1
|
García-García A, Cristobal-Cueto P, Hidalgo T, Vitórica-Yrezábal IJ, Rodríguez-Diéguez A, Horcajada P, Rojas S. Potential antiprostatic performance of novel lanthanide-complexes based on 5-nitropicolinic acid. J Biol Inorg Chem 2024; 29:331-338. [PMID: 38717473 PMCID: PMC11111526 DOI: 10.1007/s00775-024-02054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 05/24/2024]
Abstract
Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 μg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuente Nueva S/N, 18071, Granada, Spain
| | - Pablo Cristobal-Cueto
- Advanced Porous Material Unit, IMDEA Energy Institute, Av. Ramón de La Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Material Unit, IMDEA Energy Institute, Av. Ramón de La Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Iñigo J Vitórica-Yrezábal
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuente Nueva S/N, 18071, Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuente Nueva S/N, 18071, Granada, Spain
| | - Patricia Horcajada
- Advanced Porous Material Unit, IMDEA Energy Institute, Av. Ramón de La Sagra 3, 28935, Móstoles, Madrid, Spain.
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuente Nueva S/N, 18071, Granada, Spain.
| |
Collapse
|
2
|
Strasser P, Montsch B, Weiss S, Sami H, Kugler C, Hager S, Schueffl H, Mader R, Brüggemann O, Kowol CR, Ogris M, Heffeter P, Teasdale I. Degradable Bottlebrush Polypeptides and the Impact of their Architecture on Cell Uptake, Pharmacokinetics, and Biodistribution In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300767. [PMID: 36843221 PMCID: PMC11475343 DOI: 10.1002/smll.202300767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 06/02/2023]
Abstract
Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Bianca Montsch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Silvia Weiss
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Haider Sami
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Christoph Kugler
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Robert Mader
- Department of Medicine IMedical University of ViennaVienna1090Austria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Manfred Ogris
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| |
Collapse
|
3
|
Qin X, Fang L, Zhao J, Gou S. Theranostic Pt(IV) Conjugate with Target Selectivity for Androgen Receptor. Inorg Chem 2018; 57:5019-5029. [DOI: 10.1021/acs.inorgchem.8b00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Henke H, Kryeziu K, Banfić J, Theiner S, Körner W, Brüggemann O, Berger W, Keppler BK, Heffeter P, Teasdale I. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes. Macromol Biosci 2016; 16:1239-1249. [PMID: 27169668 DOI: 10.1002/mabi.201600035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/25/2016] [Indexed: 11/06/2022]
Abstract
The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex.
Collapse
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Kushtrim Kryeziu
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Jelena Banfić
- Institute of Inorganic Chemistry University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Sarah Theiner
- Research Platform "Translational Cancer Therapy Research," University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Wilfried Körner
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Research Platform "Translational Cancer Therapy Research," University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
5
|
Trivedi ER, Ma Z, Waters EA, Macrenaris KW, Subramanian R, Barrett AGM, Meade TJ, Hoffman BM. Synthesis and characterization of a porphyrazine-Gd(III) MRI contrast agent and in vivo imaging of a breast cancer xenograft model. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:313-22. [PMID: 24706615 DOI: 10.1002/cmmi.1577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/05/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Porphyrazines (Pz), or tetraazaporphyrins, are being studied for their potential use in detection and treatment of cancer. Here, an amphiphilic Cu-Pz-Gd(III) conjugate has been prepared via azide-alkyne Huisgen cycloaddition or 'click' chemistry between an azide functionalized Pz and alkyne functionalized DOTA-Gd(III) analog for use as an MRI contrast agent. This agent, Cu-Pz-Gd(III), is synthesized in good yield and exhibits solution-phase ionic relaxivity (r1 = 11.5 mM(-1) s(-1)) that is approximately four times higher than that of a clinically used monomeric Gd(III) contrast agent, DOTA-Gd(III). Breast tumor cells (MDA-MB-231) associate with Cu-Pz-Gd(III) in vitro, where significant contrast enhancement (9.336 ± 0.335 contrast-to-noise ratio) is observed in phantom cell pellet MR images. This novel contrast agent was administered in vivo to an orthotopic breast tumor model in athymic nude mice and MR images were collected. The average T1 of tumor regions in mice treated with 50 mg kg(-1) Cu-Pz-Gd(III) decreased relative to saline-treated controls. Furthermore, the decrease in T1 was persistent relative to mice treated with the monomeric Gd(III) contrast agent. An ex vivo biodistribution study confirmed that Cu-Pz-Gd(III) accumulates in the tumors and is rapidly cleared, primarily through the kidneys. Differential accumulation and T1 enhancement by Cu-Pz-Gd(III) in the tumor's core relative to the periphery offer preliminary evidence that this agent would find application in the imaging of necrotic tissue.
Collapse
Affiliation(s)
- Evan R Trivedi
- Department of Chemistry, Northwestern University, Evanston, IL, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bonaiuto E, Milelli A, Cozza G, Tumiatti V, Marchetti C, Agostinelli E, Fimognari C, Hrelia P, Minarini A, Di Paolo ML. Novel polyamine analogues: From substrates towards potential inhibitors of monoamine oxidases. Eur J Med Chem 2013; 70:88-101. [DOI: 10.1016/j.ejmech.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 01/12/2023]
|
7
|
Henke H, Wilfert S, Iturmendi A, Brüggemann O, Teasdale I. Branched Polyphosphazenes with Controlled Dimensions. ACTA ACUST UNITED AC 2013; 51:4467-4473. [PMID: 24729656 DOI: 10.1002/pola.26865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using living cationic polymerization, a series of polyphosphazenes is prepared with precisely controlled molecular weights and narrow polydispersities. As well as varying chain length through the use of a living polymerization, amine-capped polyalkylene oxide (Jeffamine) side chains with varied lengths are grafted to the polymer backbone to give a series of polymers with varied dimensions. Dynamic light scattering and size exclusion chromatography are used to confirm the preparation of polymers with a variety of controlled dimensions and thus hydrodynamic volumes. Furthermore, it is demonstrated how the number of arms per repeat unit, and thus the density of branching, can also be further increased from two to four through using a one-pot thiolactone conversion of the Jeffamines, followed by thiol-yne addition to the polyphosphazene backbone. These densely branched, molecular brush-type polymers on a biodegradable polyphosphazene backbone all show excellent aqueous solubility and have potential in drug-delivery applications.
Collapse
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz, 4060, Leonding, Austria
| | - Sandra Wilfert
- Institute of Polymer Chemistry, Johannes Kepler University Linz, 4060, Leonding, Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes Kepler University Linz, 4060, Leonding, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, 4060, Leonding, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, 4060, Leonding, Austria
| |
Collapse
|
8
|
Zhou Z, Wu X, Kresak A, Griswold M, Lu ZR. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials 2013; 34:7683-93. [PMID: 23863450 DOI: 10.1016/j.biomaterials.2013.06.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023]
Abstract
Rational design and develop of targeted contrast agents binding to cancer-related proteins will achieve more accurate cancer diagnosis and prognosis by magnetic resonance (MR) imaging. CREKA is a tumor-homing pentapeptide (Cys-Arg-Glu-Lys-Ala) specifically homes to fibrin-fibronectin complexes abundantly expressed in tumor microenvironment. In this study, we developed and evaluated a CREKA peptide targeted multiplexed Gd-MR probe (CREKA-Tris-Gd(DOTA)3) for MR imaging of breast tumors. CREKA and azide bearing Gd(III) was attached to a maleimide-functional trialkyne scaffold via thiol-maleimide and azide-alkyne click chemistry, respectively. CREKA-Tris-Gd(DOTA)3 has a well-defined structure with a molecular weight of 2914 Da. The T1 relaxivity of CREKA-Tris-Gd(DOTA)3 is 8.06 mM(-1) s(-1) per Gd (24.18 mM(-1) s(-1) per molecule) at room temperature and 3 T. Fluorescence imaging showed high binding specificity of CREKA to a 4T1 breast tumor model in mice while it was not found for the scrambled CREKA (CERAK). The CREKA peptide-targeted contrast agent resulted in greater contrast enhancement than the corresponding CERAK agent and the commercialized contrast agent ProHance(®) in tumor at a dose of 0.1 mmol Gd/kg in female athymic mice bearing 4T1 breast carcinoma xenograft. This small molecular contrast agent was easily excreted from body after imaging indicated low toxicity. The targeted MRI contrast agent has a potential for specific cancer molecular imaging with MRI.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
9
|
Goswami LN, Ma L, Cai Q, Sarma SJ, Jalisatgi SS, Hawthorne MF. cRGD peptide-conjugated icosahedral closo-B12(2-) core carrying multiple Gd3+-DOTA chelates for α(v)β3 integrin-targeted tumor imaging (MRI). Inorg Chem 2013; 52:1701-9. [PMID: 23391150 PMCID: PMC3593306 DOI: 10.1021/ic302340c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A vertex-differentiated icosahedral closo-B(12)(2-) core was utilized to construct a α(v)β(3) integrin receptor-targeted (via cRGD peptide) high payload MRI contrast agent (CA-12) carrying 11 copies of Gd(3+)-DOTA chelates attached to the closo-B(12)(2-) surface via suitable linkers. The resulting polyfunctional MRI contrast agent possessed a higher relaxivity value per-Gd compared to Omniscan, a small molecular contrast agent commonly used in clinical settings. The α(v)β(3) integrin receptor specificity of CA-12 was confirmed via in vitro cellular binding experiments and in vivo MRI of mice bearing human PC-3 prostate cancer xenografts. Integrin α(v)β(3)-positive MDA-MB-231 cells exhibited 300% higher uptake of CA-12 than α(v)β(3)-negative T47D cells. Serial T1-weighted MRI showed superior contrast enhancement of tumors by CA-12 compared to both a nontargeted 12-fold Gd(3+)-DOTA closomer control (CA-7) and Omniscan. Contrast enhancement by CA-12 persisted for 4 h postinjection, and subsequent enhancement of kidney tissue indicated a renal elimination route similar to Omniscan. No toxic effects of CA-12 were apparent in any mice for up to 24 h postinjection. Post-mortem ICP-OES analysis at 24 h detected no residual Gd in any of the tissue samples analyzed.
Collapse
Affiliation(s)
- Lalit N. Goswami
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - Lixin Ma
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - Quanyu Cai
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - Saurav J. Sarma
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - Satish S. Jalisatgi
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - M. Frederick Hawthorne
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| |
Collapse
|
10
|
Lattuada L, Barge A, Cravotto G, Giovenzana GB, Tei L. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem Soc Rev 2011; 40:3019-49. [DOI: 10.1039/c0cs00199f] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|