1
|
García-Soriano JC, de Lucio H, Elvira-Blázquez D, Alcón-Calderón M, Sanz del Olmo N, Sánchez-Murcia PA, Ortega P, de la Mata FJ, Jiménez-Ruiz A. The repertoire of iron superoxide dismutases from Leishmania infantum as targets in the search for therapeutic agents against leishmaniasis. J Enzyme Inhib Med Chem 2024; 39:2377586. [PMID: 39037009 PMCID: PMC11571740 DOI: 10.1080/14756366.2024.2377586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.
Collapse
Affiliation(s)
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | | | - Natalia Sanz del Olmo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Pedro A. Sánchez-Murcia
- Division of Medicinal Chemistry, Laboratory of Computer-Aided Molecular Design, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Paula Ortega
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Francisco Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
2
|
Vallières C, Golinelli-Cohen MP, Guittet O, Lepoivre M, Huang ME, Vernis L. Redox-Based Strategies against Infections by Eukaryotic Pathogens. Genes (Basel) 2023; 14:genes14040778. [PMID: 37107536 PMCID: PMC10138290 DOI: 10.3390/genes14040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Redox homeostasis is an equilibrium between reducing and oxidizing reactions within cells. It is an essential, dynamic process, which allows proper cellular reactions and regulates biological responses. Unbalanced redox homeostasis is the hallmark of many diseases, including cancer or inflammatory responses, and can eventually lead to cell death. Specifically, disrupting redox balance, essentially by increasing pro-oxidative molecules and favouring hyperoxidation, is a smart strategy to eliminate cells and has been used for cancer treatment, for example. Selectivity between cancer and normal cells thus appears crucial to avoid toxicity as much as possible. Redox-based approaches are also employed in the case of infectious diseases to tackle the pathogens specifically, with limited impacts on host cells. In this review, we focus on recent advances in redox-based strategies to fight eukaryotic pathogens, especially fungi and eukaryotic parasites. We report molecules recently described for causing or being associated with compromising redox homeostasis in pathogens and discuss therapeutic possibilities.
Collapse
Affiliation(s)
- Cindy Vallières
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Olivier Guittet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michel Lepoivre
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Meng-Er Huang
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Laurence Vernis
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Gholap DP, Huse R, Dipake S, Lande MK. Silica supported lanthanum trifluoroacetate and trichloroacetate as an efficient and reusable water compatible Lewis acid catalyst for synthesis of 2,4,5-triarylimidazoles via a solvent-free green approach. RSC Adv 2023; 13:2090-2103. [PMID: 36712612 PMCID: PMC9832349 DOI: 10.1039/d2ra07021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/10/2022] [Indexed: 01/13/2023] Open
Abstract
In the present research article, we have developed solid heterogenous silica supported lanthanum trifluoroacetate and trichloroacetate as green Lewis acid catalysts. These catalysts were synthesized by a novel, simple, cheap, clean, and environment friendly method. The physicochemical properties of the prepared catalysts were well studied and characterized by sophisticated spectroscopic techniques such as FTIR, TGA, XRD, EDX, SEM, TEM and BET analysis. The catalyst was utilized in the synthesis of arylimidazole derivatives via green protocols under solvent-free conditions at 70 °C with a higher yield, mild reaction conditions and a short reaction time. The catalyst works superiorly in water as well as in various organic solvents as a reusable and easily recoverable catalyst.
Collapse
Affiliation(s)
| | - Ramdas Huse
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| | - Sudarshan Dipake
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| | - Machhindra K Lande
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| |
Collapse
|
4
|
Cai X, Song X, Zhu Q, Zhang X, Fan X. Concise Synthesis of Spirocyclic Dihydrophthalazines through Spiroannulation Reactions of Aryl Azomethine Imines with Cyclic Diazo Compounds. J Org Chem 2022; 87:11048-11062. [PMID: 35921479 DOI: 10.1021/acs.joc.2c01312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spiroannulation reactions are fundamental and invaluable for the synthesis of spirocyclic compounds. Presented herein are novel cascade reactions of aryl azomethine imines with cyclic diazo compounds leading to the formation of spirocyclic dihydrophthalazine derivatives. Based on experimental mechanistic studies, the formation of the title products is believed to go through azomethine imine-assisted cylcometalation, Rh-carbene formation through dediazonization, and migratory insertion followed by reductive elimination and azomethine imine ring opening. Control experiments revealed that air acts as an effective and sustainable co-oxidant to facilitate the cascade reaction. In general, this concise synthesis of the unprecedented spirocyclic dihydrophthalazine derivatives has advantages such as easily accessible substrates, good functional group compatibility, mild reaction conditions, high efficiency and selectivity, and excellent atom-economy. In addition, the value of this protocol is underlined by its ready scalability and divergent derivation of products.
Collapse
Affiliation(s)
- Xinyuan Cai
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xia Song
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qiuhui Zhu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Hickson J, Athayde LFA, Miranda TG, Junior PAS, Dos Santos AC, da Cunha Galvão LM, da Câmara ACJ, Bartholomeu DC, de Souza RDCM, Murta SMF, Nahum LA. Trypanosoma cruzi iron superoxide dismutases: insights from phylogenetics to chemotherapeutic target assessment. Parasit Vectors 2022; 15:194. [PMID: 35668508 PMCID: PMC9169349 DOI: 10.1186/s13071-022-05319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Components of the antioxidant defense system in Trypanosoma cruzi are potential targets for new drug development. Superoxide dismutases (SODs) constitute key components of antioxidant defense systems, removing excess superoxide anions by converting them into oxygen and hydrogen peroxide. The main goal of the present study was to investigate the genes coding for iron superoxide dismutase (FeSOD) in T. cruzi strains from an evolutionary perspective. Methods In this study, molecular biology methods and phylogenetic studies were combined with drug assays. The FeSOD-A and FeSOD-B genes of 35 T. cruzi strains, belonging to six discrete typing units (Tcl–TcVI), from different hosts and geographical regions were amplified by PCR and sequenced using the Sanger method. Evolutionary trees were reconstructed based on Bayesian inference and maximum likelihood methods. Drugs that potentially interacted with T. cruzi FeSODs were identified and tested against the parasites. Results Our results suggest that T. cruzi FeSOD types are members of distinct families. Gene copies of FeSOD-A (n = 2), FeSOD-B (n = 4) and FeSOD-C (n = 4) were identified in the genome of the T. cruzi reference clone CL Brener. Phylogenetic inference supported the presence of two functional variants of each FeSOD type across the T. cruzi strains. Phylogenetic trees revealed a monophyletic group of FeSOD genes of T. cruzi TcIV strains in both distinct genes. Altogether, our results support the hypothesis that gene duplication followed by divergence shaped the evolution of T. cruzi FeSODs. Two drugs, mangafodipir and polaprezinc, that potentially interact with T. cruzi FeSODs were identified and tested in vitro against amastigotes and trypomastigotes: mangafodipir had a low trypanocidal effect and polaprezinc was inactive. Conclusions Our study contributes to a better understanding of the molecular biodiversity of T. cruzi FeSODs. Herein we provide a successful approach to the study of gene/protein families as potential drug targets. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05319-2.
Collapse
Affiliation(s)
- Jéssica Hickson
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Felipe Almeida Athayde
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thainá Godinho Miranda
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Policarpo Ademar Sales Junior
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Coqueiro Dos Santos
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lúcia Maria da Cunha Galvão
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte State, Natal, Rio Grande do Norte, Brazil
| | - Antônia Cláudia Jácome da Câmara
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte State, Natal, Rio Grande do Norte, Brazil
| | - Daniella Castanheira Bartholomeu
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rita de Cássia Moreira de Souza
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil
| | - Silvane Maria Fonseca Murta
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil.
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil. .,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil. .,Promove College of Technology, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
In Silico Identification of Novel Inhibitors Targeting the Homodimeric Interface of Superoxide Dismutase from the Dental Pathogen Streptococcus mutans. Antioxidants (Basel) 2022; 11:antiox11040785. [PMID: 35453470 PMCID: PMC9029323 DOI: 10.3390/antiox11040785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The microaerophile Streptococcus mutans, the main microaerophile responsible for the development of dental plaque, has a single cambialistic superoxide dismutase (SmSOD) for its protection against reactive oxygen species. In order to discover novel inhibitors of SmSOD, possibly interfering with the biofilm formation by this pathogen, a virtual screening study was realised using the available 3D-structure of SmSOD. Among the selected molecules, compound ALS-31 was capable of inhibiting SmSOD with an IC50 value of 159 µM. Its inhibition power was affected by the Fe/Mn ratio in the active site of SmSOD. Furthermore, ALS-31 also inhibited the activity of other SODs. Gel-filtration of SmSOD in the presence of ALS-31 showed that the compound provoked the dissociation of the SmSOD homodimer in two monomers, thus compromising the catalytic activity of the enzyme. A docking model, showing the binding mode of ALS-31 at the dimer interface of SmSOD, is presented. Cell viability of the fibroblast cell line BJ5-ta was not affected up to 100 µM ALS-31. A preliminary lead optimization program allowed the identification of one derivative, ALS-31-9, endowed with a 2.5-fold improved inhibition power. Interestingly, below this concentration, planktonic growth and biofilm formation of S. mutans cultures were inhibited by ALS-31, and even more by its derivative, thus opening the perspective of future drug design studies to fight against dental caries.
Collapse
|
7
|
Santi AMM, Murta/ SMF. Antioxidant defence system as a rational target for Chagas disease and Leishmaniasis chemotherapy. Mem Inst Oswaldo Cruz 2022; 117:e210401. [PMID: 35239945 PMCID: PMC8896756 DOI: 10.1590/0074-02760210401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Chagas disease and leishmaniasis are neglected tropical diseases caused by the protozoan parasites Trypanosoma cruzi and Leishmania spp., respectively. They are among the most important parasitic diseases, affecting millions of people worldwide, being a considerable global challenge. However, there is no human vaccine available against T. cruzi and Leishmania infections, and their control is based mainly on chemotherapy. Treatments for Chagas disease and leishmaniasis have multiple limitations, mainly due to the high toxicity of the available drugs, long-term treatment protocols, and the occurrence of drug-resistant parasite strains. In the case of Chagas disease, there is still the problem of low cure rates in the chronic stage of the disease. Therefore, new therapeutic agents and novel targets for drug development are urgently needed. Antioxidant defence in Trypanosomatidae is a potential target for chemotherapy because the organisms present a unique mechanism for trypanothione-dependent detoxification of peroxides, which differs from that found in vertebrates. Cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione, involving different enzymes that act in concert. This study provides an overview of the antioxidant defence focusing on iron superoxide dismutase A, tryparedoxin peroxidase, and ascorbate peroxidase and how the enzymes play an important role in the defence against oxidative stress and their involvement in drug resistance mechanisms in T. cruzi and Leishmania spp.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil
| | - Silvane Maria Fonseca Murta/
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil
| |
Collapse
|
8
|
Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem 2022; 58:116577. [DOI: 10.1016/j.bmc.2021.116577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
9
|
Martín‐Montes Á, Kolodová K, Marín C, Rosales‐Lombardo MJ, Sánchez‐Moreno M, de Andrés‐Gordo L, Cano C, Campayo L, Gómez‐Muñoz A, Sanz AM, Yunta MJR. In vitro Leishmanicidal and Trypanosomicidal Properties of Imidazole-Containing Azine and Benzoazine Derivatives. ChemMedChem 2021; 16:3600-3614. [PMID: 34665510 PMCID: PMC9298202 DOI: 10.1002/cmdc.202100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/14/2021] [Indexed: 11/25/2022]
Abstract
Leishmaniasis and Chagas diseases are two of the most important parasitic diseases in the world. Both belong to the category of Neglected Tropical Diseases, and they cannot be prevented by vaccination. Their treatments are founded in outdated drugs that possess many pernicious side-effects and they're not easy to administer. With the aim of discovering new compounds that could serve as anti-trypanosomal drugs, an antiparasitic study of a synthetic compound family has been conducted. A series of new 1,4-bis(alkylamino)- and 1-alkylamino-4-chloroazine and benzoazine derivatives 1-4 containing imidazole rings have been synthesized and identified. Their structures showed a possible interest based on previous work. Their in vitro anti-Leishmania infantum, anti-L. braziliensis, anti-L. donovani and anti-T. cruzi activity were tested, as well as the inhibition of Fe-SOD enzymes. It was found that some of them exhibited quite relevant values indicative of being worthy of future more detailed studies, as most of them showed activity to more than only one parasite species, especially compound 3 c was active for the three studied Leishmania species and also for T. cruzi, which is a very interesting trait as it covers a wide spectrum.
Collapse
Affiliation(s)
- Álvaro Martín‐Montes
- Departamento de ParasitologíaFacultad de CienciasUniversidad de Granada18071GranadaSpain
| | - Kristina Kolodová
- Klinik und Poliklinik für Innere Medizin IIIUniversitätsklinikum RegensburgFranz-Josef-Strauss-Allee 1193053RegensburgGermany
| | - Clotilde Marín
- Departamento de ParasitologíaFacultad de CienciasUniversidad de Granada18071GranadaSpain
| | | | - Manuel Sánchez‐Moreno
- Departamento de ParasitologíaFacultad de CienciasUniversidad de Granada18071GranadaSpain
| | | | - Carmen Cano
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | - Lucrecia Campayo
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | | | - Ana M. Sanz
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | - María J. R. Yunta
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| |
Collapse
|
10
|
Le TM, Huynh T, Bamou FZ, Szekeres A, Fülöp F, Szakonyi Z. Novel (+)-Neoisopulegol-Based O-Benzyl Derivatives as Antimicrobial Agents. Int J Mol Sci 2021; 22:5626. [PMID: 34073167 PMCID: PMC8198684 DOI: 10.3390/ijms22115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Discovery of novel antibacterial agents with new structures, which combat pathogens is an urgent task. In this study, a new library of (+)-neoisopulegol-based O-benzyl derivatives of aminodiols and aminotriols was designed and synthesized, and their antimicrobial activity against different bacterial and fungal strains were evaluated. The results showed that this new series of synthetic O-benzyl compounds exhibit potent antimicrobial activity. Di-O-benzyl derivatives showed high activity against Gram-positive bacteria and fungi, but moderate activity against Gram-negative bacteria. Therefore, these compounds may serve a good basis for antibacterial and antifungal drug discovery. Structure-activity relationships were also studied from the aspects of stereochemistry of the O-benzyl group on cyclohexane ring and the substituent effects on the ring system.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Thu Huynh
- Department of Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (T.H.); (A.S.)
- Department of Biotecnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71351, Vietnam
| | - Fatima Zahra Bamou
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
| | - András Szekeres
- Department of Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (T.H.); (A.S.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| |
Collapse
|
11
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
12
|
Jadhav CK, Nipate AS, Chate AV, Kamble PM, Kadam GA, Dofe VS, Khedkar VM, Gill CH. Room temperature ionic liquid promoted improved and rapid synthesis of highly functionalized imidazole and evaluation of their inhibitory activity against human cancer cells. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chetan K. Jadhav
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| | - Amol S. Nipate
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| | - Asha V. Chate
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| | - Pratiksha M. Kamble
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| | - Ganesh A. Kadam
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| | - Vidya S. Dofe
- Department of Chemistry Deogiri College of Science Aurangabad Maharashtra India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy Vishwakarma University Pune India
| | - Charansingh H. Gill
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
| |
Collapse
|
13
|
Zaib S, Khan I. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorg Chem 2020; 105:104425. [PMID: 33157344 DOI: 10.1016/j.bioorg.2020.104425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Fused diaza-heterocycles constitute the core structure of numerous bioactive natural products and effective therapeutic drugs. Among them, phthalazines have been recognized as remarkable structural leads in medicinal chemistry due to their wide application in pharmaceutical and agrochemical industries. Accessing such challenging pharmaceutical agents/drug candidates with high chemical complexity through synthetically efficient approaches remains an attractive goal in the contemporary medicinal chemistry and drug discovery arena. In this review, we focus on the recent developments in the synthetic routes towards the generation of phthalazine-based active pharmaceutical ingredients and their biological potential against various targets. The general reaction scope of these innovative and easily accessible strategies was emphasized focusing on the functional group tolerance, substrate and coupling partner compatibility/limitation, the choice of catalyst, and product diversification. These processes were also accompanied by the mechanistic insights where deemed appropriate to demonstrate meaningful information. Moreover, the rapid examination of the structure-activity relationship analyses around the phthalazine core enabled by the pharmacophore replacement/integration revealed the generation of robust, efficient, and more selective compounds with pronounced biological effects. A large variety of in silico methods and ADME profiling tools were also employed to provide a global appraisal of the pharmacokinetics profile of diaza-heterocycles. Thus, the discovery of new structural leads offers the promise of improving treatments for various tropical diseases such as tuberculosis, leishmaniasis, malaria, Chagas disease, among many others including various cancers, atherosclerosis, HIV, inflammatory, and cardiovascular diseases. We hope this review would serve as an informative collection of structurally diverse molecules enabling the generation of mature, high-quality, and innovative routes to support the drug discovery endeavors.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
14
|
The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. Eur J Med Chem 2020; 206:112692. [PMID: 32818869 DOI: 10.1016/j.ejmech.2020.112692] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/02/2023]
Abstract
The haemoflagellate protozoan Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas disease (CD), a potentially life-threatening disease. Little by little, remarkable progress has been achieved against CD, although it is still not enough. In the absence of effective chemotherapy, many research groups, organizations and pharmaceutical companies have focused their efforts on the search for compounds that could become viable drugs against CD. Within the wide variety of reported derivatives, this review summarizes and provides a global vision of the situation of those compounds that include broadly studied heterocycles in their structures due to their applications in medicinal chemistry: imidazole and benzimidazole rings. Therefore, the intention of this work is to present a compilation, as much as possible, of all the reported information, regarding these imidazole and benzimidazole derivatives against T. cruzi, as a starting point for future researchers in this field.
Collapse
|
15
|
Yunta MJR, Dietrich RC. Tropical and Subtropical Parasitic Diseases: Targets for a New Approach to Virtual Screening. Mol Inform 2019; 38:e1900052. [PMID: 31490642 DOI: 10.1002/minf.201900052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 11/11/2022]
Abstract
Computational techniques are widely used to reduce costs associated with new drug development with the ability to bind a specific molecular target. These studies need a Brookhaven protein data bank structure sample of the enzyme interaction with an inhibitor of adequate size. In this context, a new computational methodology is postulated to be used when there are no published samples fulfilling this requirements. In this study, 7 compounds, which showed anti-T. cruzi, L. donovani and L. infantum properties, and proved to be inhibitors of their Fe-SOD enzymes, have been theoretically evaluated against related parasites Fe-SOD enzymes, which have been proposed as targets for antiparasitic drugs. This methodology may be applied to similar cases and also to generate starting structures to be used with different CADD methods.
Collapse
Affiliation(s)
- Maria J R Yunta
- Organic Chemistry Department, Universidad Complutense, E-28040, Madrid, Spain
| | - Roque Carlos Dietrich
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP). La Plata, Buenos Aires, Argentina
| |
Collapse
|
16
|
Fang WY, Ravindar L, Rakesh KP, Manukumar HM, Shantharam CS, Alharbi NS, Qin HL. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur J Med Chem 2019; 173:117-153. [PMID: 30995567 PMCID: PMC7111421 DOI: 10.1016/j.ejmech.2019.03.063] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 02/08/2023]
Abstract
At present more than 250 FDA approved chlorine containing drugs were available in the market and many pharmaceutically important drug candidates in pre-clinical trials. Thus, it is quite obvious to expect that in coming decades there will be an even greater number of new chlorine-containing pharmaceuticals in market. Chlorinated compounds represent the family of compounds promising for use in medicinal chemistry. This review describes the recent advances in the synthesis of chlorine containing heterocyclic compounds as diverse biological agents and drugs in the pharmaceutical industries for the inspiration of the discovery and development of more potent and effective chlorinated drugs against numerous death-causing diseases.
Collapse
Affiliation(s)
- Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - L Ravindar
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - K P Rakesh
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| | - H M Manukumar
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, Mysuru, 570006, Karnataka, India
| | - C S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru, 570016, Karnataka, India
| | - Njud S Alharbi
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, School of Materials Science and Engineering, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| |
Collapse
|
17
|
Romero AH, Rodríguez N, Oviedo H, Lopez SE. Antileismanial activity, mechanism of action study and molecular docking of 1,4‐bis(substituted benzalhydrazino)phthalazines. Arch Pharm (Weinheim) 2019; 352:e1800299. [DOI: 10.1002/ardp.201800299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/04/2019] [Accepted: 02/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Angel H. Romero
- Cátedra de Química General, Facultad de FarmaciaUniversidad Central de VenezuelaCaracas Venezuela
- Laboratorio de Ingeniería GenéticaInstituto de Biomedicina, Hospital VargasCaracas Venezuela
- Laboratorio de Química Medicinal y Heterociclos, Departamento de QuímicaUniversidad Simón BolívarSartenejas, Baruta Venezuela
| | - Noris Rodríguez
- Laboratorio de Ingeniería GenéticaInstituto de Biomedicina, Hospital VargasCaracas Venezuela
| | - Henry Oviedo
- Laboratorio de Ingeniería GenéticaInstituto de Biomedicina, Hospital VargasCaracas Venezuela
| | - Simón E. Lopez
- Department of ChemistryUniversity of FloridaGainesville Florida
| |
Collapse
|
18
|
Cunha Almeida T, Gonzaga Ribeiro LH, Ferreira dos Santos LB, da Silva CM, Tupinambá Branquinho R, de Lana M, Ramos Gadelha F, de Fátima Â. Synthesis, in vitro and in vivo anti-Trypanosoma cruzi and toxicological activities of nitroaromatic Schiff bases. Biomed Pharmacother 2018; 108:1703-1711. [DOI: 10.1016/j.biopha.2018.09.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022] Open
|
19
|
Schatzman SS, Culotta VC. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 2018. [PMID: 29517910 DOI: 10.1021/acsinfecdis.8b00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superoxide anion radical is generated as a natural byproduct of aerobic metabolism but is also produced as part of the oxidative burst of the innate immune response design to kill pathogens. In living systems, superoxide is largely managed through superoxide dismutases (SODs), families of metalloenzymes that use Fe, Mn, Ni, or Cu cofactors to catalyze the disproportionation of superoxide to oxygen and hydrogen peroxide. Given the bursts of superoxide faced by microbial pathogens, it comes as no surprise that SOD enzymes play important roles in microbial survival and virulence. Interestingly, microbial SOD enzymes not only detoxify host superoxide but also may participate in signaling pathways that involve reactive oxygen species derived from the microbe itself, particularly in the case of eukaryotic pathogens. In this Review, we will discuss the chemistry of superoxide radicals and the role of diverse SOD metalloenzymes in bacterial, fungal, and protozoan pathogens. We will highlight the unique features of microbial SOD enzymes that have evolved to accommodate the harsh lifestyle at the host-pathogen interface. Lastly, we will discuss key non-SOD superoxide scavengers that specific pathogens employ for defense against host superoxide.
Collapse
Affiliation(s)
- Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
20
|
Suchand B, Satyanarayana G. Palladium-Catalyzed Acylation Reactions: A One-Pot Diversified Synthesis of Phthalazines, Phthalazinones and Benzoxazinones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Basuli Suchand
- Indian Institute of Technology (IIT) Hyderabad; 502 285, Sangareddy District Kandi - Telangana India
| | - Gedu Satyanarayana
- Indian Institute of Technology (IIT) Hyderabad; 502 285, Sangareddy District Kandi - Telangana India
| |
Collapse
|
21
|
Shi X, Ding M, Li C, Wang W, Guo H. A Green Synthesis of Highly Functionalized 3-amino-2-phenylsulfonyl-1-alkyl/aryl-1H
-pyrazolo[1,2-b
]phthalazine-5,10-diones and Their Reduction and Photophysical Studies. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xin Shi
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Maohua Ding
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Conghao Li
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Wang Wang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Hongyun Guo
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| |
Collapse
|
22
|
Fandzloch M, Arriaga JMM, Sánchez-Moreno M, Wojtczak A, Jezierska J, Sitkowski J, Wiśniewska J, Salas JM, Łakomska I. Strategies for overcoming tropical disease by ruthenium complexes with purine analog: Application against Leishmania spp. and Trypanosoma cruzi. J Inorg Biochem 2017; 176:144-155. [PMID: 28910663 DOI: 10.1016/j.jinorgbio.2017.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 12/29/2022]
Abstract
Tropical diseases currently constitute a major health problem and thus a challenge in the field of drug discovery. The current treatments show serious disadvantages due to cost, toxicity, long therapy duration and resistance, and the use of metal complexes as chemotherapeutic agents against these ailments appears to be a very attractive alternative. Herein, we describe three newly synthesized ruthenium complexes with a bioactive molecule, the purine analogue 5,6,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidine (tmtp): cis,fac-[RuCl2(dmso)3(tmtp)] (1), mer-[RuCl3(dmso)(H2O)(tmtp)]·2H2O (2) and fac,cis-[RuCl3(H2O)(tmtp)2] (3). Their structures were characterized using X-ray and spectroscopic methods (IR, NMR or EPR). The stability of the synthesized complexes 1-3 in various buffered solutions (pH=3-7.4) was monitored using conventional and stopped-flow techniques. The in vitro antiproliferative activity of all ruthenium complexes against promastigote forms of Leishmania spp. (L. infantum, L. braziliensis, and L. donovani) and epimastigote forms of Trypanosoma cruzi was investigated. Notably, the results showed that the activity of 1 against L. brasiliensis was more than three-fold higher than that of glucantime, and 1 showed no appreciable toxicity towards J774.2 macrophages. Additionally, 2 displayed even 141-fold lower toxicity against host cells than glucantime, demonstrating significantly higher selectivity than the reference drug. Therefore, 1 and 2 appear to be excellent candidates for further development as potential drugs for the effective treatment of leishmaniasis and Chagas disease. All novel complexes were also shown to be potent inhibitors of Fe-SOD in the studied species, while their effects on human CuZn-SOD were very low.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | | | - Manuel Sánchez-Moreno
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Julia Jezierska
- Faculty of Chemistry, Wrocław University, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sitkowski
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland; Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Juan Manuel Salas
- Department of Inorganic Chemistry, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
23
|
Simple dialkyl pyrazole-3,5-dicarboxylates show in vitro and in vivo activity against disease-causing trypanosomatids. Parasitology 2017; 144:1133-1143. [PMID: 28367781 DOI: 10.1017/s0031182017000415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis and antiprotozoal activity of some simple dialkyl pyrazole-3,5-dicarboxylates (compounds 2-6) and their sodium salts (pyrazolates) (compounds 7-9) against Trypanosoma cruzi, Leishmania infantum and Leishmania braziliensis are reported. In most cases the studied compounds showed, especially against the clinically significant amastigote forms, in vitro activities higher than those of the reference drugs (benznidazole for T. cruzi and glucantime for Leishmania spp.); furthermore, the low non-specific cytotoxicities against Vero cells and macrophages shown by these compounds led to good selectivity indexes, which are 8-72 times higher for T. cruzi amastigotes and 15-113 times higher for Leishmania spp. amastigotes than those of the respective reference drugs. The high efficiency of diethyl ester 3 and its sodium salt 8 against the mentioned protozoa was confirmed by further in vitro assays on infection rates and by an additional in vivo study in a murine model of acute and chronic Chagas disease. The inhibitory capacity of compounds 3 and 8 on the essential iron superoxide dismutase of the aforementioned parasites may be related to the observed anti-trypanosomatid activity. The low acute toxicity of compounds 3 and 8 in mice is also reported in this article.
Collapse
|
24
|
Romero AH, Medina R, Alcala A, García-Marchan Y, Núñez-Duran J, Leañez J, Mijoba A, Ciangherotti C, Serrano-Martín X, López SE. Design, synthesis, structure-activity relationship and mechanism of action studies of a series of 4-chloro-1-phthalazinyl hydrazones as a potent agent against Leishmania braziliensis. Eur J Med Chem 2017; 127:606-620. [DOI: 10.1016/j.ejmech.2017.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/29/2022]
|
25
|
Martín-Montes Á, Ballesteros-Garrido R, Martín-Escolano R, Marín C, Guitiérrez-Sánchez R, Abarca B, Ballesteros R, Sanchez-Moreno M. Synthesis and in vitro leishmanicidal activity of novel [1,2,3]triazolo[1,5-a]pyridine salts. RSC Adv 2017. [DOI: 10.1039/c7ra01070b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leishmaniasis remains a significant worldwide problem; it is of great interest to develop new drugs to fight this disease.
Collapse
Affiliation(s)
- Álvaro Martín-Montes
- Departamento de Parasitología
- Instituto de Investigación Biosanitaria (ibs.GRANADA)
- Hospitales Universitarios de Granada/Universidad de Granada
- Granada
- Spain
| | | | - Rubén Martín-Escolano
- Departamento de Parasitología
- Instituto de Investigación Biosanitaria (ibs.GRANADA)
- Hospitales Universitarios de Granada/Universidad de Granada
- Granada
- Spain
| | - Clotilde Marín
- Departamento de Parasitología
- Instituto de Investigación Biosanitaria (ibs.GRANADA)
- Hospitales Universitarios de Granada/Universidad de Granada
- Granada
- Spain
| | | | - Belén Abarca
- Departamento de Química Orgánica
- Facultad de Farmacia
- Universidad de Valencia
- 46100 Valencia
- Spain
| | - Rafael Ballesteros
- Departamento de Química Orgánica
- Facultad de Farmacia
- Universidad de Valencia
- 46100 Valencia
- Spain
| | - Manuel Sanchez-Moreno
- Departamento de Parasitología
- Instituto de Investigación Biosanitaria (ibs.GRANADA)
- Hospitales Universitarios de Granada/Universidad de Granada
- Granada
- Spain
| |
Collapse
|
26
|
Moreno-Viguri E, Jiménez-Montes C, Martín-Escolano R, Santivañez-Veliz M, Martin-Montes A, Azqueta A, Jimenez-Lopez M, Zamora Ledesma S, Cirauqui N, López de Ceráin A, Marín C, Sánchez-Moreno M, Pérez-Silanes S. In Vitro and in Vivo Anti-Trypanosoma cruzi Activity of New Arylamine Mannich Base-Type Derivatives. J Med Chem 2016; 59:10929-10945. [DOI: 10.1021/acs.jmedchem.6b00784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Elsa Moreno-Viguri
- Department
of Organic and Pharmaceutical Chemistry, Institute of Tropical Health, Universidad de Navarra, Pamplona 31008, Spain
| | - Carmen Jiménez-Montes
- Departamento
de Parasitología, Instituto de Investigación Biosanitaria
(ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada 18014, Spain
| | - Rubén Martín-Escolano
- Departamento
de Parasitología, Instituto de Investigación Biosanitaria
(ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada 18014, Spain
| | - Mery Santivañez-Veliz
- Department
of Organic and Pharmaceutical Chemistry, Institute of Tropical Health, Universidad de Navarra, Pamplona 31008, Spain
| | - Alvaro Martin-Montes
- Departamento
de Parasitología, Instituto de Investigación Biosanitaria
(ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada 18014, Spain
| | - Amaya Azqueta
- Department
of Pharmacology and Toxicology, Universidad de Navarra, Pamplona 31008, Spain
- IdiSNA, Navarra
Institute for Health Research, Recinto de Complejo Hospitalario de
Navarra, Pamplona 31008, Spain
| | - Marina Jimenez-Lopez
- Departamento
de Parasitología, Instituto de Investigación Biosanitaria
(ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada 18014, Spain
| | - Salvador Zamora Ledesma
- Departamento
de Parasitología, Instituto de Investigación Biosanitaria
(ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada 18014, Spain
| | - Nuria Cirauqui
- Department
of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de
Janeiro 21949-900, Brazil
| | - Adela López de Ceráin
- Department
of Pharmacology and Toxicology, Universidad de Navarra, Pamplona 31008, Spain
- IdiSNA, Navarra
Institute for Health Research, Recinto de Complejo Hospitalario de
Navarra, Pamplona 31008, Spain
| | - Clotilde Marín
- Departamento
de Parasitología, Instituto de Investigación Biosanitaria
(ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada 18014, Spain
| | - Manuel Sánchez-Moreno
- Departamento
de Parasitología, Instituto de Investigación Biosanitaria
(ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada 18014, Spain
| | - Silvia Pérez-Silanes
- Department
of Organic and Pharmaceutical Chemistry, Institute of Tropical Health, Universidad de Navarra, Pamplona 31008, Spain
| |
Collapse
|
27
|
Marín C, Inclán M, Ramírez-Macías I, Albelda MT, Cañas R, Clares MP, González-García J, Rosales MJ, Urbanova K, García-España E, Sánchez-Moreno M. In vitro antileishmanial activity of aza-scorpiand macrocycles. Inhibition of the antioxidant enzyme iron superoxide dismutase. RSC Adv 2016. [DOI: 10.1039/c5ra21262f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aza-scorpiand-like macrocycles candidates for the development of affordable anti-leishmanicidal agents.
Collapse
|
28
|
Olmo F, Gómez-Contreras F, Navarro P, Marín C, Yunta MJ, Cano C, Campayo L, Martín-Oliva D, Rosales MJ, Sánchez-Moreno M. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur J Med Chem 2015; 106:106-19. [DOI: 10.1016/j.ejmech.2015.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 11/30/2022]
|
29
|
An in vitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:110-6. [PMID: 26236582 PMCID: PMC4501536 DOI: 10.1016/j.ijpddr.2015.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022]
Abstract
In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by 1H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent. Low toxicity alternative treatment against Trypanosoma cruzi in murine model. The acute and chronic phases of Chagas disease. In vitro evaluation against epimastigote, amastigote and trypomastigote forms. Compound 2 selectively inhibits the parasite Fe-SOD enzyme. Compound 2 should be followed-up in future clinical experiments.
Collapse
|
30
|
Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in Leishmania species and are active in vitro against visceral and mucosal leishmaniasis. Parasitology 2015; 142:1115-29. [DOI: 10.1017/s0031182015000219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARYThe in vitro leishmanicidal activity of a series of imidazole-containing phthalazine derivatives 1–4 was tested on Leishmania infantum, Leishmania braziliensis and Leishmania donovani parasites, and their cytotoxicity on J774·2 macrophage cells was also measured. All compounds tested showed selectivity indexes higher than that of the reference drug glucantime for the three Leishmania species, and the less bulky monoalkylamino substituted derivatives 2 and 4 were clearly more effective than their bisalkylamino substituted counterparts 1 and 3. Both infection rate measures and ultrastructural alterations studies confirmed that 2 and 4 were highly leishmanicidal and induced extensive parasite cell damage. Modifications to the excretion products of parasites treated with 2 and 4 were also consistent with substantial cytoplasmic alterations. On the other hand, the most active compounds 2 and 4 were potent inhibitors of iron superoxide dismutase enzyme (Fe-SOD) in the three species considered, whereas their impact on human CuZn-SOD was low. Molecular modelling suggests that 2 and 4 could deactivate Fe-SOD due to a sterically favoured enhanced ability to interact with the H-bonding net that supports the antioxidant features of the enzyme.
Collapse
|
31
|
El-Shamy IE, Abdel-Mohsen A, Alsheikh AA, Fouda MM, Al-Deyab SS, El-Hashash MA. Synthesis and antimicrobial activities of S-nucleosides of 4-mesitylphthalazine-1-thiol and some new selenium-containing nucleoside analogues. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Gopi E, Kumar T, Menna-Barreto RFS, Valença WO, da Silva Júnior EN, Namboothiri INN. Imidazoles from nitroallylic acetates and α-bromonitroalkenes with amidines: synthesis and trypanocidal activity studies. Org Biomol Chem 2015; 13:9862-71. [DOI: 10.1039/c5ob01444a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One-pot cascade reactions of amidines with nitroallylic acetates and α-bromonitroalkenes provide functionalized imidazoles that exhibit trypanocidal activity.
Collapse
Affiliation(s)
- Elumalai Gopi
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | - Tarun Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | | | - Wagner O. Valença
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | | |
Collapse
|
33
|
Keenan M, Chaplin JH. A New Era for Chagas Disease Drug Discovery? PROGRESS IN MEDICINAL CHEMISTRY 2015; 54:185-230. [DOI: 10.1016/bs.pmch.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
2-Butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2014; 24:5520-4. [DOI: 10.1016/j.bmcl.2014.09.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/25/2014] [Accepted: 09/27/2014] [Indexed: 11/22/2022]
|
35
|
Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi. Future Med Chem 2014; 5:1733-52. [PMID: 24144410 DOI: 10.4155/fmc.13.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. RESULTS We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. CONCLUSION High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.
Collapse
|
36
|
In vitro leishmanicidal activity of pyrazole-containing polyamine macrocycles which inhibit the Fe-SOD enzyme of Leishmania infantum and Leishmania braziliensis species. Parasitology 2014; 141:1031-43. [DOI: 10.1017/s0031182014000201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe in vitro leishmanicidal activity and cytotoxicity of pyrazole-containing macrocyclic polyamines 1–4 was assayed on Leishmania infantum and Leishmania braziliensis species. Compounds 1–4 were more active and less toxic than glucantime and both infection rates and ultrastructural alterations confirmed that 1 and 2 were highly leishmanicidal and induced extensive parasite cell damage. Modifications in the excretion products of parasites treated with 1–3 were also consistent with substantial cytoplasm alterations. Compound 2 was highlighted as a potent inhibitor of Fe-SOD in both species, whereas its effect on human CuZn-SOD was poor. Molecular modelling suggested that 2 could deactivate Fe-SOD due to a sterically favoured enhanced ability to interact with the H-bonding net that supports the enzyme`s antioxidant features.
Collapse
|
37
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|