1
|
Jaiswal AK, Kushawaha AK, Pawan Kumar, Ansari A, Chhikara N, Hemlata Bhatt, Katiyar S, Ahmad I, Choudhury AD, Bhatta RS, Tamrakar AK, Sashidhara KV. Design, synthesis, and biological evaluation of quinazolinone-dihydropyrimidinone as a potential anti-diabetic agent via GLUT4 translocation stimulation. Eur J Med Chem 2025; 288:117366. [PMID: 39954347 DOI: 10.1016/j.ejmech.2025.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
A library of 30 novel quinazolinone-dihydropyrimidinone derivatives was synthesized employing a diversity-oriented approach for the identification of potential anti-diabetic therapeutic lead. In vitro evaluation revealed that seven compounds (5d, 5e, 5i, 5j, 5l, 5m and 5s) significantly enhanced the rate of GLUT4 translocation to the cell surface in L6-GLUT4myc myotubes. Out of these, compound, 5m exhibited promising potency to stimulate GLUT4 translocation in skeletal muscle cells via activating AMPK-dependent pathway, but independent to PI-3-K/AKT signaling. Under in vivo conditions, treatment with 5m demonstrated a marked 39.5 % (p < 0.001) reduction in blood glucose levels in a streptozotocin-induced diabetic rat model after 5 h of treatment. Pharmacokinetic analysis indicated compound 5m shows favourable pharmacokinetic properties. Overall, the compound 5m emerged as a promising lead compound for subsequent structural modification and optimization to develop a novel and potent anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Nikita Chhikara
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ishbal Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
2
|
Sullivan R, Hou J, Yu L, Wilk B, Sykes J, Biernaski H, Butler J, Kovacs M, Hicks J, Thiessen JD, Dharmakumar R, Prato FS, Wisenberg G, Luyt LG, Dhanvantari S. Design, Synthesis, and Preclinical Evaluation of a High-Affinity 18F-Labeled Radioligand for Myocardial Growth Hormone Secretagogue Receptor Before and After Myocardial Infarction. J Nucl Med 2024; 65:1633-1639. [PMID: 39266294 DOI: 10.2967/jnumed.124.267578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024] Open
Abstract
The peptide hormone ghrelin is produced in cardiomyocytes and acts through the myocardial growth hormone secretagogue receptor (GHSR) to promote cardiomyocyte survival. Administration of ghrelin may have therapeutic effects on post-myocardial infarction (MI) outcomes. Therefore, there is a need to develop molecular imaging probes that can track the dynamics of GHSR in health and disease to better predict the effectiveness of ghrelin-based therapeutics. We designed a high-affinity GHSR ligand labeled with 18F for imaging by PET and characterized its in vivo properties in a canine model of MI. Methods: We rationally designed and radiolabeled with 18F a quinazolinone derivative ([18F]LCE470) with subnanomolar binding affinity to GHSR. We determined the sensitivity and in vivo and ex vivo specificity of [18F]LCE470 in a canine model of surgically induced MI using PET/MRI, which allowed for anatomic localization of tracer uptake and simultaneous determination of global cardiac function. Uptake of [18F]LCE470 was determined by time-activity curve and SUV analysis in 3 regions of the left ventricle-area of infarct, territory served by the left circumflex coronary artery, and remote myocardium-over a period of 1.5 y. Changes in cardiac perfusion were tracked by [13N]NH3 PET. Results: The receptor binding affinity of LCE470 was measured at 0.33 nM, the highest known receptor binding affinity for a radiolabeled GHSR ligand. In vivo blocking studies in healthy hounds and ex vivo blocking studies in myocardial tissue showed the specificity of [18F]LCE470, and sensitivity was demonstrated by a positive correlation between tracer uptake and GHSR abundance. Post-MI changes in [18F]LCE470 uptake occurred independently of perfusion tracer distributions and changes in global cardiac function. We found that the regional distribution of [18F]LCE470 within the left ventricle diverged significantly within 1 d after MI and remained that way throughout the 1.5-y duration of the study. Conclusion: [18F]LCE470 is a high-affinity PET tracer that can detect changes in the regional distribution of myocardial GHSR after MI. In vivo PET molecular imaging of the global dynamics of GHSR may lead to improved GHSR-based therapeutics in the treatment of post-MI remodeling.
Collapse
Affiliation(s)
- Rebecca Sullivan
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Jinqiang Hou
- Lakehead University and Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Lihai Yu
- London Regional Cancer Program, London, Ontario, Canada
| | - Benjamin Wilk
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jane Sykes
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Heather Biernaski
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
| | - John Butler
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Michael Kovacs
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Justin Hicks
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jonathan D Thiessen
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Frank S Prato
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Gerald Wisenberg
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Leonard G Luyt
- London Regional Cancer Program, London, Ontario, Canada
- Departments of Chemistry, Oncology, and Medical Imaging, Western University, London, Ontario, Canada
| | - Savita Dhanvantari
- Imaging Research Program, Lawson Health Research Institute, London, Ontario, Canada;
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
O'Brien NS, Gilbert J, McCluskey A, Sakoff JA. 2,3-Dihydroquinazolin-4(1 H)-ones and quinazolin-4(3 H)-ones as broad-spectrum cytotoxic agents and their impact on tubulin polymerisation. RSC Med Chem 2024; 15:1686-1708. [PMID: 38784470 PMCID: PMC11110758 DOI: 10.1039/d3md00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
Tubulin plays a central role in mitosis and has been the target of multiple anticancer drugs, including paclitaxel. Herein two separate families of 2,3-dihydroquinazoline-4(1H)-ones and quinazoline-4(3H) ones, comprising 57 compounds in total, were synthesised. Screening against a broad panel of human cancer cell lines (HT29 colon, U87 and SJ-G2 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, and MIA pancreas) reveals these analogues to be broad spectrum cytotoxic compounds. Of particular note, 2-styrylquinazolin-4(3H)-one 51, 2-(4-hydroxystyryl)quinazolin-4(3H)-one 63, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64 and 2-(3-methoxystyryl)quinazolin-4(3H)-one 65 and 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39 exhibited sub-μM potency growth inhibition values. Of these 1-naphthyl 39 has activity <50 nM against the HT29, U87, A2780, H460 and BE2-C cell lines. Molecular modelling of these compounds, e.g. 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64, 2-(3-methoxystyryl)quinazolin-4(3H)-one 65, and 2-(4-methoxystyryl)quinazolin-4(3H)-one 50 docked to the known tubulin polymerisation inhibitor sites highlighted well conserved interactions within the colchicine binding pocket. These compounds were examined in a tubulin polymerisation assay alongside the known tubulin polymerisation promotor, paclitaxel (69), and tubulin inhibitor, nocodazole (68). Of the analogues examined, indoles 43 and 47 were modest promotors of tubulin polymerisation, but less effective than paclitaxel. Analogues 39, 64, and 65 showed reduced microtubule formation consistent with tubulin inhibition. The variation in ring methoxy substituent with 50, 64 and 65, from o- to m- to p-, results in a concomitant reduction in cytotoxicity and a reduction in tubulin polymerisation, with p-OCH350 being the least active in this series of analogues. This presents 64 as a tubulin polymerisation inhibitor possessing novel chemotype and sub micromolar cytotoxicity. Naphthyl 39, with complete inhibition of tubulin polymerisation, gave rise to a sub 0.2 μM cell line cytotoxicity. Compounds 39 and 64 induced G2 + M cell cycle arrest indicative of inhibition of tubulin polymerisation, with 39 inducing an equivalent effect on cell cycle arrest as nocodazole (68).
Collapse
Affiliation(s)
- Nicholas S O'Brien
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle University Drive Callaghan NSW 2308 Australia +61(0)249215472 +61(0)249216486
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah 2298 NSW Australia
| |
Collapse
|
4
|
Basak SJ, Dash J. Potassium tert-Butoxide-Mediated Cascade Synthesis of Rutaecarpine Alkaloid Analogues: Access to Molecular Complexity on Multigram Scales. J Org Chem 2024; 89:233-244. [PMID: 38037902 DOI: 10.1021/acs.joc.3c01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this study, we present a novel and cost-effective approach for synthesizing biologically significant analogues of rutaecarpine alkaloid through a one-step cascade reaction. The pentacyclic core of rutaecarpine alkaloid analogues is efficiently constructed using 2-aminobenzonitriles and substituted indole-2-carbaldehydes in the presence of the affordable base KOtBu. The salient feature of this approach is the promotion of a sequential cascade process within a single reaction vessel including the formation of a dihydroquinazolinone ring, oxidation, and cyclization. This method can be successfully applied on a larger scale, making it economically viable.
Collapse
Affiliation(s)
- Soumya Jyoti Basak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Yadav M, Singh VP. Glutathione Peroxidase-like Antioxidant Activity of 1,3-Benzoselenazoles: Synthesis and In Silico Molecular Docking Studies as Pancreatic Lipase Inhibitors. J Org Chem 2023; 88:16934-16948. [PMID: 38008916 DOI: 10.1021/acs.joc.3c01762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The synthesis of 1,3-benzoselenazoles was achieved by the reaction of corresponding bis[3-amino-N-(p-tolyl)benzamide-2-yl] diselenide, bis[3-amino-N-(4-methoxyphenyl)benzamide-2-yl] diselenide, and bis[3-amino-N-(4-(dimethylamino)phenyl) benzamide-2-yl] diselenide with aryl aldehydes. The 1,3-benzoselenazoles continued to exist as planar molecules due to the presence of secondary Se···O interactions as revealed by the single-crystal X-ray analysis. The presence of secondary Se···O interactions in 1,3-benzoselenazoles was confirmed using natural bond orbital (NBO) and atoms in molecules (AIM) calculations. Nucleus-independent chemical shift (NICS) values suggested the presence of aromatic character in a five-membered benzoselenazole heterocyclic ring. The glutathione peroxidase (GPx)-like antioxidant activity of all 1,3-benzoselenazoles was assessed using a thiophenol assay, exhibiting greater antioxidant activity than Ph2Se2 used as a reference. The most active catalyst carrying a strong electron-donating group (-NMe2) at the ortho-position to the benzoselenazole ring was further investigated at different concentrations of thiophenol, H2O2, and 1,3-benzoselenazoles as catalyst for determining their catalytic parameters. Moreover, the potential applications of all 1,3-benzoselenazoles against pancreatic lipase (PL) have been identified using in silico interactions between the active sites of the 1LPB protein as evaluated using a molecular docking study.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
6
|
Ghasemzadeh MA, Mirhosseini-Eshkevari B. Unique and outstanding catalytic behavior of a novel MOF@COF composite as an emerging and powerful catalyst in the preparation of 2,3-dihydroquinazolin-4(1 H)-one derivatives. NANOSCALE ADVANCES 2023; 5:7031-7041. [PMID: 38059021 PMCID: PMC10696948 DOI: 10.1039/d3na00805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
The creation of an emerging porous structure using the hybridization of UiO-66-NH2-MOF, a zirconium-based metal-organic framework (MOF), with a covalent organic framework (COF) based on terephthaldehyde and melamine (UiO-66-NH2-MOF@COF), was assessed using SEM, XRD, EDX/mapping, FT-IR, BET, and TGA analyses. Using the obtained composite as a potential recoverable heterogeneous nanocatalyst, different aldehydes were condensed with isatoic anhydride and anilines or ammonium acetate under solvent-free conditions to create derivatives of 2,3-dihydroquinazolin-4(1H)-one. Examining the catalytic capabilities of the designed UiO-66-NH2-MOF@COF to efficiently produce 2,3-dihydroquinazolin-4(1H)-ones was a standout activity. Low catalyst loading, simple set-up, outstanding yields, and catalyst recoverability are all benefits of this research.
Collapse
Affiliation(s)
- Mohammad Ali Ghasemzadeh
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran
| | | |
Collapse
|
7
|
George G, Yadav N, Auti PS, Paul AT. Molecular modelling, synthesis and in vitro evaluation of quinazolinone hybrid analogues as potential pancreatic lipase inhibitors. J Biomol Struct Dyn 2023; 41:9583-9601. [PMID: 36350239 DOI: 10.1080/07391102.2022.2144456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Obesity is a multifactorial metabolic disorder, growing in an alarming rate across the world. Amongst the numerous targets explored for obesity management, inhibition of pancreatic lipase (PL) is considered as one of the promising approaches. Orlistat is the only PL inhibitory drug approved for long term treatment of obesity. However, it is reported to possess hepatotoxicity and nephrotoxicity. Thus, novel drug candidates that act through PL inhibition are considered the hour's need. Based on this aim, a series of quinazolinone hybrid analogues have been synthesized, characterized and evaluated for their PL inhibitory potential. The physicochemical properties and toxicity parameters suggested that these parameters are in an acceptable range for the screened analogues. Amongst the synthesised analogues, QH-25 exerted potential PL inhibition (IC50 = 16.99 ± 0.54 µM). Further, enzyme inhibition studies suggested a reversible competitive inhibition. Molecular docking of these analogues was in line with in vitro results, wherein the obtained MolDock scores exhibited a significant correlation with their inhibitory activity (Pearson's r = 0.6629). To further confirm the stability of the QH-25-PL complex in a dynamic environment, a molecular dynamics study (100 ns) was carried out and the results suggested that this complex is stable at dynamic conditions. Overall, these results shed light on the quinazolinone hybrids as potential PL inhibitors. Further structural modification may result in the development of potent anti-obesity agents which acts through PL inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ginson George
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science (BITS-Pilani), Pilani campus, Pilani, Rajasthan, India
| | - Nisha Yadav
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science (BITS-Pilani), Pilani campus, Pilani, Rajasthan, India
| | - Prashant S Auti
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science (BITS-Pilani), Pilani campus, Pilani, Rajasthan, India
| | - Atish Tulshiram Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science (BITS-Pilani), Pilani campus, Pilani, Rajasthan, India
| |
Collapse
|
8
|
Wu W, Fan S, Wu X, Fang L, Zhu J. Cobalt Homeostatic Catalysis for Coupling of Enaminones and Oxadiazolones to Quinazolinones. J Org Chem 2023; 88:1945-1962. [PMID: 36705660 DOI: 10.1021/acs.joc.2c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transition metal catalysis has revolutionized modern synthetic chemistry for its diverse modes of coordination reactivity. However, this versatility in reactivity is also the predominant cause of catalyst deactivation, a persisting issue that can significantly compromise its synthetic value. Homeostatic catalysis, a catalytic process that can sustain its productive catalytic cycle even when chemically disturbed, is proposed herein as an effective tactic to address the challenge. In particular, a cobalt homeostatic catalysis process has been developed for the water-tolerant coupling of enaminones and oxadiazolones to quinazolinones. Dynamic covalent bonding serves as a mechanistic handle for the preferred buffering of water onto enaminone and reverse exchange by a released secondary amine, thus securing reversible entry into cobalt's dormant and active states for productive catalysis. Through this homeostatic catalysis mode, a broad structural scope has been achieved for quinazolinones, enabling further elaboration into distinct pharmaceutically active agents.
Collapse
Affiliation(s)
- Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
10
|
Giorgioni G, Del Bello F, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Advances in the Development of Nonpeptide Small Molecules Targeting Ghrelin Receptor. J Med Chem 2022; 65:3098-3118. [PMID: 35157454 PMCID: PMC8883476 DOI: 10.1021/acs.jmedchem.1c02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ghrelin is an octanoylated peptide acting by the activation of the growth hormone secretagogue receptor, namely, GHS-R1a. The involvement of ghrelin in several physiological processes, including stimulation of food intake, gastric emptying, body energy balance, glucose homeostasis, reduction of insulin secretion, and lipogenesis validates the considerable interest in GHS-R1a as a promising target for the treatment of numerous disorders. Over the years, several GHS-R1a ligands have been identified and some of them have been extensively studied in clinical trials. The recently resolved structures of GHS-R1a bound to ghrelin or potent ligands have provided useful information for the design of new GHS-R1a drugs. This perspective is focused on the development of recent nonpeptide small molecules acting as GHS-R1a agonists, antagonists, and inverse agonists, bearing classical or new molecular scaffolds, as well as on radiolabeled GHS-R1a ligands developed for imaging. Moreover, the pharmacological effects of the most studied ligands have been discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - E Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - M V Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
11
|
Zhang R, Ma R, Fu Q, Chen R, Wang Z, Wang L, Ma Y. Selective electrophilic di- and mono-fluorinations for the synthesis of 4-difluoromethyl and 4-fluoromethyl quinazolin(thi)ones by Selectfluor-triggered multi-component reaction. Org Chem Front 2022. [DOI: 10.1039/d1qo01728d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient domino protocol for the selective synthesis of 4-difluoromethyl and 4-fluoromethyl quinazolin(thi)ones was established from readily available 2-aminoacetophenones and iso(thio)cyanates mediated by Selectfluor. The reaction outcomes are...
Collapse
|
12
|
2,3-Dihydroquinazolin-4(1H)-one as a New Class of Anti-Leishmanial Agents: A Combined Experimental and Computational Study. CRYSTALS 2021. [DOI: 10.3390/cryst12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leishmaniasis is a neglected parasitic disease caused by various Leishmania species. The discovery of new protozoa drugs makes it easier to treat the disease; but, conventional clinical issues like drug resistance, cumulative toxicity, and target selectivity are also getting attention. So, there is always a need for new therapeutics to treat Leishmaniasis. Here, we have reported 2,3-dihydroquinazolin-4(1H)-one derivative as a new class of anti-leishmanial agents. Two derivatives, 3a (6,8-dinitro-2,2-disubstituted-2,3-dihydroquinazolin-4(1H)-ones) and 3b (2-(4-chloro-3-nitro-phenyl)-2-methyl-6,8-dinitro-2,3-dihydro-1H-quinazolin-4-one) were prepared that show promising in silico anti-leishmanial activities. Molecular docking was performed against the Leishmanial key proteins including Pyridoxal Kinase and Trypanothione Reductase. The stability of the ligand-protein complexes was further studied by 100 ns MD simulations and MM/PBSA calculations for both compounds. 3b has been shown to be a better anti-leishmanial candidate. In vitro studies also agree with the in-silico results where IC50 for 3a and 3b was 1.61 and 0.05 µg/mL, respectively.
Collapse
|
13
|
Singh A, Singh P, Nath M. Bronsted acidic surfactants: efficient organocatalysts for diverse organic transformations. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Organic transformations using efficient, atom-economical, cost-effective and environmentally benign strategies for the construction of diversified molecules have attracted synthetic chemists worldwide in recent years. These processes often minimize the waste production and avoid the use of hazardous flammable organic solvents. Among various green protocols, the procedures using surfactant-based catalytic systems have received a considerable attention in organic synthesis. In this context, Bronsted acidic surfactants have emerged as efficient catalysts for various C–C, C–O, C–N and C–S bond forming reactions. Many of these reactions occur in water, as Bronsted acidic surfactants have a unique ability of creating hydrophobic pocket through micelle formation in aqueous medium and the substrate molecules react efficiently to afford the targeted products in good yields. In the past, Bronsted acidic surfactant combined catalysts successfully displayed their potential to accelerate the reaction rates of diverse organic transformations. This chapter presents a complete overview on Bronsted acidic surfactants catalyzed organic reactions to construct a variety of aromatic and heteroaromatic molecular frameworks.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Chemistry , Faculty of Science, University of Delhi , Delhi 110 007 , India
| | - Pargat Singh
- Department of Chemistry , Faculty of Science, University of Delhi , Delhi 110 007 , India
| | - Mahendra Nath
- Department of Chemistry , Faculty of Science, University of Delhi , Delhi 110 007 , India
| |
Collapse
|
14
|
Guan M, Wu Y, Chen Y, Huang X, Xu Y, Li J, Lai R. Ru(II)-Catalyzed C–H Activation Reaction between 2-Phenylquinazolinone and Vinylene Carbonate. Synlett 2021. [DOI: 10.1055/a-1608-5381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractIn the report, we described the ruthenium(II)-catalyzed C–H activation/cyclization of 2-arylquinazolinones with vinyl carbonate for the synthesis of different fused quinazolinones. Through this strategy, the 6-hydroxy-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one and 8H-isoquino[1,2-b] quinazolin-8-one have been obtained, respectively, under different temperatures. Additionally, the reaction features broad substrate scope and good yields, only producing carbon dioxide as byproduct. Moreover, we performed preliminary mechanistic studies of this reaction and proposed a possible mechanism.
Collapse
Affiliation(s)
- Mei Guan
- West China Hospital, Sichuan University
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Yuncan Chen
- West China Hospital, Sichuan University
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Xin Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Yingying Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University
| |
Collapse
|
15
|
Karaki F, Oki T, Sakao Y, Sato N, Hirayama S, Miyano K, Uezono Y, Fujii H. Identification of a Putative β-Arrestin Superagonist of the Growth Hormone Secretagogue Receptor (GHSR). ChemMedChem 2021; 16:3463-3476. [PMID: 34278724 DOI: 10.1002/cmdc.202100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/14/2021] [Indexed: 12/30/2022]
Abstract
Ghrelin is a pleiotropic feeding hormone which also has a pivotal role in the central nervous system. Upon the activation of its receptor, growth hormone secretagogue receptor (GHSR), the Gαq/11 -mediated and the β-arrestin-mediated signaling pathways are activated. As the β-arrestin pathway is a potential drug target, there is a strong need for β-arrestin-biased GHSR modulators. Activation of the β-arrestin pathway should inhibit the Gαq/11 -mediated calcium flux through internalization of the receptor. Hence, we used the antagonistic activity in the calcium assay as the first screening for the β-arrestin activation. By conducting the second screening assay for the β-arrestin activation based on extracellular signal regulated kinase (ERK) 1/2 phosphorylation, we discovered a putative β-arrestin-biased superagonist. The activity of the compound was not completely blocked with the competitive antagonist, which implies that the effect is mediated, at least partly, by allosteric binding of the compound.
Collapse
Affiliation(s)
- Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoya Oki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuma Sakao
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- Analytical Unit for Organic Chemistry, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.,Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa city, Chiba, 277-8577, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
16
|
Azimi F, Azizian H, Najafi M, Hassanzadeh F, Sadeghi-Aliabadi H, Ghasemi JB, Ali Faramarzi M, Mojtabavi S, Larijani B, Saghaei L, Mahdavi M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg Chem 2021; 114:105127. [PMID: 34246971 DOI: 10.1016/j.bioorg.2021.105127] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023]
Abstract
In this study, a new series of quinazolinone-pyrazole hybrids were designed, synthesized and screened for their α-glucosidase inhibitory activity. The results of the in vitro screening indicated that all the molecular hybrids exhibited more inhibitory activity (IC50 values ranging from 60.5 ± 0.3 µM-186.6 ± 20 μM) in comparison to standard acarbose (IC50 = 750.0 ± 10.0 µM). Limited structure-activity relationship suggested that the variation in the inhibitory activities of the compounds affected by different substitutions on phenyl rings of diphenyl pyrazole moiety. The enzyme kinetic studies of the most potent compound 9i revealed that it inhibited α-glucosidase in a competitive mode with a Ki of 56 μM. Molecular docking study was performed to predict the putative binding interaction. As expected, all pharmacophoric moieties used in the initial structure design playing a pivotal role in the interaction with the binding site of the enzyme. In addition, by performing molecular dynamic investigation and MM-GBSA calculation, we investigated the difference in structural perturbation and dynamic behavior that is observed over α-glycosidase in complex with the most active compound and acarbose relative to unbound α-glycosidase enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Liang Y, Yin W, Yin Y, Zhang W. Ghrelin Based Therapy of Metabolic Diseases. Curr Med Chem 2021; 28:2565-2576. [PMID: 32538716 PMCID: PMC11213490 DOI: 10.2174/0929867327666200615152804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ghrelin, a unique 28 amino acid peptide hormone secreted by the gastric X/A like cells, is an endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin-GHSR signaling has been found to exert various physiological functions, including stimulation of appetite, regulation of body weight, lipid and glucose metabolism, and increase of gut motility and secretion. This system is thus critical for energy homeostasis. OBJECTIVE The objective of this review is to highlight the strategies of ghrelin-GHSR based intervention for therapy of obesity and its related metabolic diseases. RESULTS Therapeutic strategies of metabolic disorders targeting the ghrelin-GHSR pathway involve neutralization of circulating ghrelin by antibodies and RNA spiegelmers, antagonism of ghrelin receptor by its antagonists and inverse agonists, inhibition of ghrelin O-acyltransferase (GOAT), as well as potential pharmacological approach to decrease ghrelin synthesis and secretion. CONCLUSION Various compounds targeting the ghrelin-GHSR system have shown promising efficacy for the intervention of obesity and relevant metabolic disorders in animals and in vitro. Further clinical trials to validate their efficacy in human beings are urgently needed.
Collapse
Affiliation(s)
- Yuan Liang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhen Yin
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| |
Collapse
|
18
|
Childs MD, Luyt LG. A Decade's Progress in the Development of Molecular Imaging Agents Targeting the Growth Hormone Secretagogue Receptor. Mol Imaging 2020; 19:1536012120952623. [PMID: 33104445 PMCID: PMC8865914 DOI: 10.1177/1536012120952623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The growth hormone secretagogue receptor 1a (GHSR), also called the ghrelin receptor, is a G protein-coupled receptor known to play an important metabolic role in the regulation of various physiological processes, including energy expenditure, growth hormone secretion, and cell proliferation. This receptor has been implicated in numerous health issues including obesity, gastrointestinal disorders, type II diabetes, and regulation of body weight in patients with Prader-Willi syndrome, and there has been growing interest in studying its mechanism of behavior to unlock further applications of GHSR-targeted therapeutics. In addition, the GHSR is expressed in various types of cancer including prostate, breast, and testicular cancers, while aberrant expression has been reported in cardiac disease. Targeted molecular imaging of the GHSR could provide insights into its role in biological processes related to these disease states. Over the past decade, imaging probes targeting this receptor have been discovered for the imaging modalities PET, SPECT, and optical imaging. High-affinity analogues of ghrelin, the endogenous ligand for the GHSR, as well as small molecule inhibitors have been developed and evaluated both in vitro and in pre-clinical models. This review provides a comprehensive overview of the molecular imaging agents targeting the GHSR reported to the end of 2019.
Collapse
Affiliation(s)
- Marina D Childs
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada.,Department of Medical Imaging, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Cooper M, Llinas A, Hansen P, Caffrey M, Ray A, Sjödin S, Shamovsky I, Wada H, Jellesmark Jensen T, Sivars U, Hultin L, Andersson U, Lundqvist S, Gedda K, Jinton L, Krutrök N, Lewis R, Jansson P, Gardelli C. Identification and Optimization of Pyrrolidine Derivatives as Highly Potent Ghrelin Receptor Full Agonists. J Med Chem 2020; 63:9705-9730. [PMID: 32787075 DOI: 10.1021/acs.jmedchem.0c00828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Muscle atrophy and cachexia are common comorbidities among patients suffering from cancer, chronic obstructive pulmonary disease, and several other chronic diseases. The peptide hormone ghrelin exerts pleiotropic effects including the stimulation of growth hormone secretion and subsequent increase of insulin-like growth factor-1 levels, an important mediator of muscle growth and repair. Ghrelin also acts on inflammation, appetite, and adipogenesis and therefore has been considered a promising therapeutic target for catabolic conditions. We previously reported on the synthesis and properties of an indane based series of ghrelin receptor full agonists which led to a sustained increase of insulin-like growth factor-1 in a dog pharmacodynamic study. Herein we report on the identification of a series of pyrrolidine or piperidine based full agonists and attempted optimization to give compounds with profiles suitable for progression as clinical candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Stina Sjödin
- Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal SE-43183, Sweden
| | | | | | - Tina Jellesmark Jensen
- Early Clinical Development, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Mölndal SE-43183, Sweden
| | | | - Leif Hultin
- In Vivo Imaging Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Mölndal SE-43183, Sweden
| | - Ulf Andersson
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Mölndal SE-43183, Sweden
| | - Sara Lundqvist
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal SE-43183, Sweden
| | - Karin Gedda
- Precision Medicine, Oncology R&D, AstraZeneca, Mölndal SE-43183, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
O'Brien NS, McCluskey A. A Facile Microwave and SnCl2 Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Aust J Chem 2020. [DOI: 10.1071/ch20101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An elegantly simple, facile, and robust approach to a scaffold of biological importance, 2,3-dihydroquinazolin-4(1H)-ones, is reported. A catalytic 1% SnCl2/microwave-mediated approach afforded access to pure material, collected by cooling and filtration after 20-min microwave irradiation at 120°C. A total of 41 analogues were prepared in isolated yields of 17–99%. This process was highly tolerant of aliphatic, aromatic, heterocyclic, and acyclic aldehydes, but furan, pyrrole, and thiophene aldehyde reactivity correlated with propensity towards electrophilic addition and/or Diels–Alder addition. As a result, thiophene afforded high yields (80%) whereas pyrrole carboxaldehyde failed to react. With simple cinnamaldehydes, and in the SbCl3-mediated reaction, and with α,β-unsaturated aldehydes the equivalent quinazolin-4(3H)-ones, and not the 2,3-dihydroquinazolin-4(1H)-ones, was favoured.
Collapse
|
21
|
Sharma N, Barbon SM, Lalonde T, Maar RR, Milne M, Gilroy JB, Luyt LG. The development of peptide–boron difluoride formazanate conjugates as fluorescence imaging agents. RSC Adv 2020; 10:18970-18977. [PMID: 35518290 PMCID: PMC9053952 DOI: 10.1039/d0ra02104k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022] Open
Abstract
Two new fluorescence imaging probes have been synthesized by incorporating a versatile alkyne-substituted boron difluoride formazanate precursor with peptides through copper-catalyzed alkyne–azide cycloaddition. The formazanate dye was appended to a C-terminal amino acid of ghrelin for imaging the growth hormone secretagogue receptor (GHSR-1a). To demonstrate versatile bioconjugation chemistry, the formazanate dye was added to the N-terminus of bombesin for targeting the gastrin releasing peptide receptor (GRPR). These are the first examples of using this emerging class of dyes, boron difluoride formazanates, for the labelling of biomolecules. Conjugation of a boron difluoride formazanate dye to receptor targeting peptides provides cancer imaging agents for fluorescence microscopy.![]()
Collapse
Affiliation(s)
- Neha Sharma
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | | | - Tyler Lalonde
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | - Ryan R. Maar
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | - Mark Milne
- London Regional Cancer Program
- Lawson Health Research Institute
- London
- Canada
| | - Joe B. Gilroy
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | - Leonard G. Luyt
- Department of Chemistry
- University of Western Ontario
- London
- Canada
- London Regional Cancer Program
| |
Collapse
|
22
|
Development and validation of an assay for a novel ghrelin receptor inverse agonist PF-5190457 and its major hydroxy metabolite (PF-6870961) by LC-MS/MS in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121820. [DOI: 10.1016/j.jchromb.2019.121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 09/28/2019] [Indexed: 01/10/2023]
|
23
|
Abstract
PURPOSE OF REVIEW Obesity is affecting over 600 million adults worldwide and has numerous negative effects on health. Since ghrelin positively regulates food intake and body weight, targeting its signaling to induce weight loss under conditions of obesity seems promising. Thus, the present work reviews and discusses different possibilities to alter ghrelin signaling. RECENT FINDINGS Ghrelin signaling can be altered by RNA Spiegelmers, GHSR/Fc, ghrelin-O-acyltransferase inhibitors as well as antagonists, and inverse agonists of the ghrelin receptor. PF-05190457 is the first inverse agonist of the ghrelin receptor tested in humans shown to inhibit growth hormone secretion, gastric emptying, and reduce postprandial glucose levels. Effects on body weight were not examined. Although various highly promising agents targeting ghrelin signaling exist, so far, they were mostly only tested in vitro or in animal models. Further research in humans is thus needed to further assess the effects of ghrelin antagonism on body weight especially under conditions of obesity.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Mani BK, Shankar K, Zigman JM. Ghrelin's Relationship to Blood Glucose. Endocrinology 2019; 160:1247-1261. [PMID: 30874792 PMCID: PMC6482034 DOI: 10.1210/en.2019-00074] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
Much effort has been directed at studying the orexigenic actions of administered ghrelin and the potential effects of the endogenous ghrelin system on food intake, food reward, body weight, adiposity, and energy expenditure. Although endogenous ghrelin's actions on some of these processes remain ambiguous, its glucoregulatory actions have emerged as well-recognized features during extreme metabolic conditions. The blood glucose-raising actions of ghrelin are beneficial during starvation-like conditions, defending against life-threatening falls in blood glucose, but they are seemingly detrimental in obese states and in certain monogenic forms of diabetes, contributing to hyperglycemia. Also of interest, blood glucose negatively regulates ghrelin secretion. This article reviews the literature suggesting the existence of a blood glucose-ghrelin axis and highlights the factors that mediate the glucoregulatory actions of ghrelin, especially during metabolic extremes such as starvation and diabetes.
Collapse
Affiliation(s)
- Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kripa Shankar
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
- Correspondence: Jeffrey M. Zigman, MD, PhD, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390. E-mail:
| |
Collapse
|
25
|
Elsharif AM, Youssef TE, Al-Jameel SS, Mohamed HH, Ansari MA, Rehman S, Akhtar S. Synthesis of an Activatable Tetra-Substituted Nickel Phthalocyanines-4(3H)-quinazolinone Conjugate and Its Antibacterial Activity. Adv Pharmacol Sci 2019; 2019:5964687. [PMID: 31143208 PMCID: PMC6501279 DOI: 10.1155/2019/5964687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/19/2019] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to synthesize a series of nickel(II)phthalocyanines (NiPcs) bearing four 4(3H)-quinazolinone ring system units, (qz)4NiPcs 4a-d. The electronic factors in the 4(3H)-quinazolinone moiety that attached to the NiPc skeleton had a magnificent effect on the antibacterial activity of the newly synthesized (qz)4NiPcs 4a-d against Escherichia coli. The minimum MICs and MBCs value were recorded for compounds 4a, 4b, 4c, and 4d, respectively. The results indicated that the studied (qz)4NiPcs 4a-d units possessed a broad spectrum of activity against Escherichia coli. Their antibacterial activities were found in the order of 4d > 4c > 4b > 4a against Escherichia coli, and the strongest antibacterial activity was achieved with compound 4d.
Collapse
Affiliation(s)
- Asma M. Elsharif
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Tamer E. Youssef
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Suhailah S. Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hanan H. Mohamed
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute of Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institute of Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Physics Research, Institute of Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
26
|
Wenthur CJ, Gautam R, Zhou B, Vendruscolo LF, Leggio L, Janda KD. Ghrelin Receptor Influence on Cocaine Reward is Not Directly Dependent on Peripheral Acyl-Ghrelin. Sci Rep 2019; 9:1841. [PMID: 30755699 PMCID: PMC6372697 DOI: 10.1038/s41598-019-38549-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022] Open
Abstract
The peptide hormone acyl-ghrelin and its receptor, GHSR1a, represent intriguing therapeutic targets due to their actions in metabolic homeostasis and reward activity. However, this pleotropic activity makes it difficult to intervene in this system without inducing unwanted effects. Thus, it is desirable to identify passive and active regulatory mechanisms that allow differentiation between functional domains. Anatomical restriction by the blood brain barrier represents one major passive regulatory mechanism. However, it is likely that the ghrelin system is subject to additional passive mechanisms that promote independent regulation of orexigenic behavior and reward processing. By applying acyl-ghrelin sequestering antibodies, it was determined that peripheral sequestration of acyl-ghrelin is sufficient to blunt weight gain, but not cocaine rewarding effects. However, both weight gain and reward-associated behaviors were shown to be blocked by direct antagonism of GHSR1a. Overall, these data indicate that GHSR1a effects on reward are independent from peripheral acyl-ghrelin binding, whereas centrally-mediated alteration of energy storage requires peripheral acyl-ghrelin binding. This demonstration of variable ligand-dependence amongst functionally-distinct GHSR1a populations is used to generate a regulatory model for functional manipulation of specific effects when attempting to therapeutically target the ghrelin system.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pharmacy, University of Wisconsin - Madison, Madison, WI, USA
| | - Ritika Gautam
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
27
|
Rohokale RS, Kalshetti RG, Ramana CV. Iridium(III)-Catalyzed Alkynylation of 2-(Hetero)arylquinazolin-4-one Scaffolds via C–H Bond Activation. J Org Chem 2019; 84:2951-2961. [DOI: 10.1021/acs.joc.8b02738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajendra S. Rohokale
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
| | - Rupali G. Kalshetti
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Chepuri V. Ramana
- CSIR−National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
28
|
Luo Y, He H, Li J, Yu X, Guan M, Wu Y. Catalyst-controlled selective mono-/dialkylation of 2-aryl-4(3H)-quinazolinones. Org Chem Front 2019. [DOI: 10.1039/c9qo00496c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Catalyst-controlled selective mono-/dialkylation of 2-aryl-4(3H)-quinazolinones with α-diazotized Meldrum's acid has been achieved successfully via a metal carbene migratory insertion process.
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Hua He
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Xinling Yu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Mei Guan
- West China School of Pharmacy and West China Hospital Sichuan University
- Chengdu 610041
- P. R. China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| |
Collapse
|
29
|
Discovery of coumarin-dihydroquinazolinone analogs as niacin receptor 1 agonist with in-vivo anti-obesity efficacy. Eur J Med Chem 2018; 152:208-222. [DOI: 10.1016/j.ejmech.2018.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022]
|
30
|
Hou J, Kovacs MS, Dhanvantari S, Luyt LG. Development of Candidates for Positron Emission Tomography (PET) Imaging of Ghrelin Receptor in Disease: Design, Synthesis, and Evaluation of Fluorine-Bearing Quinazolinone Derivatives. J Med Chem 2018; 61:1261-1275. [DOI: 10.1021/acs.jmedchem.7b01754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jinqiang Hou
- London Regional Cancer Program, London N6A 4L6, Canada
- Lawson Health Research Institute, London N6C 2R5, Canada
| | | | | | - Leonard G. Luyt
- London Regional Cancer Program, London N6A 4L6, Canada
- Lawson Health Research Institute, London N6C 2R5, Canada
| |
Collapse
|
31
|
Molecular modeling, enzyme activity, anti-inflammatory and antiarthritic activities of newly synthesized quinazoline derivatives. Future Med Chem 2017; 9:1995-2009. [DOI: 10.4155/fmc-2017-0157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: 16 thioxoquinazolines were evaluated in vivo for anti-inflammatory activity using carrageenan-induced paw edema assay. Results: In particular, out of the targets (1–16), compounds 4 and 6 displayed the highest anti-inflammatory activity (≥80%) and furtherly tested against complete Freund’s adjuvant-induced arthritic rats. Significant reduction in the serum level of IL-1β, COX-2 and prostaglandin E2 in the complete Freund’s adjuvant rats is demonstrated by compounds 4 and 6. Furthermore, compound 4 showed non-selective activity against COX-1 and COX 2, however, compound 6 was specific toward COX-2. Molecular docking study has demonstrated the possible binding modes of the active quinazolines 4 and 6 in the COX-2 active site. Conclusion: These targets could be used as templates for further development of new derivatives with potent anti-inflammatory activity.
Collapse
|
32
|
Serrano J, Casanova-Martí À, Blay MT, Terra X, Pinent M, Ardévol A. Strategy for limiting food intake using food components aimed at multiple targets in the gastrointestinal tract. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Mosa R, Huang L, Li H, Grist M, LeRoith D, Chen C. Long-term treatment with the ghrelin receptor antagonist [d-Lys3]-GHRP-6 does not improve glucose homeostasis in nonobese diabetic MKR mice. Am J Physiol Regul Integr Comp Physiol 2017; 314:R71-R83. [PMID: 28903914 DOI: 10.1152/ajpregu.00157.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long-term treatment with the ghrelin receptor antagonist [d-Lys3]-GHRP-6 does not improve glucose homeostasis in nonobese diabetic MKR mice. Am J Physiol Regul Integr Comp Physiol 314: R71-R83, 2018. First published September 13, 2017; doi: 10.1152/ajpregu.00157.2017 .-Ghrelin secretion has been associated with increased caloric intake and adiposity. The expressions of ghrelin and its receptor (GHS-R1a) in the pancreas has raised the interest about the role of ghrelin in glucose homeostasis. Most of the studies showed that ghrelin promoted hyperglycemia and inhibited insulin secretion. This raised the interest in using GHS-R1a antagonists as therapeutic targets for type 2 diabetes. Available data of GHS-R antagonists are on a short-term basis. Moreover, the complexity of GHS-R1a signaling makes it difficult to understand the mechanism of action of GHS-R1a antagonists. This study examined the possible effects of long-term treatment with a GHS-R1a antagonist, [d-Lys3]-growth hormone-releasing peptide (GHRP)-6, on glucose homeostasis, food intake, and indirect calorimetric parameters in nonobese diabetic MKR mice. Our results showed that [d-Lys3]-GHRP-6 (200 nmol/mouse) reduced pulsatile growth hormone secretion and body fat mass as expected but worsened glucose and insulin intolerances and increased cumulative food intake unexpectedly. In addition, a significant increase in blood glucose and decreases in plasma insulin and C-peptide levels were observed in MKR mice following long-term [d-Lys3]-GHRP-6 treatment, suggesting a direct inhibition of insulin secretion. Immunofluorescence staining of pancreatic islets showed a proportional increase in somatostatin-positive cells and a decrease in insulin-positive cells in [d-Lys3]-GHRP-6-treated mice. Furthermore, [d-Lys3]-GHRP-6 stimulated food intake on long-term treatment via reduction of proopiomelanocortin gene expression and antagonized GH secretion via reduced growth hormone-releasing hormone gene expression in hypothalamus. These results demonstrate that [d-Lys3]-GHRP-6 is not completely opposite to ghrelin and may not be a treatment option for type 2 diabetes.
Collapse
Affiliation(s)
- Rasha Mosa
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Lili Huang
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Hongzhuo Li
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Michael Grist
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Derek LeRoith
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
|
35
|
Subhashini NJP, Swetha G, Shivaraj. Synthesis and characterization of novel bis-triazolyl quinazolinones. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s107036321708028x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Copper-Catalysed Tandem Synthesis of Substituted Quinazolines from Phenacyl Azides and O
-Carbonyl Anilines. ChemistrySelect 2017. [DOI: 10.1002/slct.201700889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Colldén G, Tschöp MH, Müller TD. Therapeutic Potential of Targeting the Ghrelin Pathway. Int J Mol Sci 2017; 18:ijms18040798. [PMID: 28398233 PMCID: PMC5412382 DOI: 10.3390/ijms18040798] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Collapse
Affiliation(s)
- Gustav Colldén
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Institute for Diabetes and Obesity (IDO), Business Campus Garching-Hochbrück, Parkring 13, 85748 Garching, Germany.
| |
Collapse
|
38
|
Moldovan RP, Els-Heindl S, Worm DJ, Kniess T, Kluge M, Beck-Sickinger AG, Deuther-Conrad W, Krügel U, Brust P. Development of Fluorinated Non-Peptidic Ghrelin Receptor Ligands for Potential Use in Molecular Imaging. Int J Mol Sci 2017; 18:ijms18040768. [PMID: 28379199 PMCID: PMC5412352 DOI: 10.3390/ijms18040768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
The ghrelin receptor (GhrR) is a widely investigated target in several diseases. However, the current knowledge of its role and distribution in the brain is limited. Recently, the small and non-peptidic compound (S)-6-(4-bromo-2-fluorophenoxy)-3-((1-isopropylpiperidin-3-yl)methyl)-2-methylpyrido[3,2-d]pyrimidin-4(3H)-one ((S)-9) has been described as a GhrR ligand with high binding affinity. Here, we describe the synthesis of fluorinated derivatives, the in vitro evaluation of their potency as partial agonists and selectivity at GhrRs, and their physicochemical properties. These results identified compounds (S)-9, (R)-9, and (S)-16 as suitable parent molecules for 18F-labeled positron emission tomography (PET) radiotracers to enable future investigation of GhrR in the brain.
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Universität Leipzig, 04103 Leipzig, Germany.
| | - Dennis J Worm
- Institute of Biochemistry, Universität Leipzig, 04103 Leipzig, Germany.
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Michael Kluge
- Department of Psychiatry, Universität Leipzig, 04103 Leipzig, Germany.
| | | | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, 04107 Leipzig, Germany.
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| |
Collapse
|
39
|
Spectroscopic and reactive properties of a newly synthesized quinazoline derivative: Combined experimental, DFT, molecular dynamics and docking study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Synthesis, biological evaluation and docking studies of 2,3-dihydroquinazolin-4(1 H )-one derivatives as inhibitors of cholinesterases. Bioorg Chem 2017; 70:237-244. [DOI: 10.1016/j.bioorg.2017.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 11/23/2022]
|
41
|
From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. Int J Mol Sci 2017; 18:ijms18020273. [PMID: 28134808 PMCID: PMC5343809 DOI: 10.3390/ijms18020273] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrally-mediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry.
Collapse
|
42
|
Mahdavi M, Saeedi M, Karimi M, Foroughi N, Hasanshahi F, Alinezhad H, Foroumadi A, Shafiee A, Akbarzadeh T. Synthesis of novel 1,2,3-triazole derivatives of 2,3-dihydroquinazolin-4(1H)-one. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1739-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Turan-Zitouni G, Yurttaş L, Saka G, Cantürk Z, Gencer HK, Baysal M, Kaplancιklι ZA. Antimicrobial and Cytotoxic Evaluation of New Quinazoline Derivatives. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The synthesis of nine new quinazoline derivatives (2a-2i) and evaluation of their antimicrobial and cytotoxic activities were aims of the present work. For the synthesis of the compounds, 2-chloro-6,7-dimethoxyquinazolin-4-amine was used as the initial starting material. The intermediate product, 2-hydrazinyl-6,7-dimethoxyquinazolin-4-amine, was reacted with appropriate aromatic aldehydes to obtain 2-(2-benzylidenehydrazinyl)-6,7-dimethoxyquinazolin-4-amine derivatives as final compounds. The structures of the compounds were elucidated by 1H- and 13C-NMR, IR, and MS analyses. The new pure compounds were evaluated for their potential antimicrobial and cytotoxic activities using in vitro microdilution and cell culture techniques, respectively. The compounds 2e and 2f may be promising candidates for the treatment of fungal infections with their activity and cytotoxicity.
Collapse
Affiliation(s)
- Gülhan Turan-Zitouni
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskisehir, Turkey
| | - Leyla Yurttaş
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskisehir, Turkey
| | - Güner Saka
- Hitit University, Faculty of Sciences, Department of Chemistry, 19000-Çorum, Turkey
| | - Zerrin Cantürk
- Anadolu University, Faculty of Pharmacy, Department of Microbiology, 26470 Eskisehir, Turkey
| | - Hülya Karaca Gencer
- Anadolu University, Faculty of Pharmacy, Department of Microbiology, 26470 Eskisehir, Turkey
| | - Merve Baysal
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 26470 Eskisehir, Turkey
| | - Zafer Asιm Kaplancιklι
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskisehir, Turkey
| |
Collapse
|
44
|
Hou J, Charron CL, Fowkes MM, Luyt LG. Bridging computational modeling with amino acid replacements to investigate GHS-R1a-peptidomimetic recognition. Eur J Med Chem 2016; 123:822-833. [DOI: 10.1016/j.ejmech.2016.07.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 12/26/2022]
|
45
|
Bonacorso HG, Rosa WC, Oliveira SM, Brusco I, Pozza CCD, Nogara PA, Wiethan CW, Rodrigues MB, Frizzo CP, Zanatta N. Synthesis and antinociceptive activity of new 2-substituted 4-(trifluoromethyl)-5,6-dihydrobenzo[ h ]quinazolines. Bioorg Med Chem Lett 2016; 26:4808-4814. [DOI: 10.1016/j.bmcl.2016.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022]
|
46
|
Xin D, Yuan J, Wong KY, Burgess K. Heterogeneous Phase Transfer Catalysis in Solid Phase Syntheses of Anth-Cyclic Tetrapeptides. J Org Chem 2016; 81:8077-81. [PMID: 27552148 DOI: 10.1021/acs.joc.6b01475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study features solid phase syntheses of cyclic tetrapeptides containing anthranilic acid (Anth) on relatively inexpensive resins derived from polystyrene. It proved to be difficult to hydrolyze a supported Anth-methyl ester unless a phase transfer catalyst was added to facilitate transport of hydroxide into the swollen hydrophobic gel state of the resin. We suggest this may be an under-appreciated strategy for improving syntheses on polystyrene supports.
Collapse
Affiliation(s)
- Dongyue Xin
- Department of Chemistry, Texas A & M University , Box 30012, College Station, Texas 77842, United States
| | - Jian Yuan
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University , Hunghom, Kowloon, Hong Kong, P. R. China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University , Hunghom, Kowloon, Hong Kong, P. R. China
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University , Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
47
|
Mostafa B, Habibi-Khorassani SM, Shahraki M. An experimental investigation of substituent effects on the formation of 2,3-dihydroquinazolin-4(1 H)-ones: a kinetic study. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bahareh Mostafa
- Department of Chemistry; University of Sistan and Baluchestan; Zahedan Iran
| | | | - Mehdi Shahraki
- Department of Chemistry; University of Sistan and Baluchestan; Zahedan Iran
| |
Collapse
|
48
|
Shankaraiah P, Veeresham S, Bhavani AKD. Kumada cross coupling reaction based synthesis, antimicrobial and computational studies of 6-aryl-2-phenyl-3-methylquinazolin-4(3H)-ones. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Kong J, Chuddy J, Stock IA, Loria PM, Straub SV, Vage C, Cameron KO, Bhattacharya SK, Lapham K, McClure KF, Zhang Y, Jackson VM. Pharmacological characterization of the first in class clinical candidate PF-05190457: a selective ghrelin receptor competitive antagonist with inverse agonism that increases vagal afferent firing and glucose-dependent insulin secretion ex vivo. Br J Pharmacol 2016; 173:1452-64. [PMID: 26784385 DOI: 10.1111/bph.13439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Ghrelin increases growth hormone secretion, gastric acid secretion, gastric motility and hunger but decreases glucose-dependent insulin secretion and insulin sensitivity in humans. Antagonizing the ghrelin receptor has potential as a therapeutic approach in the treatment of obesity and type 2 diabetes. Therefore, the aim was to pharmacologically characterize the novel small-molecule antagonist PF-05190457 and assess translational pharmacology ex vivo. EXPERIMENTAL APPROACH Radioligand binding in filter and scintillation proximity assay formats were used to evaluate affinity, and europium-labelled GTP to assess functional activity. Rat vagal afferent firing and calcium imaging in dispersed islets were used as native tissues underlying food intake and insulin secretion respectively. KEY RESULTS PF-05190457 was a potent and selective inverse agonist on constitutively active ghrelin receptors and acted as a competitive antagonist of ghrelin action, with a human Kd of 3 nM requiring 4 h to achieve equilibrium. Potency of PF-05190457 was similar across different species. PF-05190457 increased intracellular calcium within dispersed islets and increased vagal afferent firing in a concentration-dependent manner with similar potency but was threefold less potent as compared with the in vitro Ki in recombinant overexpressing cells. The effect of PF-05190457 on rodent islets was comparable with glibenclamide, but glucose-dependent and additive with the insulin secretagogue glucagon-like peptide-1. CONCLUSIONS AND IMPLICATIONS Together, these data provide the pharmacological in vitro and ex vivo characterization of the first ghrelin receptor inverse agonist, which has advanced into clinical trials to evaluate the therapeutic potential of blocking ghrelin receptors in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- J Kong
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - J Chuddy
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - I A Stock
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - P M Loria
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - S V Straub
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - C Vage
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - K O Cameron
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - S K Bhattacharya
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - K Lapham
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - K F McClure
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - Y Zhang
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| | - V M Jackson
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 01239, USA
| |
Collapse
|
50
|
Banerji B, Bera S, Chatterjee S, Killi SK, Adhikary S. Regioselective Synthesis of Quinazolinone-/Phenanthridine-Fused Heteropolycycles by Pd-Catalyzed Direct Intramolecular Aerobic Oxidative C−H Amination from Aromatic Strained Amides. Chemistry 2016; 22:3506-3512. [DOI: 10.1002/chem.201504186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Biswadip Banerji
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Raja S.C. Mullick Road Kolkata - 700032 India
| | - Suvankar Bera
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Raja S.C. Mullick Road Kolkata - 700032 India
| | - Satadru Chatterjee
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Raja S.C. Mullick Road Kolkata - 700032 India
| | - Sunil Kumar Killi
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Raja S.C. Mullick Road Kolkata - 700032 India
| | - Saswati Adhikary
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Raja S.C. Mullick Road Kolkata - 700032 India
| |
Collapse
|