1
|
Xiong J, Bonney S, Gonçalves RV, Esposito D. Brassinosteroids control the inflammation, oxidative stress and cell migration through the control of mitochondrial function on skin regeneration. Life Sci 2022; 307:120887. [PMID: 35985505 DOI: 10.1016/j.lfs.2022.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Brassinosteroids (BRs) are the class of phytohormones with great importance in agriculture and potential diverse effects on human welfare, including skin disease treatment. In this sense, BRs are a promising tool for promoting skin regeneration. AIMS Therefore, the objective of the present work was to analyze the effect of BRs in wound repair, mainly the inflammatory and proliferative phases, and their influence on migratory abilities in human dermal fibroblasts (HDFa), and consequently understand the mitochondrial metabolism. MAIN METHODS We measured nine natural and synthetic BRs for the inflammatory response in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We further evaluated the migration activity in HDFa modeling promotion of wound closure after BRs exposure. In addition, we evaluated the 84 gene profiles linked to wound healing response using RT2 Profiler PCR Array and examined cellular bioenergetics using an extracellular flux analyzer. KEY FINDINGS Results showed that LPS-induced cells had around 10 % lower reactive oxygen species and nitric oxide accumulation when treated with some BRs compounds. HDFa treated with homobrassinolide-based and homocastasterone-based compounds resulted in the greatest migratory activity and presents the best results for mitochondrial responses. SIGNIFICANCE Together, these results provided strong evidence for BRs' ability to promote skin health, particularly through contributions to both reducing excessive oxidative stress and controlling the inflammation process resulting in the best HDFa cell migration through the control of mitochondrial function.
Collapse
Affiliation(s)
- Jia Xiong
- Plants for Human Health Institute, NC State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Animal Science, NC State University, 120 Broughton Drive, Raleigh, NC 27695, USA.
| | - Sierra Bonney
- Plants for Human Health Institute, NC State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Animal Science, NC State University, 120 Broughton Drive, Raleigh, NC 27695, USA
| | - Reggiani Vilela Gonçalves
- Plants for Human Health Institute, NC State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Animal Biology, Federal University of Viçosa, Avenida Ph. Rolfs, 36.570-000, MG, Brazil.
| | - Debora Esposito
- Plants for Human Health Institute, NC State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Animal Science, NC State University, 120 Broughton Drive, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Immune Responses Are Differentially Regulated by Root, Stem, Leaf, and Flower Extracts of Female and Male CBD Hemp (Cannabis sativa L.) Plants. IMMUNO 2021. [DOI: 10.3390/immuno1040025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Industrial hemp (Cannabis sativa L.) has many applications, including the production of textiles, agricultural extracts, nutritional products, and botanicals enriched with cannabinoids and full-spectrum terpenes naturally present in the plant. In this study, the dynamics of distribution and accumulation of 10 main cannabinoids in hemp were quantified. Hemp bioactive compounds were evaluated for anti-inflammatory activity in lipopolysaccharide-induced RAW 264.7 macrophage cells. While all tissues of hemp showed moderate anti-inflammatory properties, female flowers demonstrated the highest activity. CBD showed the strongest anti-inflammatory activity with suppression of nitric oxide production at 2 μg/mL and the reduced expressions of the pro-inflammatory genes COX-2, IL-6, and TNF-α at as low as 2 ng/mL. The topical hemp inflorescences (1–50 μg/mL) and CBD alone (20–200 ng/mL) also improved mitochondrial respiration. These data contribute to the future development of agricultural and plant management techniques to produce hemp with specific metabolite profiles to selectively support immune health.
Collapse
|
3
|
Kopylov AT, Malsagova KA, Stepanov AA, Kaysheva AL. Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients 2021; 13:nu13051623. [PMID: 34066075 PMCID: PMC8150896 DOI: 10.3390/nu13051623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
The way of plant sterols transformation and their benefits for humans is still a question under the massive continuing revision. In fact, there are no receptors for binding with sterols in mammalians. However, possible biotransformation to steroids that can be catalyzed by gastro-intestinal microflora, microbial cells in prebiotics or cytochromes system were repeatedly reported. Some products of sterols metabolization are capable to imitate resident human steroids and compete with them for the binding with corresponding receptors, thus affecting endocrine balance and entire physiology condition. There are also tremendous reports about the natural origination of mammalian steroid hormones in plants and corresponding receptors for their binding. Some investigations and reports warn about anabolic effect of sterols, however, there are many researchers who are reluctant to believe in and have strong opposing arguments. We encounter plant sterols everywhere: in food, in pharmacy, in cosmetics, but still know little about their diverse properties and, hence, their exact impact on our life. Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.
Collapse
|
4
|
Adacan K, Obakan Yerlİkaya P. Epibrassinolide activates AKT to trigger autophagy with polyamine metabolism in SW480 and DLD-1 colon cancer cell lines. ACTA ACUST UNITED AC 2021; 44:417-426. [PMID: 33402868 PMCID: PMC7759188 DOI: 10.3906/biy-2005-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022]
Abstract
Epibrassinolide (EBR), a plant-derived polyhydroxylated derivative of 5α-cholestane, structurally shows similarities to animal steroid hormones. According to the present study, EBR treatment triggered a significant stress response via activating ER stress, autophagy, and apoptosis in cancer cells. EBR could also increase Akt phosphorylation in vitro. While the activation of Akt resulted in cellular metabolic activation in normal cells to proceed with cell survival, a rapid stress response was induced in cancer cells to reduce survival. Therefore, Akt as a mediator of cellular survival and death decision pathways is a crucial target in cancer cells. In this study, we determined that EBR induces stress responses through activating Akt, which reduced the mTOR complex I (mTORC1) activation in SW480 and DLD-1 colon cancer cells. As a consequence, EBR triggered macroautophagy and led to lipidation of LC3 most efficiently in SW480 cells. The cotreatment of spermidine (Spd) with EBR increased lipidation of LC3 synergistically in both cell lines. We also found that EBR promoted polyamine catabolism in SW480 cells. The retention of polyamine biosynthesis was remarkable following EBR treatment. We suggested that EBR-mediated Akt activation might determine the downstream cellular stress responses to induce autophagy related to polyamines.
Collapse
Affiliation(s)
- Kaan Adacan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, İstanbul Kültür University, İstanbul Turkey
| | - Pınar Obakan Yerlİkaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, İstanbul Kültür University, İstanbul Turkey
| |
Collapse
|
5
|
Chand-Thakuri P, Landge VG, Kapoor M, Young MC. One-Pot C–H Arylation/Lactamization Cascade Reaction of Free Benzylamines. J Org Chem 2020; 85:6626-6644. [DOI: 10.1021/acs.joc.0c00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pratibha Chand-Thakuri
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States
| | - Vinod G. Landge
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States
| | - Mohit Kapoor
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States
| | - Michael C. Young
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States
| |
Collapse
|
6
|
Zhabinskii VN, Khripach NB, Khripach VA. Steroid plant hormones: effects outside plant kingdom. Steroids 2015; 97:87-97. [PMID: 25217849 DOI: 10.1016/j.steroids.2014.08.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/12/2014] [Accepted: 08/25/2014] [Indexed: 12/22/2022]
Abstract
Brassinosteroids (BS) are the first group of steroid-hormonal compounds isolated from and acting in plants. Among numerous physiological effects of BS growth stimulation and adaptogenic activities are especially remarkable. In this review, we provide evidence that BS possess similar types of activity also beyond plant kingdom at concentrations comparable with those for plants. This finding allows looking at steroids from a new point of view: how common are the mechanisms of steroid bioregulation in different types of organisms from protozoa to higher animals.
Collapse
Affiliation(s)
- Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St., 5/2, 220141 Minsk, Belarus.
| | - Natalia B Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St., 5/2, 220141 Minsk, Belarus
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St., 5/2, 220141 Minsk, Belarus
| |
Collapse
|
7
|
Dai W, Jiang L, Lay YAE, Chen H, Jin G, Zhang H, Kot A, Ritchie RO, Lane NE, Yao W. Prevention of glucocorticoid induced bone changes with beta-ecdysone. Bone 2015; 74:48-57. [PMID: 25585248 PMCID: PMC4355031 DOI: 10.1016/j.bone.2015.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Beta-ecdysone (βEcd) is a phytoecdysteroid found in the dry roots and seeds of the asteraceae and achyranthes plants, and is reported to increase osteogenesis in vitro. Since glucocorticoid (GC) excess is associated with a decrease in bone formation, the purpose of this study was to determine if treatment with βEcd could prevent GC-induced osteoporosis. Two-month-old male Swiss-Webster mice (n=8-10/group) were randomized to either placebo or slow release prednisolone pellets (3.3mg/kg/day) and treated with vehicle control or βEcd (0.5mg/kg/day) for 21days. GC treatment inhibited age-dependent trabecular gain and cortical bone expansion and this was accompanied by a 30-50% lower bone formation rate (BFR) at both the endosteal and periosteal surfaces. Mice treated with only βEcd significantly increased bone formation on the endosteal and periosteal bone surfaces, and increased cortical bone mass were their controls to compare to GC alone. Concurrent treatment of βEcd and GC completely prevented the GC-induced reduction in BFR, trabecular bone volume and partially prevented cortical bone loss. In vitro studies determined that βEcd prevented the GC increase in autophagy of the bone marrow stromal cells as well as in whole bone. In summary, βEcd prevented GC induced changes in bone formation, bone cell viability and bone mass. Additional studies are warranted of βEcd for the treatment of GC induced bone loss.
Collapse
Affiliation(s)
- Weiwei Dai
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA; Department of Science and Technology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Jiang
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Yu-An Evan Lay
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Haiyan Chen
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Guoqin Jin
- Department of Science and Technology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hongliang Zhang
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
8
|
Wang X, Ma Q, Li M, Chang C, Bai Y, Feng Y, Liu H. Automated and sensitive analysis of 28-epihomobrassinolide in Arabidopsis thaliana by on-line polymer monolith microextraction coupled to liquid chromatography–mass spectrometry. J Chromatogr A 2013; 1317:121-8. [DOI: 10.1016/j.chroma.2013.07.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 01/23/2023]
|
9
|
Esposito D, Rathinasabapathy T, Schmidt B, Shakarjian MP, Komarnytsky S, Raskin I. Acceleration of cutaneous wound healing by brassinosteroids. Wound Repair Regen 2013; 21:688-96. [PMID: 23937635 DOI: 10.1111/wrr.12075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/30/2013] [Indexed: 12/25/2022]
Abstract
Brassinosteroids are plant growth hormones involved in cell growth, division, and differentiation. Their effects in animals are largely unknown, although recent studies showed that the anabolic properties of brassinosteroids are possibly mediated through the phosphoinositide 3-kinase/protein kinase B signaling pathway. Here, we examined biological activity of homobrassinolide (HB) and its synthetic analogues in in vitro proliferation and migration assays in murine fibroblast and primary keratinocyte cell culture. HB stimulated fibroblast proliferation and migration and weakly induced keratinocyte proliferation in vitro. The effects of topical HB administration on progression of wound closure were further tested in the mouse model of cutaneous wound healing. C57BL/6J mice were given a full-thickness dermal wound, and the rate of wound closure was assessed daily for 10 days, with adenosine receptor agonist CGS-21680 as a positive control. Topical application of brassinosteroid significantly reduced wound size and accelerated wound healing in treated animals. mRNA levels of transforming growth factor beta and intercellular adhesion molecule 1 were significantly lower, while tumor necrosis factor alpha was nearly suppressed in the wounds from treated mice. Our data suggest that topical application of brassinosteroids accelerates wound healing by positively modulating inflammatory and reepithelialization phases of the wound repair process, in part by enhancing Akt signaling in the skin at the edges of the wound and enhancing migration of fibroblasts in the wounded area. Targeting this signaling pathway with brassinosteroids may represent a promising approach to the therapy of delayed wound healing.
Collapse
Affiliation(s)
- Debora Esposito
- Biotech Center, Rutgers University, New Brunswick, New Jersey; Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Recent Advances in Medicinal Applications of Brassinosteroids, a Group of Plant Hormones. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2013. [DOI: 10.1016/b978-0-444-59603-1.00002-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Esposito D, Kizelsztein P, Komarnytsky S, Raskin I. Hypoglycemic effects of brassinosteroid in diet-induced obese mice. Am J Physiol Endocrinol Metab 2012; 303:E652-8. [PMID: 22785239 PMCID: PMC3774328 DOI: 10.1152/ajpendo.00024.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of obesity is increasing globally, and obesity is a major risk factor for metabolic diseases such as type 2 diabetes. Previously, we reported that oral administration of homobrassinolide (HB) to healthy rats triggered a selective anabolic response that was associated with lower blood glucose. Therefore, the aim of this study was to evaluate the effects of HB administration on glucose metabolism, insulin sensitivity, body composition, and gluconeogenic gene expression profiles in liver of C57BL/6J high-fat diet-induced obese mice. Acute oral administration of 50-300 mg/kg HB to obese mice resulted in a dose-dependent decrease in fasting blood glucose within 3 h of treatment. Daily chronic administration of HB (50 mg/kg for 8 wk) ameliorated hyperglycemia and improved oral glucose tolerance associated with obesity without significantly affecting body weight or body composition. These changes were accompanied by lower expression of two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase), and increased phosphorylation of AMP-activated protein kinase in the liver and muscle tissue. In vitro, HB treatment (1-15 μM) inhibited cyclic AMP-stimulated but not dexamethasone-stimulated upregulation of PEPCK and G-6-Pase mRNA levels in H4IIE rat hepatoma cells. Among a series of brassinosteroid analogs related to HB, only homocastasterone decreased glucose production in cell culture significantly. These results indicate the antidiabetic effects of brassinosteroids and begin to elucidate their putative cellular targets both in vitro and in vivo.
Collapse
Affiliation(s)
- Debora Esposito
- Biotech Center, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | | |
Collapse
|