham TD, Pham TT, Nguyen MK, Nu DTT, Nguyen TH, Bartling S, Van der Bruggen B. Esterification of sugarcane bagasse by citric acid for Pb 2+ adsorption: effect of different chemical pretreatment methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11869-11881. [PMID: 31953762 DOI: 10.1007/s11356-020-07623-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, different pretreatment strategies of sugarcane bagasse prior to citric acid modification were investigated in terms of Pb2+ adsorption capacity. Pretreatment strategies included the use of NaOH, HCl, and C2H5OH in various concentrations. In order to fundamentally understand how these pretreatment methods affect the modification of sugarcane bagasse by citric acid as well as the Pb2+ adsorption capacity of sugarcane bagasse, three main components of sugarcane bagasse namely cellulose, hemicellulose, and lignin were isolated and esterified by citric acid under the same conditions. ATR-FTIR, XPS, SEM, and an analysis of the number of carboxylic acid groups were used to investigate the physicochemical and chemical properties of the materials. These three components were proved to participate in adsorption and induce the esterification with citric acid. Hence, pretreatment with ethanol and 0.01 M NaOH which could retain cellulose, hemicellulose, and lignin in sugarcane bagasse achieved a high Pb2+ adsorption capacity, i.e., 122.4 and 97 mg/g after the esterification with citric acid. In contrast, pretreatment with 0.5 M NaOH and 0.1 M HCl removed lignin and hemicellulose, leading to the lowest value of approximately 45 mg/g for citric acid esterified-pretreated sugarcane bagasse. XPS analysis and number of carboxylic group measurement confirmed the esterification between bagasse and citric acid. To understand the adsorption mechanism of adsorbent, two kinetic models including pseudo-first-order model and pseudo-second-order model were applied. The experimental data were well described by the pseudo-second-order model. The adsorption isotherm data were fitted Langmuir and Freundlich.
Collapse
Affiliation(s)
- Minh Trang Hoang
- Department of Chemical Engineering, Laboratory for Process Engineering for Sustainable Systems, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
- Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai Road, Hanoi, Vietnam
| | - Tien Duc Pham
- Department of Chemical Engineering, Laboratory for Process Engineering for Sustainable Systems, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
- Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai Road, Hanoi, Vietnam
| | - Thi Thuy Pham
- Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai Road, Hanoi, Vietnam.
| | - Manh Khai Nguyen
- Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai Road, Hanoi, Vietnam
| | - Dang Thi To Nu
- Department of Chemistry, Faculty of Natural Science, Quy Nhon University, 170 An Duong Vuong Road, Quy Nhon, Vietnam
| | - Thi Hanh Nguyen
- Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai Road, Hanoi, Vietnam
| | - Stephan Bartling
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Laboratory for Process Engineering for Sustainable Systems, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
15
|
Morais ES, Da Costa Lopes AM, Freire MG, Freire CSR, Silvestre AJD. Unveiling Modifications of Biomass Polysaccharides during Thermal Treatment in Cholinium Chloride : Lactic Acid Deep Eutectic Solvent. CHEMSUSCHEM 2021; 14:686-698. [PMID: 33211400 DOI: 10.1002/cssc.202002301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/18/2020] [Indexed: 05/12/2023]
Abstract
A deep analysis upon the chemical modifications of the cellulose and hemicelluloses fractions that take place during biomass delignification with deep eutectic solvents (DES) is lacking in literature, being this a critical issue given the continued research on DES for this purpose. This work intends to fill this gap by disclosing a comprehensive study on the chemical modifications of cellulose (microcrystalline cellulose and bleached kraft pulp) and hemicelluloses (xylans) during thermal treatment (130 °C) with cholinium chloride/lactic acid ([Ch]Cl/LA) at molar ratio 1 : 10, one of the best reported DES for biomass delignification. The obtained data revealed that [Ch]Cl/LA (1 : 10) has a negative impact on the polysaccharides fractions at prolonged treatments (>4 h), resulting on substantial modifications including the esterification of cellulose with lactic acid, shortening of fibers length, fibers agglomeration and side reactions of the hemicelluloses fraction (e. g., humin formation, lactic acid grafting). Wood delignification trials with [Ch]Cl/LA (1 : 10) at the same conditions also corroborate these findings. Moreover, the DES suffers degradation, including the formation of lactic acid derivatives and its polymerization. Therefore, short time delignification treatments are strongly recommended when using the [Ch]Cl/LA DES, so that a sustainable fractionation of biomass into high quality cellulose fibers, isolated lignin, and xylose/furfural co-production along with solvent recyclability could be achieved.
Collapse
Affiliation(s)
- Eduarda S Morais
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - André M Da Costa Lopes
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Sun SC, Sun D, Wang HM, Li HY, Cao XF, Sun SN, Yuan TQ. Effect of integrated treatment on improving the enzymatic digestibility of poplar and the structural features of isolated hemicelluloses. Carbohydr Polym 2021; 252:117164. [DOI: 10.1016/j.carbpol.2020.117164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
|
17
|
Characterization of hemicelluloses in sugarcane (Saccharum spp. hybrids) culm during xylogenesis. Int J Biol Macromol 2020; 165:1119-1128. [PMID: 33035529 DOI: 10.1016/j.ijbiomac.2020.09.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Hemicelluloses are effective renewable biopolymers that can be used in many different industrial processes and preparations. In plants, the content of hemicellulose might change with different developmental stages and/or tissues. Thus, in here chemical and structural differences in hemicellulose isolated from the apical, middle and basal segments of sugarcane stem were characterized using chemical techniques. Further, difference in expression levels of genes related to synthesis of hemicelluloses from these three segments were studied by RNA-seq and qRT-PCR etc. The sugarcane hemicellulose backbone was xylose residues connected via β-1,4 glycosidic linkages which was further substituted with arabinose, acetyl and glucuronic acid side chains. Hemicellulose content was higher in the middle and basal segments with less backbone substitutions compared to apical segments. In terms of gene expression, hemicellulose synthesis and modification genes were intensely expressed in middle and basal segments. Taken together, our research describes differences in hemicellulose content and substitutions in sugarcane during xylogenesis, which will increase our knowledge for finding more refined use of sugarcane bagasse.
Collapse
|
18
|
Green integration of alcohol-mediated hemicelluloses separation and alkali recycling (AHSAR) technologies in a viscose fiber plant. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Sun D, Sun SC, Wang B, Sun SF, Shi Q, Zheng L, Wang SF, Liu SJ, Li MF, Cao XF, Sun SN, Sun RC. Effect of various pretreatments on improving cellulose enzymatic digestibility of tobacco stalk and the structural features of co-produced hemicelluloses. BIORESOURCE TECHNOLOGY 2020; 297:122471. [PMID: 31787511 DOI: 10.1016/j.biortech.2019.122471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Hereon, tobacco stalk was deconstructed by lyophilization, ball-milling, ultrasound-assisted alkali extraction, hydrothermal pretreatment (HTP), and alkali presoaking, respectively, followed by dilute alkali cooking to both improve its enzymatic digestibility and isolate the hemicellulosic streams. It was found that a maximum cellulose saccharification rate of 93.5% was achieved from the integrated substrate by ball-milling and dilute alkali cooking, which was 4.4-fold higher than that from the raw material. Interestingly, in this case, 76.9% of hemicelluloses were simultaneously recovered during the integrated treatment. Structural determination indicated that the hemicelluloses released from tobacco stalk by dilute alkali cooking were mixed polysaccharides, and the (1 → 4)-linked β-D-Xylp backbone branched with L-Araf units at O-2/O-3 and 4-O-Me-α-D-GlcpA units at O-2 of the xylose residues was the main structure. In comparison, ultrasound-assisted alkali extraction, ball-milling, and HTP favored the extraction of hemicelluloses with less branched structure and lower molecular weights in the following alkali cooking.
Collapse
Affiliation(s)
- Dan Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Bin Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Fei Sun
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China
| | - Quentin Shi
- Shanghai Dssun New Material Co., Ltd., Shanghai 200233, China
| | - Lu Zheng
- Shanghai Dssun New Material Co., Ltd., Shanghai 200233, China
| | - Shuang-Fei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530000, China
| | - Shi-Jie Liu
- College of Light Science and Engineer, South China University of Technology, Guangzhou 510641, China
| | - Ming-Fei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
20
|
Liu M, Fu Q, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum). PLANTA 2019; 249:1301-1318. [PMID: 30617544 DOI: 10.1007/s00425-019-03089-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 05/23/2023]
Abstract
Genome-wide identification, expression analysis and potential functional characterization of previously uncharacterized MADS family of tartary buckwheat, emphasized the importance of this gene family in plant growth and development. The MADS transcription factor is a key regulatory factor in the development of most plants. The MADS gene in plants controls all aspects of tissue and organ growth and reproduction and can be used to regulate plant seed cracking. However, there has been little research on the MADS genes of tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of tartary buckwheat allows us to study the tissue and expression profiles of the MADS gene in tartary buckwheat at a genome-wide level. In this study, 65 MADS genes of tartary buckwheat were identified and renamed according to the chromosomal distribution of the FtMADS genes. Here, we provide a complete overview of the gene structure, gene expression, genomic mapping, protein motif organization, and phylogenetic relationships of each member of the gene family. According to the phylogenetic relationship of MADS genes, the transcription factor family was divided into two subfamilies, the M subfamily (28 genes) and the MIKC subfamily (37 genes). The results showed that the FtMADS genes belonged to related sister pairs and the chromosomal map showed that the replication of FtMADSs was related to the replication of chromosome blocks. In different tissues and at different fruit development stages, the FtMADS genes obtained by real-time quantitative PCR (RT-qPCR) showed obvious expression patterns. A comprehensive analysis of the MADS genes in tartary buckwheat was conducted. Through systematic analysis, the potential genes that may regulate the growth and development of tartary buckwheat and the genes that may regulate the easy dehulling of tartary buckwheat fruit were screened, which laid a solid foundation for improving the quality of tartary buckwheat.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qiankun Fu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
21
|
Hu X, Goff HD. Fractionation of polysaccharides by gradient non-solvent precipitation: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Fractionation of DMSO-Extracted and NaOH-Extracted Hemicelluloses by Gradient Ethanol Precipitation from Neosinocalamus affinis. INT J POLYM SCI 2018. [DOI: 10.1155/2018/9587042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neosinocalamus affinis hemicelluloses were extracted with pure DMSO and 3% NaOH in sequence. The DMSO- and NaOH-extracted hemicelluloses were then successively fractionated by gradient ethanol precipitation. NaOH-extracted hemicellulosic fractions with different branch degree could be separated by gradient ethanol precipitation, while DMSO-extracted hemicellulosic fractions could not. FT-IR spectra showed that DMSO-extracted fractions have more complete structure, while NaOH-extracted fractions have no acetyl at all. The FT-IR and NMR revealed that the DMSO-extracted Neosinocalamus affinis hemicelluloses were 4-O-methyl-glucuronoarabinoxylans consisting of a linear (1→4)-β-D-xylopyranosyl backbone with branches at O-2,3 of acetyl, O-2 of 4-O-methyl-a-D glucuronic acid, and O-3 of arabinose.
Collapse
|
23
|
Naidu DS, Hlangothi SP, John MJ. Bio-based products from xylan: A review. Carbohydr Polym 2018; 179:28-41. [DOI: 10.1016/j.carbpol.2017.09.064] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
|
24
|
The hydrolytic efficiency and synergistic action of recombinant xylan-degrading enzymes on xylan isolated from sugarcane bagasse. Carbohydr Polym 2017; 175:199-206. [DOI: 10.1016/j.carbpol.2017.07.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 11/21/2022]
|
25
|
Qi XM, Chen GG, Gong XD, Fu GQ, Niu YS, Bian J, Peng F, Sun RC. Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension. Sci Rep 2016; 6:33603. [PMID: 27634095 PMCID: PMC5025648 DOI: 10.1038/srep33603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022] Open
Abstract
Hemicelluloses are widely used to prepare gel materials because of their renewability, biodegradability, and biocompatibility. Here, molecular chain extension of hemicelluloses was obtained in a two-step process. Composite hydrogels were prepared via free radical graft copolymerization of crosslinked quaternized hemicelluloses (CQH) and acrylic acid (AA) in the presence of crosslinking agent N,N'-methylenebisacrylamide (MBA). This chain extension strategy significantly improved the mechanical performance of the resulting hydrogels. The crosslinking density, compression modulus, and swelling capacities of hydrogels were tuned by changing the AA/CQH and MBA/CQH contents. Moreover, the biocompatibility test suggests that the hemicelluloses-based hydrogels exhibited no toxicity to cells and allowed cell growth. Taken together, these properties demonstrated that the composite hydrogels have potential applications in the fields of water absorbents, cell culture, and other functional biomaterials.
Collapse
Affiliation(s)
- Xian-Ming Qi
- Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, 100083, China
| | - Ge-Gu Chen
- Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, 100083, China
| | - Xiao-Dong Gong
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Gen-Que Fu
- Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, 100083, China
| | - Ya-Shuai Niu
- Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, 100083, China
| | - Jing Bian
- Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, 100083, China
| | - Run-Cang Sun
- Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, 100083, China
| |
Collapse
|
26
|
Scoparo CT, Souza LM, Dartora N, Sassaki GL, Santana-Filho AP, Werner MFP, Borato DG, Baggio CH, Iacomini M. Chemical characterization of heteropolysaccharides from green and black teas (Camellia sinensis) and their anti-ulcer effect. Int J Biol Macromol 2016; 86:772-81. [PMID: 26861826 DOI: 10.1016/j.ijbiomac.2016.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/18/2023]
Abstract
In order to obtain polysaccharides from green and black teas (Camellia sinensis), commercial leaves were submitted to infusion and then to alkaline extraction. The extracts were fractionated by freeze-thawing process, giving insoluble and soluble fractions. Complex arabinogalactan protein from the soluble fractions of both teas (GTPS and BTPS) were determined by methylation analysis and (1)H/(13)C-HSQC spectroscopy, showing a main chain of (1→3)-β-Galp, substituted at O-6 by (1→6)-linked β-Galp with side chains of α-Araf and terminal units of α-Araf, α-Fucp and α-Rhap. A highly branched heteroxylan from the insoluble fractions (GTPI and BTPI) showed in methylation analysis and (1)H/(13)C-HSQC spectroscopy the main chain of (1→4)-β-Xylp, substituted in O-3 by α-Araf, β-Galp and α-Glcp units. Evaluating their gastroprotective activity, the fractions containing the soluble heteropolysaccharides from green (GTPS) and black teas (BTPS) reduced the gastric lesions induced by ethanol. Furthermore, the fraction of insoluble heteropolysaccharides of green (GTPI) and black (BTPI) teas also protected the gastric mucosa. In addition, the maintenance of gastric mucus and reduced glutathione (GSH) levels was involved in the polysaccharides gastroprotection.
Collapse
Affiliation(s)
- Camila T Scoparo
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lauro M Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdade Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nessana Dartora
- Department of Biology, Sector of Biological Sciences, State University of Centro-Oeste, Guarapuava, PR, Brazil
| | - Guilherme L Sassaki
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Arquimedes P Santana-Filho
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria Fernanda P Werner
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Débora G Borato
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Cristiane H Baggio
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
27
|
Sydney EB, Neto CJD, Novak AC, Medeiros ABP, Nouaille R, Larroche C, Soccol CR. Bioethanol Wastes: Economic Valorization. GREEN FUELS TECHNOLOGY 2016. [DOI: 10.1007/978-3-319-30205-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Paixão SM, Ladeira SA, Silva TP, Arez BF, Roseiro JC, Martins MLL, Alves L. Sugarcane bagasse delignification with potassium hydroxide for enhanced enzymatic hydrolysis. RSC Adv 2016. [DOI: 10.1039/c5ra14908h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alkali pretreatment of sugarcane bagasse biomass was shown to be effective for producing sugar-rich hydrolysates for biotechnological applications.
Collapse
Affiliation(s)
- S. M. Paixão
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| | - S. A. Ladeira
- UENF – Universidade Estadual do Norte Fluminense Darcy Ribeiro
- LTA-CCTA
- RJ
- Brazil
| | - T. P. Silva
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| | - B. F. Arez
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| | - J. C. Roseiro
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| | - M. L. L. Martins
- UENF – Universidade Estadual do Norte Fluminense Darcy Ribeiro
- LTA-CCTA
- RJ
- Brazil
| | - L. Alves
- LNEG – Laboratório Nacional de Energia e Geologia, IP
- Unidade de Bioenergia
- 1649-038 Lisboa
- Portugal
| |
Collapse
|
29
|
Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose. MATERIALS 2015; 9:ma9010004. [PMID: 28787804 PMCID: PMC5456533 DOI: 10.3390/ma9010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH) and carboxymethyl cellulose (CMC) was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP), the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC) was 1:1.5, the blend film showed the best light transmittance (45%). All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP.
Collapse
|
30
|
Minjares-Fuentes R, Femenia A, Garau MC, Candelas-Cadillo MG, Simal S, Rosselló C. Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohydr Polym 2015; 138:180-91. [PMID: 26794751 DOI: 10.1016/j.carbpol.2015.11.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022]
Abstract
An ultrasound-assisted procedure was applied to the extraction of hemicelluloses from grape pomace at a mild temperature (20°C). A Central composite design (CCD) was employed to optimize the ultrasound-assisted extraction (UAE) of hemicelluloses from grape pomace with the aim to maximize their extraction yield, and, also, the obtention of the main polymers forming this fraction: Xyloglucans (XLG), Mannans (MAN) and Xylans (XN). Extraction time (X1), solid:liquid ratio (X2) and KOH concentration (X3) were the variables used to optimize the process. The conditions that maximize (1) the extraction yield of hemicelluloses and the contents of (2) XLG, (3) MAN and (4) XN, were: (1) X1=2.6h; X2=1:48 (w/v); X3=0.4M, (2) X1=2.9h; X2=1:57 (w/v); X3=2.25M, (3) X1=2.7h; X2=1:58(w/v);X3=2.2M, and (4) X1=3h; X2=1:60 (w/v); X3=2.3M, respectively. Under these conditions, the maximum extraction yield of hemicelluloses, XLG, MAN and XN contents were: ∼7.9±0.2%, ∼3.6±0.02%, ∼1.1±0.04% and ∼1.2±0.02%, respectively. Close agreement between experimental and predicted values was found. The results suggest that the ultrasound-assisted extraction could be a good option for the extraction of hemicellulosic polysaccharides from grape pomace at industrial level.
Collapse
Affiliation(s)
- R Minjares-Fuentes
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain; Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango., Av. Artículo 123 S/N, Fracc. Filadelfia, 35010 Gómez Palacio, DGO, Mexico
| | - A Femenia
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain.
| | - M C Garau
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - M G Candelas-Cadillo
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango., Av. Artículo 123 S/N, Fracc. Filadelfia, 35010 Gómez Palacio, DGO, Mexico
| | - S Simal
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - C Rosselló
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
31
|
Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2014.12.003] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
He Y, Hu J, Xie Y. High-efficiency dye-sensitized solar cells of up to 8.03% by air plasma treatment of ZnO nanostructures. Chem Commun (Camb) 2015; 51:16229-32. [DOI: 10.1039/c5cc04567c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoelectric conversion efficiency of 8.03% for pure ZnO-based DSSCs has been achieved, using air plasma to treat the precursor Zn(OH)2 to reduce the hydrogen-related defects in ZnO.
Collapse
Affiliation(s)
- Yitao He
- Xinjiang University
- Urumqi 830046
- China
| | - Jing Hu
- Xinjiang University
- Urumqi 830046
- China
| | | |
Collapse
|
34
|
Dong L, Hu H, Yang S, Cheng F. Grafted Copolymerization Modification of Hemicellulose Directly in the Alkaline Peroxide Mechanical Pulping (APMP) Effluent and Its Surface Sizing Effects on Corrugated Paper. Ind Eng Chem Res 2014. [DOI: 10.1021/ie4044423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liying Dong
- Tianjin University of Science and Technology, 13th
Street, Binhai, Tianjin 300222, People’s Republic of China
| | - Huiren Hu
- Tianjin University of Science and Technology, 13th
Street, Binhai, Tianjin 300222, People’s Republic of China
| | - Shuo Yang
- Tianjin University of Science and Technology, 13th
Street, Binhai, Tianjin 300222, People’s Republic of China
| | - Fei Cheng
- Tianjin University of Science and Technology, 13th
Street, Binhai, Tianjin 300222, People’s Republic of China
| |
Collapse
|
35
|
Singkhornart S, Lee SG, Ryu GH. Influence of twin-screw extrusion on soluble arabinoxylans and corn fiber gum from corn fiber. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3046-3054. [PMID: 23526265 DOI: 10.1002/jsfa.6138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/22/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The effect of feed moisture content and screw speed in the extrusion process with and without chemical pretreatment of corn fiber was investigated. Different chemical pretreatment methods (NaOH and H2 SO4 solution) were compared. The improvement of reducing sugar, soluble arabinoxylans (SAX) content and the yield of corn fiber gum was measured. RESULTS A high reducing sugar content was obtained in the filtrate fraction from the extruded destarched corn fiber (EDCF) with H₂SO₄ pretreatment. Feed moisture content most effectively improved both reducing sugar and SAX content of filtrate. Increasing feed moisture content and screw speed resulted in a higher SAX content in the filtrate of the EDCF with NaOH pretreatment. The SAX content of the residual solid from the EDCF with NaOH pretreatment was higher compared to H₂SO₄ pretreated and unpretreated samples and significantly increased with decreasing feed moisture content. The screw speed did not have a major impact after enzyme hydrolysis. The yield of corn fiber gum was increased by 12% using NaOH pretreatment combined with extrusion process as compared to the destarched corn fiber. CONCLUSION The results show the great potential of the extrusion process as an effective pretreatment for disruption the lignocelluloses of corn fiber, leading to conversion of cellulose to glucose and hemicelluloses to SAX and isolation of corn fiber gum.
Collapse
|
36
|
Maziero P, Jong J, Mendes FM, Gonçalves AR, Eder M, Driemeier C. Tissue-specific cell wall hydration in sugarcane stalks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5841-5847. [PMID: 23738592 DOI: 10.1021/jf401243c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plant cell walls contain water, especially under biological and wet processing conditions. The present work characterizes this water in tissues of sugarcane stalks. Environmental scanning electron microscopy shows tissue deformation upon drying. Dynamic vapor sorption determines the equilibrium and kinetics of moisture uptake. Thermoporometry by differential scanning calorimetry quantifies water in nanoscale pores. Results show that cell walls from top internodes of stalks are more deformable, slightly more sorptive to moisture, and substantially more porous. These differences of top internode are attributed to less lignified walls, which is confirmed by lower infrared spectral signal from aromatics. Furthermore, cell wall nanoscale porosity, an architectural and not directly compositional characteristic, is shown to be tissue-specific. Nanoscale porosities are ranked as follows: pith parenchyma > pith vascular bundles > rind. This ranking coincides with wall reactivity and digestibility in grasses, suggesting that nanoscale porosity is a major determinant of wall recalcitrance.
Collapse
Affiliation(s)
- Priscila Maziero
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE/CNPEM , 13083-970 Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Mishra S, Prasad CS, Suresh KP. Application of Pigeon Pea (Cajanus cajan) Stalks as Raw Material for Xylooligosaccharides Production. Appl Biochem Biotechnol 2013; 169:2392-404. [DOI: 10.1007/s12010-013-0151-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/18/2013] [Indexed: 11/29/2022]
|
38
|
Preparation, processing and properties of lignosulfonate–flax composite boards. Carbohydr Polym 2013; 93:300-6. [DOI: 10.1016/j.carbpol.2012.04.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/17/2012] [Accepted: 04/26/2012] [Indexed: 11/21/2022]
|
39
|
Deutschmann R, Dekker RF. From plant biomass to bio-based chemicals: Latest developments in xylan research. Biotechnol Adv 2012; 30:1627-40. [DOI: 10.1016/j.biotechadv.2012.07.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/12/2012] [Accepted: 07/01/2012] [Indexed: 11/26/2022]
|
40
|
Shi JB, Yang QL, Lin L, Zhuang JP, Pang CS, Xie TJ, Liu Y. The structural changes of the bagasse hemicelluloses during the cooking process involving active oxygen and solid alkali. Carbohydr Res 2012; 359:65-9. [PMID: 22925766 DOI: 10.1016/j.carres.2012.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/21/2012] [Accepted: 06/30/2012] [Indexed: 11/29/2022]
Abstract
This work describes the structural changes of bagasse hemicelluloses during the cooking process involving active oxygen (O(2) and H(2)O(2)) and solid alkali (MgO). The hemicelluloses obtained from the bagasse raw material, pulp, and yellow liquor were analyzed by high-performance anion-exchange chromatography (HPAEC), gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT-IR), and (1)H-(13)C 2D hetero-nuclear single quantum coherence spectroscopy (HSQC). The results revealed that the structure of the bagasse hemicelluloses was L-arabino-(4-O-methylglucurono)-D-xylan. Some sugar units in hemicelluloses were oxidized under the cooking conditions. Additionally, the backbones and the ester linkages of hemicelluloses were heavily cleaved during the cooking process.
Collapse
Affiliation(s)
- Jian-Bin Shi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong Province, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Peng F, Peng P, Xu F, Sun RC. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 2012; 30:879-903. [PMID: 22306329 DOI: 10.1016/j.biotechadv.2012.01.018] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT. Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). BIORESOURCE TECHNOLOGY 2012; 112:199-205. [PMID: 22414575 DOI: 10.1016/j.biortech.2012.02.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 05/25/2023]
Abstract
In this study, a process for producing XOS from Sehima nervosum grass was developed. The grass contains 28.1% hemicellulose. NaOH and steam application yielded 98% of original xylan in contrast to 85% by KOH application. Hydrolysis of xylan with commercial xylanase caused breakdown into XOS comprising of xylobiose, xylotriose along with xylose. Response surface model (RSM) revealed highest xylobiose yield (11 g/100g xylan) at pH 5.03, temperature 45.19°C, reaction time 10.11h with enzyme dose 17.41 U. Similarly for maximizing xylotriose yield, ideal hydrolysis conditions were pH 5.11, temperature 40.33°C, reaction time 16.55 h with enzyme dose 13.20 U. A two step process encompassing xylan fractionation and enzymatic hydrolysis enabled XOS production from the S. nervosum grass.
Collapse
Affiliation(s)
- A K Samanta
- National Institute of Animal Nutrition and Physiology, Bangalore 560030, India.
| | | | | | | | | | | | | |
Collapse
|
43
|
Mellinger-Silva C, Simas-Tosin FF, Schiavini DN, Werner MF, Baggio CH, Pereira IT, da Silva LM, Gorin PAJ, Iacomini M. Isolation of a gastroprotective arabinoxylan from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2011; 102:10524-10528. [PMID: 21945160 DOI: 10.1016/j.biortech.2011.08.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
After industrial processing, one-third of sugarcane culms is converted into residual bagasse. The xylan-rich hemicellulose components of the bagasse were extracted with hot aqueous alkali (AX-CRUDE). Approximately 82% of the extracted hemicelluloses was precipitated with ethanol (AX-PET). Both AX-CRUDE and AX-PET contained an arabinoxylan as confirmed by 13C NMR and methylation analysis. Fraction AX-PET was fed to female Wistar rats with ethanol-induced gastric lesions. Oral administrations of 30, 100, and 300 mg/kg reduced the gastric lesion area by over 50%, and replenished ethanol-induced depletion of glutathione. The polysaccharide also increased mucus production by over 70%, indicating its cytoprotective action on experimentally induced gastric ulcers. These findings are significant, since a biologically active compound can be extracted in high yields from an abundant, readily available residue.
Collapse
Affiliation(s)
- Caroline Mellinger-Silva
- Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, 23.020-470 Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|