1
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
2
|
Jacob TC. Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors. Front Mol Neurosci 2019; 12:179. [PMID: 31396049 PMCID: PMC6668551 DOI: 10.3389/fnmol.2019.00179] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023] Open
Abstract
α5 subunit containing GABA type A receptors (GABAARs) have long been an enigmatic receptor subtype of interest due to their specific brain distribution, unusual surface localization and key role in synaptic plasticity, cognition and memory. These receptors are uniquely positioned to sculpt both the developing and mature hippocampal circuitry due to high overall expression and a distinct peak within the critical synapse formation period during the second postnatal week. Unlike the majority of other GABAARs, they exhibit both receptor clustering at extrasynaptic sites via interactions with the radixin scaffold as well as synaptic sites via gephyrin, thus contributing respectively to tonic currents and synaptic GABAergic neurotransmission. α5 GABAAR signaling can be altered in neurodevelopmental disorders including autism and mental retardation and by inflammation in CNS injury and disease. Due to the unique physiology and pharmacology of α5 GABAARs, drugs targeting these receptors are being developed and tested as treatments for neurodevelopmental disorders, depression, schizophrenia, and mild cognitive impairment. This review article focuses on advances in understanding how the α5 subunit contributes to GABAAR neurobiology. In particular, I discuss both recent insights and remaining knowledge gaps for the functional role of these receptors, pathologies associated with α5 GABAAR dysfunction, and the effects and potential therapeutic uses of α5 receptor subtype targeted drugs.
Collapse
Affiliation(s)
- Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Calvo-Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RL, Kwakowsky A. The GABAergic system as a therapeutic target for Alzheimer's disease. J Neurochem 2018; 146:649-669. [DOI: 10.1111/jnc.14345] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Beatriz Calvo-Flores Guzmán
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Chitra Vinnakota
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Karan Govindpani
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Richard L.M. Faull
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| |
Collapse
|
4
|
Chen X, Keramidas A, Lynch JW. Physiological and pharmacological properties of inhibitory postsynaptic currents mediated by α5β1γ2, α5β2γ2 and α5β3γ2 GABA A receptors. Neuropharmacology 2017; 125:243-253. [PMID: 28757051 DOI: 10.1016/j.neuropharm.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
α5-containing GABAARs are potential therapeutic targets for clinical conditions including age-related dementia, stroke, schizophrenia, Down syndrome, anaesthetic-induced amnesia, anxiety and pain. α5-containing GABAARs are expressed in layer 5 cortical neurons and hippocampal pyramidal neurons where they mediate both tonic currents and slow inhibitory postsynaptic currents (IPSCs). A range of drugs has been developed to specifically modulate these receptors. The main α5-containing GABAARs that are likely to exist in vivo are the α5β1γ2, α5β2γ2 and α5β3γ2 isoforms. We currently have few clues as to how these isoforms are distributed between synaptic and extrasynaptic compartments or their relative roles in controlling neuronal excitability. Accordingly, the aim of this study was to define the basic biophysical and pharmacological properties of IPSCs mediated by the three isoforms in a hippocampal neuron-HEK293 cell co-culture assay. The IPSC decay time constants were slow (α5β1γ2L: 45 ms; α5β1γ2L: 80 ms; α5β3γ2L: 184 ms) and were largely dominated by the intrinsic channel deactivation rates. By comparing IPSC rise times, we inferred that α5β1γ2L GABAARs are located postsynaptically whereas the other two are predominantly perisynaptic. α5β3γ2L GABAARs alone mediated tonic currents. We quantified the effects of four α5-specific inverse agonists (TB-21007, MRK-016, α5IA and L-655708) on IPSCs mediated by the three isoforms. All compounds selectively inhibited IPSC amplitudes and accelerated IPSC decay rates, albeit with distinct isoform specificities. MRK-016 also significantly accelerated IPSC rise times. These results provide a reference for future studies seeking to identify and characterize the properties of IPSCs mediated by α5-containing GABAAR isoforms in neurons.
Collapse
Affiliation(s)
- Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2015; 2015:430248. [PMID: 26682068 PMCID: PMC4657098 DOI: 10.1155/2015/430248] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 12/22/2022]
Abstract
An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2′F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors.
Collapse
|
6
|
Shi J, Cai Y, Liu G, Gong N, Liu Z, Xu T, Wang Z, Fei J. Enhanced learning and memory in GAT1 heterozygous mice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:359-66. [PMID: 22318715 DOI: 10.1093/abbs/gms005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of a family of membrane proteins, called GABA transporters (GAT1-4). It is well established that GABA system is involved in the modulation of memory. Our previous study showed that homozygous GAT1(-/-) mice exhibited impaired hippocampus-dependent learning and memory. To evaluate the impact of endogenous reduced GABA reuptake on mice cognitive behaviors, the ability of learning and memory of heterozygous GAT1(+/-) mice was detected by the passive avoidance paradigm and Morris water maze. The hole board paradigm was also used to measure changes in anxiety-related behavior or exploratory behavior in such mice. As one form of synaptic plasticity, long-term potentiation was recorded in the mouse hippocampal CA1 area. We found that GAT1(+/-) mice displayed increased learning and memory, decreased anxiety-like behaviors, and highest synaptic plasticity compared with wild-type and homozygous GAT1(-/-) mice. Our results suggest that a moderate reduction in GAT1 activity causes the enhancement of learning and memory in mice.
Collapse
Affiliation(s)
- Jun Shi
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Salesse C, Mueller CL, Chamberland S, Topolnik L. Age-dependent remodelling of inhibitory synapses onto hippocampal CA1 oriens-lacunosum moleculare interneurons. J Physiol 2011; 589:4885-901. [PMID: 21825029 DOI: 10.1113/jphysiol.2011.215244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Stratum oriens-lacunosum moleculare interneurons (O-LM INs) represent the major element of the hippocampal feedback inhibitory circuit, which provides inhibition to the distal dendritic sites of CA1 pyramidal neurons. Although the intrinsic conductance profile and the properties of glutamatergic transmission to O-LM INs have become a subject of intense investigation, far less is known about the properties of the inhibitory synapses formed onto these cells. Here, we used whole-cell patch-clamp recordings in acute mouse hippocampal slices to study the properties and plasticity of GABAergic inhibitory synapses onto O-LM INs. Surprisingly, we found that the kinetics of inhibitory postsynaptic currents (IPSCs) were slower in mature synapses (P26-40) due to the synaptic incorporation of the α5 subunit of the GABA(A) receptor (a5-GABA(A)R). Moreover, this age-dependent synaptic expression of a5-GABA(A)Rs was directly associated with the emergence of long-term potentiation at IN inhibitory synapses. Finally, the slower time course of IPSCs observed in O-LM INs of mature animals had a profound effect on IN excitability by significantly delaying its spike firing. Our data suggest that GABAergic synapses onto O-LM INs undergo significant modifications during postnatal maturation. The developmental switch in IPSC properties and plasticity is controlled by the synaptic incorporation of the a5-GABA(A)R subunit and may represent a potential mechanism for the age-dependent modifications in the inhibitory control of the hippocampal feedback inhibitory circuit.
Collapse
Affiliation(s)
- Charleen Salesse
- Axis of Cellular and Molecular Neuroscience, CRULRG, Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, PQ, Canada
| | | | | | | |
Collapse
|
8
|
Preclinical and clinical pharmacology of the GABAA receptor α5 subtype-selective inverse agonist α5IA. Pharmacol Ther 2010; 125:11-26. [DOI: 10.1016/j.pharmthera.2009.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/01/2009] [Indexed: 11/17/2022]
|
9
|
Discovery of the imidazo[1,5-a][1,2,4]-triazolo[1,5-d][1,4]benzodiazepine scaffold as a novel, potent and selective GABAA α5 inverse agonist series. Bioorg Med Chem Lett 2009; 19:5746-52. [DOI: 10.1016/j.bmcl.2009.07.153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 01/16/2023]
|
10
|
Differential pharmacological properties of GABAA/benzodiazepine receptor complex in dorsal compared to ventral rat hippocampus. Neurochem Int 2007; 52:1019-29. [PMID: 18069090 DOI: 10.1016/j.neuint.2007.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 10/15/2007] [Accepted: 10/26/2007] [Indexed: 11/21/2022]
Abstract
Several studies have indicated a functional differentiation across the septotemporal axis of rat hippocampus. Our previous results have shown that the alpha 1 beta 2 gamma 2-GABAA receptor subtype dominates in dorsal hippocampus (DH), while the alpha 2 beta 1 gamma 2-subtype prevails in ventral hippocampus (VH). We therefore studied possible differences in the pharmacological properties and receptor binding parameters of the GABAA receptor subtypes between DH and VH, by examining: (1)(a) the specific binding of [3H]-flunitrazepam (Benzodiazepine sites agonist) by using quantitative autoradiography, (b) the kinetic parameters of [3H]-flunitrazepam specific binding, by using the "wipe off" technique and (2) the competitive displacement of [3H]-flunitrazepam binding by using zolpidem (selective agonist of the alpha 1-subtype) and L-655,708 (selective inverse agonist of the alpha 5-subtype) and the enhancement of [3H]-flunitrazepam binding by using etomidate (selective positive modulator of the beta 2-subunit), in an autoradiographical saturation kinetic study. Our results showed in VH compared to DH: (A) lower level of [3H]-flunitrazepam binding, apparently due to weaker binding affinity (higher KD value), since no differences in the Bmax value could be detected, (B) higher IC50 values for zolpidem and lower IC50 values for L-655,708 and (C) higher EC50 values for etomidate. In conclusion, the lower binding for zolpidem and etomidate and the higher binding for L-655,708 observed in VH support the evidence that the alpha 1 beta 2 gamma 2-GABAA receptor subtype dominates in DH and the alpha 5-subtype prevails in VH. Further, our results suggest differential pharmacological effects of the benzodiazepines in DH compared to VH, with the sedative effects being more potent in the dorsal hippocampus.
Collapse
|
11
|
Atack JR. The benzodiazepine binding site of GABA(A) receptors as a target for the development of novel anxiolytics. Expert Opin Investig Drugs 2006; 14:601-18. [PMID: 15926867 DOI: 10.1517/13543784.14.5.601] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Non-selective benzodiazepine (BZ) binding-site full agonists, exemplified by diazepam, act by enhancing the inhibitory effects of GABA at GABA(A) receptors containing either an alpha1, -2, -3 or -5 subunit. However, despite their proven clinical anxiolytic efficacy, such compounds possess a relatively narrow window between doses that produce anxiolysis and those that cause sedation, and are also associated with physical dependence and a potential for abuse. In the late 1980s and early 1990s a number of non-selective partial agonists, exemplified by bretazenil, pazinaclone and abecarnil, were described. Their reduced intrinsic efficacy relative to full agonists such as diazepam resulted in an improved preclinical pharmacological profile in that there was a large window between anxiolytic and sedative doses and their dependence and abuse liabilities were much lower. Unfortunately, these compounds failed, for a variety of reasons, to translate into clinical benefit, and as the public perception of BZs deteriorated interest in the area waned. However, the advent of molecular genetic and pharmacological approaches has begun to delineate which GABA(A) receptor subtypes are associated with the various pharmacological effects of the non-selective BZs. More specifically, the alpha2- and/or alpha3-containing GABA(A) receptors play a role in anxiety whereas the alpha1 subtype is involved in sedation, raising the possibility of a compound that selectively modulates alpha2- and/or alpha3-containing receptors but does not affect alpha1-containing receptors would be a non-sedating anxiolytic. In order to achieve selectivity for the alpha2/alpha3 subtypes relative to alpha1, two approaches may be used; selective affinity or selective efficacy. Selective affinity relies on a compound binding with higher affinity to the alpha2/alpha3 compared with alpha1 subtypes, but to date no such compounds have been described. On the other hand, subtype-selective efficacy relies on a compound binding to all subtypes but having different efficacies at various subtypes (relative selective efficacy, for example SL654198 or pagoclone) or having efficacy at some subtypes but none at others (absolute selective efficacy; for example, L-838417). The status of these and other BZ site compounds with claimed, but often not explicitly stated, GABA(A) subtype selectivity (such as ELB-139 and ocinaplon) will be reviewed in relation to their development as non-sedating anxiolytics for the treatment of generalised anxiety disorder.
Collapse
Affiliation(s)
- John R Atack
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK.
| |
Collapse
|
12
|
Scimemi A, Semyanov A, Sperk G, Kullmann DM, Walker MC. Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci 2006; 25:10016-24. [PMID: 16251450 PMCID: PMC6725560 DOI: 10.1523/jneurosci.2520-05.2005] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Persistent activation of GABAA receptors by extracellular GABA (tonic inhibition) plays a critical role in signal processing and network excitability in the brain. In hippocampal principal cells, tonic inhibition has been reported to be mediated by alpha5-subunit-containing GABAA receptors (alpha5GABAARs). Pharmacological or genetic disruption of these receptors improves cognitive performance, suggesting that tonic inhibition has an adverse effect on information processing. Here, we show that alpha5GABAARs contribute to tonic currents in pyramidal cells only when ambient GABA concentrations increase (as may occur during increased brain activity). At low ambient GABA concentrations, activation of delta-subunit-containing GABAA receptors predominates. In epileptic tissue, alpha5GABAARs are downregulated and no longer contribute to tonic currents under conditions of raised extracellular GABA concentrations. Under these conditions, however, the tonic current is greater in pyramidal cells from epileptic tissue than in pyramidal cells from nonepileptic tissue, implying substitution of alpha5GABAARs by other GABAA receptor subtypes. These results reveal multiple components of tonic GABAA receptor-mediated conductance that are activated by low GABA concentrations. The relative contribution of these components changes after the induction of epilepsy, implying an adaptive plasticity of the tonic current in the presence of spontaneous seizures.
Collapse
Affiliation(s)
- Annalisa Scimemi
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Sieghart W. Structure, pharmacology, and function of GABAA receptor subtypes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 54:231-63. [PMID: 17175817 DOI: 10.1016/s1054-3589(06)54010-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Werner Sieghart
- Division of Biochemistry and Molecular Biology, Center for Brain Research, and Section of Biochemical Psychiatry, University Clinic for Psychiatry, Medical University Vienna, Austria
| |
Collapse
|
14
|
Atack JR, Hutson PH, Collinson N, Marshall G, Bentley G, Moyes C, Cook SM, Collins I, Wafford K, McKernan RM, Dawson GR. Anxiogenic properties of an inverse agonist selective for alpha3 subunit-containing GABA A receptors. Br J Pharmacol 2005; 144:357-66. [PMID: 15655523 PMCID: PMC1576012 DOI: 10.1038/sj.bjp.0706056] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alpha3IA (6-(4-pyridyl)-5-(4-methoxyphenyl)-3-carbomethoxy-1-methyl-1H-pyridin-2-one) is a pyridone with higher binding and functional affinity and greater inverse agonist efficacy for GABA(A) receptors containing an alpha3 rather than an alpha1, alpha2 or alpha5 subunit. If doses are selected that minimise the occupancy at these latter subtypes, then the in vivo effects of alpha3IA are most probably mediated by the alpha3 subtype. Alpha3IA has good CNS penetration in rats and mice as measured using a [(3)H]Ro 15-1788 in vivo binding assay. At doses in rats that produce relatively low levels of occupancy (12%) in the cerebellum (i.e. alpha1-containing receptors), alpha3IA (30 mg kg(-1) i.p.), like the nonselective partial inverse agonist N-methyl-beta-carboline-3-carboxamide (FG 7142), not only caused behavioural disruption in an operant, chain-pulling assay but was also anxiogenic in the elevated plus maze, an anxiogenic-like effect that could be blocked with the benzodiazepine antagonist Ro 15-1788 (flumazenil). Neurochemically, alpha3IA (30 mg kg(-1) i.p.) as well as FG 7142 (15 mg kg(-1) i.p.) increased the concentration of the dopamine metabolite 3,4-dihydroxyphenylacetic acid in rat medial prefrontal cortex by 74 and 68%, respectively, relative to vehicle-treated animals, a response that mimicked that seen following immobilisation stress. Taken together, these data demonstrate that an inverse agonist selective for GABA(A) receptors containing an alpha3 subunit is anxiogenic, and suggest that since alpha3-containing GABA(A) receptors play a role in anxiety, then agonists selective for this subtype should be anxiolytic.
Collapse
Affiliation(s)
- John R Atack
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hamilton NM, Cooke AJ. α-Subunit selective modulators of GABAAreceptor function as CNS therapeutics. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.10.1491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Szekeres HJ, Atack JR, Chambers MS, Cook SM, Macaulay AJ, Pillai GV, MacLeod AM. 3,4-Dihydronaphthalen-1(2H)-ones: novel ligands for the benzodiazepine site of alpha5-containing GABAA receptors. Bioorg Med Chem Lett 2005; 14:2871-5. [PMID: 15125950 DOI: 10.1016/j.bmcl.2004.03.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/12/2004] [Accepted: 03/15/2004] [Indexed: 11/24/2022]
Abstract
A series of substituted 3,4-dihydronaphthalen-1(2H)-ones with high binding affinity for the benzodiazepine site of GABAA receptors containing the alpha5-subunit has been identified. These compounds have consistently higher binding affinity for the GABAA alpha5 receptor subtype over the other benzodiazepine-sensitive GABAA receptor subtypes (alpha1, alpha2 and alpha3). Compounds with a range of efficacies for the benzodiazepine site of alpha5-containing GABAA receptors were identified, including the alpha5 inverse agonist 3,3-dimethyl-8-methylthio-5-(pyridin-2-yl)-3,4-dihydronaphthalen-1(2H)-one 22 and the alpha5 agonist 8-ethylthio-3-methyl-5-(1-oxidopyridin-2-yl)-3,4-dihydronaphthalen-1(2H)-one 19.
Collapse
Affiliation(s)
- Helen J Szekeres
- Merck, Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Chambers MS, Atack JR, Carling RW, Collinson N, Cook SM, Dawson GR, Ferris P, Hobbs SC, O'connor D, Marshall G, Rycroft W, Macleod AM. An orally bioavailable, functionally selective inverse agonist at the benzodiazepine site of GABAA alpha5 receptors with cognition enhancing properties. J Med Chem 2005; 47:5829-32. [PMID: 15537339 DOI: 10.1021/jm040863t] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)pyrazolo[1,5-d][1,2,4]triazine (13) has been identified as a functionally selective, inverse agonist at the benzodiazepine site of GABA(A) alpha5 receptors. 13 is orally bioavailable, readily penetrates the CNS, and enhances performance in animal models of cognition. It does not exhibit the convulsant, proconvulsant, or anxiogenic activity associated with nonselective GABA(A) inverse agonists.
Collapse
Affiliation(s)
- Mark S Chambers
- Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Street LJ, Sternfeld F, Jelley RA, Reeve AJ, Carling RW, Moore KW, McKernan RM, Sohal B, Cook S, Pike A, Dawson GR, Bromidge FA, Wafford KA, Seabrook GR, Thompson SA, Marshall G, Pillai GV, Castro JL, Atack JR, MacLeod AM. Synthesis and biological evaluation of 3-heterocyclyl-7,8,9,10-tetrahydro-(7,10-ethano)-1,2,4-triazolo[3,4-a]phthalazines and analogues as subtype-selective inverse agonists for the GABA(A)alpha5 benzodiazepine binding site. J Med Chem 2004; 47:3642-57. [PMID: 15214791 DOI: 10.1021/jm0407613] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of a novel series of 7,8,9,10-tetrahydro-(7,10-ethano)-1,2,4-triazolo[3,4-a]phthalazines as GABA(A)alpha5 inverse agonists, which have both binding and functional (efficacy) selectivity for the benzodiazepine binding site of alpha5- over alpha1-, alpha2-, and alpha3-containing GABA(A) receptor subtypes, is described. Binding selectivity was determined to a large part by the degree of planarity of the fused ring system whereas functional selectivity was dependent on the nature of the heterocycle at the 3-position of the triazolopyridazine ring. 3-Furan and 5-methylisoxazole were shown to be optimal for GABA(A)alpha5 functional selectvity. 3-(5-Methylisoxazol-3-yl)-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazine (43) was identified as a full inverse agonist at the GABA(A)alpha5 subtype with functional selectivity over the other GABA(A) receptor subtypes and good oral bioavailability.
Collapse
Affiliation(s)
- Leslie J Street
- Departments of Medicinal Chemistry, Biochemistry, and Pharmacology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sternfeld F, Carling RW, Jelley RA, Ladduwahetty T, Merchant KJ, Moore KW, Reeve AJ, Street LJ, O'Connor D, Sohal B, Atack JR, Cook S, Seabrook G, Wafford K, Tattersall FD, Collinson N, Dawson GR, Castro JL, MacLeod AM. Selective, orally active gamma-aminobutyric acidA alpha5 receptor inverse agonists as cognition enhancers. J Med Chem 2004; 47:2176-9. [PMID: 15084116 DOI: 10.1021/jm031076j] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonselective inverse agonists at the gamma-aminobutyric acid(A) (GABA-A) benzodiazepine binding site have cognition-enhancing effects in animals but are anxiogenic and can precipitate convulsions. Herein, we describe novel GABA-A alpha5 subtype inverse agonists leading to the identification of 16 as an orally active, functionally selective compound that enhances cognition in animals without anxiogenic or convulsant effects. Compounds of this type may be useful in the symptomatic treatment of memory impairment associated with Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Francine Sternfeld
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Carling RW, Moore KW, Street LJ, Wild D, Isted C, Leeson PD, Thomas S, O'Connor D, McKernan RM, Quirk K, Cook SM, Atack JR, Wafford KA, Thompson SA, Dawson GR, Ferris P, Castro JL. 3-Phenyl-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and Analogues: High-Affinity γ-Aminobutyric Acid-A Benzodiazepine Receptor Ligands with α2, α3, and α5-Subtype Binding Selectivity over α1. J Med Chem 2004; 47:1807-22. [PMID: 15027873 DOI: 10.1021/jm031020p] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies with our screening lead 5 and the literature compound 6 led to the identification of 6-benzyloxy-3-(4-methoxy)phenyl-1,2,4-triazolo[3,4-a]phthalazine 8 as a ligand with binding selectivity for the gamma-aminobutyric acid-A (GABA-A) alpha 3- and alpha 5-containing receptor subtypes over the GABA-A alpha 1 subtype (K(i): alpha 2 = 850 nM, alpha 3 = 170 nM, alpha 5 = 72 nM, alpha 1 = 1400 nM). Early optimization studies identified the close analogue 10 (K(i): alpha 2 = 16 nM, alpha 3 = 41 nM, alpha 5 = 38 nM, alpha 1 = 280 nM) as a suitable lead for further study. High-affinity ligands were identified by replacing the 6-benzyloxy group of compound 10 with 2-pyridylmethoxy (compound 29), but binding selectivity was not enhanced (K(i): alpha 2 = 1.7 nM, alpha 3 = 0.71 nM, alpha 5 = 0.33 nM, alpha 1 = 2.7 nM). Furthermore, on evaluation in xenopus oocytes,(22) 29 was discovered to be a weak to moderate inverse agonist at all four receptor subtypes (alpha 1, -7%; alpha 2, -5%; alpha 3, -16%; alpha 5, -5%). Replacement of the 3-phenyl group of 29 with alternatives led to reduced affinity, and smaller 3-substituents led to reduced efficacy. Methyl substitution of the benzo-fused ring of 29 at the 7-, 8-, and 10-positions resulted in increased efficacy although selectivity was abolished. Increased efficacy and retention of selectivity for alpha 3 over alpha 1 was achieved with the 7,8,9,10-tetrahydro-(7,10-ethano)-phthalazine 62. Compound 62 is currently one of the most binding selective GABA-A alpha 3-benzodiazepine-site partial agonists known, and although its selectivity is limited, its good pharmacokinetic profile in the rat (33% oral bioavailability after a 3 mg/kg dose, reaching a peak plasma concentration of 179 ng/mL; half-life of 1 h) made it a useful pharmacological tool to explore the effect of a GABA-A alpha 2/alpha 3 agonist in vivo.
Collapse
Affiliation(s)
- Robert W Carling
- Department of Medicinal Chemistry, The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 2004; 101:3662-7. [PMID: 14993607 PMCID: PMC373519 DOI: 10.1073/pnas.0307231101] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The principal inhibitory neurotransmitter in the mammalian brain, gamma-aminobutyric acid (GABA), is thought to regulate memory processes by activating transient inhibitory postsynaptic currents. Here we describe a nonsynaptic, tonic form of inhibition in mouse CA1 pyramidal neurons that is generated by a distinct subpopulation of GABA type A receptors (GABA(A)Rs). This tonic inhibitory conductance is predominantly mediated by alpha5 subunit-containing GABA(A)Rs (alpha5GABA(A)Rs) that have different pharmacological and kinetic properties compared to postsynaptic receptors. GABA(A)Rs that mediate the tonic conductance are well suited to detect low, persistent, ambient concentrations of GABA in the extracellular space because they are highly sensitive to GABA and desensitize slowly. Moreover, the tonic current is highly sensitive to enhancement by amnestic drugs. Given the restricted expression of alpha5GABA(A)Rs to the hippocampus and the association between reduced alpha5GABA(A)R function and improved memory performance in behavioral studies, our results suggest that tonic inhibition mediated by alpha5GABA(A)Rs in hippocampal pyramidal neurons plays a key role in cognitive processes.
Collapse
Affiliation(s)
- Valerie B Caraiscos
- Institute of Medical Science, Department of Anesthesia, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li X, Cao H, Zhang C, Furtmueller R, Fuchs K, Huck S, Sieghart W, Deschamps J, Cook JM. Synthesis, in Vitro Affinity, and Efficacy of a Bis 8-Ethynyl-4H-imidazo[1,5a]- [1,4]benzodiazepine Analogue, the First Bivalent α5 Subtype Selective BzR/GABAA Antagonist. J Med Chem 2003; 46:5567-70. [PMID: 14667209 DOI: 10.1021/jm034164c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and in vitro affinity of the alpha5beta3gamma2 (alpha5) subtype selective BzR/GABA(A) antagonist 7 is described. This ligand is selective for alpha5 subtypes in vitro and is a potent antagonist of the effects of diazepam only at alpha5beta3gamma2 subtypes (oocytes). Ligands such as 7 will be important in the determination of which physiological function(s) are subserved by this GABA(A) alpha5 subtype.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chambers MS, Atack JR, Broughton HB, Collinson N, Cook S, Dawson GR, Hobbs SC, Marshall G, Maubach KA, Pillai GV, Reeve AJ, MacLeod AM. Identification of a novel, selective GABA(A) alpha5 receptor inverse agonist which enhances cognition. J Med Chem 2003; 46:2227-40. [PMID: 12747794 DOI: 10.1021/jm020582q] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In pursuit of a GABA(A) alpha5-subtype-selective inverse agonist to enhance cognition, a series of 6,7-dihydro-2-benzothiophen-4(5H)-ones has been identified as a novel class of GABA(A) receptor ligands. These thiophenes have higher binding affinity for the GABA(A) alpha5 receptor subtype compared to the GABA(A) alpha1, alpha2, and alpha3 subtypes, and several analogues exhibit high GABA(A) alpha5 receptor inverse agonism. 6,6-Dimethyl-3-(2-hydroxyethyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one (43) has been identified as a full inverse agonist at the GABA(A) alpha5 receptor and is functionally selective over the other major GABA(A) receptor subtypes. 43 readily penetrates into the CNS to give selective occupancy of GABA(A) alpha5 receptors. In addition, 43 enhances cognitive performance in rats in the delayed 'matching-to-place' Morris water maze test-a hippocampal-dependent memory task-without the convulsant or proconvulsant activity associated with nonselective, GABA(A) receptor inverse agonists.
Collapse
Affiliation(s)
- Mark S Chambers
- Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chapter 5.1 Five-membered ring systems: Thiophenes & Se, Te analogs. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0959-6380(03)80008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|