1
|
Konnert L, Lamaty F, Martinez J, Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem Rev 2017. [PMID: 28644621 DOI: 10.1021/acs.chemrev.7b00067] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights the hydantoin syntheses presented from the point of view of the preparation methods. Novel synthetic routes to various hydantoin structures, the advances brought to the classical methods in the aim of producing more sustainable and environmentally friendly procedures for the preparation of these biomolecules, and a critical comparison of the different synthetic approaches developed in the last twelve years are also described. The review is composed of 95 schemes, 8 figures and 528 references for the last 12 years and includes the description of the hydantoin-based marketed drugs and clinical candidates.
Collapse
Affiliation(s)
- Laure Konnert
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Frédéric Lamaty
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Jean Martinez
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Evelina Colacino
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| |
Collapse
|
2
|
Polishchuk P, Tinkov O, Khristova T, Ognichenko L, Kosinskaya A, Varnek A, Kuz’min V. Structural and Physico-Chemical Interpretation (SPCI) of QSAR Models and Its Comparison with Matched Molecular Pair Analysis. J Chem Inf Model 2016; 56:1455-69. [DOI: 10.1021/acs.jcim.6b00371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Pavel Polishchuk
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská
1333/5, 779 00 Olomouc, Czech Republic
- A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Lustdorfskaya
doroga 86, 65080 Odessa, Ukraine
| | - Oleg Tinkov
- T. G. Shevchenko Transdniestria State University, ul. 25 Oktyabrya 107, 3300 Tiraspol, Transdniestria, Republic of Moldova
| | - Tatiana Khristova
- A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Lustdorfskaya
doroga 86, 65080 Odessa, Ukraine
- Laboratoire
de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Ludmila Ognichenko
- A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Lustdorfskaya
doroga 86, 65080 Odessa, Ukraine
| | - Anna Kosinskaya
- A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Lustdorfskaya
doroga 86, 65080 Odessa, Ukraine
| | - Alexandre Varnek
- Laboratoire
de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
- Laboratory
of Chemoinformatics and Molecular Modeling, Butlerov Institut of Chemistry, Kazan Federal University, Kremlevskaya 18, Kazan, Russia
| | - Victor Kuz’min
- A. V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Lustdorfskaya
doroga 86, 65080 Odessa, Ukraine
| |
Collapse
|
3
|
Coussanes G, Gaus K, O'Sullivan AC. The Synthesis of Ketone-Derived Enamides by Elimination of HCN from Cyanoamides. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guilhem Coussanes
- Process Research Chemistry; Syngenta Crop Protection AG; Schaffhauserstrasse 101 4332 Stein Switzerland
| | - Katharina Gaus
- Process Research Chemistry; Syngenta Crop Protection AG; Schaffhauserstrasse 101 4332 Stein Switzerland
| | | |
Collapse
|
4
|
Polishchuk PG, Samoylenko GV, Khristova TM, Krysko OL, Kabanova TA, Kabanov VM, Kornylov AY, Klimchuk O, Langer T, Andronati SA, Kuz'min VE, Krysko AA, Varnek A. Design, Virtual Screening, and Synthesis of Antagonists of αIIbβ3 as Antiplatelet Agents. J Med Chem 2015; 58:7681-94. [PMID: 26367138 DOI: 10.1021/acs.jmedchem.5b00865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This article describes design, virtual screening, synthesis, and biological tests of novel αIIbβ3 antagonists, which inhibit platelet aggregation. Two types of αIIbβ3 antagonists were developed: those binding either closed or open form of the protein. At the first step, available experimental data were used to build QSAR models and ligand- and structure-based pharmacophore models and to select the most appropriate tool for ligand-to-protein docking. Virtual screening of publicly available databases (BioinfoDB, ZINC, Enamine data sets) with developed models resulted in no hits. Therefore, small focused libraries for two types of ligands were prepared on the basis of pharmacophore models. Their screening resulted in four potential ligands for open form of αIIbβ3 and four ligands for its closed form followed by their synthesis and in vitro tests. Experimental measurements of affinity for αIIbβ3 and ability to inhibit ADP-induced platelet aggregation (IC50) showed that two designed ligands for the open form 4c and 4d (IC50 = 6.2 nM and 25 nM, respectively) and one for the closed form 12b (IC50 = 11 nM) were more potent than commercial antithrombotic Tirofiban (IC50 = 32 nM).
Collapse
Affiliation(s)
- Pavel G Polishchuk
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Georgiy V Samoylenko
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Tetiana M Khristova
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine.,Laboratory of Chemoinformatics (UMR 7140 CNRS/UniStra), University of Strasbourg , 1, rue B. Pascal, Strasbourg 67000, France
| | - Olga L Krysko
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Tatyana A Kabanova
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Vladimir M Kabanov
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Alexander Yu Kornylov
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Olga Klimchuk
- Laboratory of Chemoinformatics (UMR 7140 CNRS/UniStra), University of Strasbourg , 1, rue B. Pascal, Strasbourg 67000, France
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Sergei A Andronati
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Victor E Kuz'min
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Andrei A Krysko
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Alexandre Varnek
- Laboratory of Chemoinformatics (UMR 7140 CNRS/UniStra), University of Strasbourg , 1, rue B. Pascal, Strasbourg 67000, France
| |
Collapse
|
5
|
Jakob U, Mundinger S, Bannwarth W. Efficient Transfer of Chelating Amides into Different Types of Esters and Lactones. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Chern CY, Chen SJ, Kan WM. Design and Synthesis of 3-Aryl-5-Alicylic-[1,2,4]-oxadiazoles as Novel Platelet Aggregation Inhibitors. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200500050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Synthesis and differential functionalisation of pyrrolidine and piperidine based spirodiamine scaffolds. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Development and validation of competition binding assays for affinity to the extracellular matrix receptors, α(v)β(3) and α(IIb)β(3) integrin. Anal Biochem 2012; 423:70-7. [PMID: 22285979 DOI: 10.1016/j.ab.2011.12.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 01/16/2023]
Abstract
The RGD (Arg-Gly-Asp) binding integrins α(v)β(3) and α(IIb)β(3) are integral components of various pathological and physiological processes, including tumor angiogenesis, osteoclast function, and thrombus formation. Because of this, there is interest in identifying novel compounds and proteins binding to these receptors as well as investigating the mechanism of these interactions. In this article, we describe the development and validation of competition binding assays for determining the affinity of test compounds to α(v)β(3) and α(IIb)β(3) integrin. Assays were successfully developed for each receptor, and the affinity of known compounds was comparable to published results. However, the inability of binding between α(IIb)β(3) integrin and the labeled echistatin protein ligand to reach equilibrium resulted in an assay that did not meet the assumptions of the competition binding model. Nevertheless, there was good agreement between this assay and known literature values, and intra- and interassay variability was acceptable. Binding by conformation-specific antibodies provided evidence that solid-phase bound α(IIb)β(3) receptor was in an activated conformation. This study also demonstrated that current models and methods for determining receptor affinity are simplistic and fail to account for common receptor-ligand interactions such as nondissociable interactions and varying receptor activation states.
Collapse
|
9
|
Havemeyer A, Lang J, Clement B. The fourth mammalian molybdenum enzyme mARC: current state of research. Drug Metab Rev 2011; 43:524-39. [DOI: 10.3109/03602532.2011.608682] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Wen Y, Zhao B, Shi Y. Cu(I)-catalyzed diamination of disubstituted terminal olefins: an approach to potent NK1 antagonist. Org Lett 2009; 11:2365-8. [PMID: 19408926 DOI: 10.1021/ol900808z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes a diamination process using di-tert-butyldiaziridinone as nitrogen source and CuCl as catalyst. A wide variety of disubstituted terminal olefins can be efficiently diaminated in good yields under mild condition. This diamination process was used to synthesize potent NK(1) antagonist Sch 425078.
Collapse
Affiliation(s)
- Yuehong Wen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
11
|
Abstract
Topological polar surface area (TPSA), which makes use of functional group contributions based on a large database of structures, is a convenient measure of the polar surface area that avoids the need to calculate ligand 3D structure or to decide which is the relevant biological conformation or conformations. We demonstrate the utility of TPSA in 2D-QSAR for 14 sets of diverse pharmacological activity data. Even though a large pool of reports showing the importance of the classic 2D descriptors such as calculated logP (ClogP) and calculated molar refractivity (CMR) exists in the 2D-QSAR literature, this is the first report to demonstrate the value of TPSA as a relevant descriptor applicable to a large, structurally and pharmacologically diverse set of classes of compounds. We also address the limitations of applicability of this descriptor for 2D-QSAR analysis. We observed a negative correlation of TPSA with activity data for anticancer alkaloids, MT1 and MT2 agonists, MAO-B and tumor necrosis factor-alpha inhibitors and a positive correlation with inhibitory activity data for telomerase, PDE-5, GSK-3, DNA-PK, aromatase, malaria, trypanosomatids and CB2 agonists.
Collapse
Affiliation(s)
- S Prasanna
- Department of Medicinal Chemistry, University of Mississippi, MS 38677-1848, USA
| | | |
Collapse
|
12
|
Prusov E, Maier ME. Synthesis of nitrogen-containing spirocyclic scaffolds via aminoallylation/RCM sequence. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.07.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
|