1
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
2
|
Mehri A, Mardanshahi M, Sirous H, Khanahmad H, Rostami M. Pyrimido[4,5-b]indole derivatives bearing 1,2,4-oxadiazole moiety as MDM2 inhibitor candidates in cancer treatment. Future Med Chem 2023; 15:517-532. [PMID: 37097083 DOI: 10.4155/fmc-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Aim: In this study, novel hybrid structures of pyrimido-indole-oxadiazole were developed as MDM2 inhibitors for restoring the regular function of the p53. Materials & methods: A multistep chemical pathway was used to synthesize the derivatives. Nutlin-3a was used as a standard lead in molecular docking and molecular dynamics simulations. Finally, cytotoxicity was evaluated against MCF-7 cancer cells versus Doxorubicin. Results: The most promising candidate was 12c, which had an NO2 group in the para position of the oxadiazole ring (IC50: 1.1 μM). A satisfactory result was obtained with the combined application of 12c and Doxorubicin (IC50 decreased to 0.63 μM), which could be potentially attributed to MDM2 inhibition. Conclusion: These hybrid structures can be further investigated as potential MDM2 inhibitors.
Collapse
Affiliation(s)
- Ali Mehri
- Department of Medicinal Chemistry, School of Pharmacy & Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Mahboubeh Mardanshahi
- Department of Medicinal Chemistry, School of Pharmacy & Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Hossein Khanahmad
- Department of Genetics & Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Mahboubeh Rostami
- Isfahan Pharmaceutical Sciences Research Center & Department of Medicinal Chemistry, School of Pharmacy & Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| |
Collapse
|
3
|
Kavouris JA, McCall LI, Giardini MA, De Muylder G, Thomas D, Garcia-Pérez A, Cantizani J, Cotillo I, Fiandor JM, McKerrow JH, De Oliveira CI, Siqueira-Neto JL, González S, Brown LE, Schaus SE. Discovery of pyrazolopyrrolidinones as potent, broad-spectrum inhibitors of Leishmania infection. FRONTIERS IN TROPICAL DISEASES 2023; 3:1011124. [PMID: 36818551 PMCID: PMC9937549 DOI: 10.3389/fitd.2022.1011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction Leishmaniasis is a parasitic disease that affects more than 1 million people worldwide annually, predominantly in resource-limited settings. The challenge in compound development is to exhibit potent activity against the intracellular stage of the parasite (the stage present in the mammalian host) without harming the infected host cells. We have identified a compound series (pyrazolopyrrolidinones) active against the intracellular parasites of Leishmania donovani and L. major; the causative agents of visceral and cutaneous leishmaniasis in the Old World, respectively. Methods In this study, we performed medicinal chemistry on a newly discovered antileishmanial chemotype, with over 100 analogs tested. Studies included assessments of antileishmanial potency, toxicity towards host cells, and in vitro ADME screening of key drug properties. Results and discussion Members of the series showed high potency against the deadliest form, visceral leishmaniasis (approximate EC50 ≥ 0.01 μM without harming the host macrophage up to 10.0 μM). In comparison, the most efficient monotherapy treatment for visceral leishmaniasis is amphotericin B, which presents similar activity in the same assay (EC50 = 0.2 μM) while being cytotoxic to the host cell at 5.0 μM. Continued development of this compound series with the Discovery Partnership with Academia (DPAc) program at the GlaxoSmithKline Diseases of the Developing World (GSK DDW) laboratories found that the compounds passed all of GSK's criteria to be defined as a potential lead drug series for leishmaniasis. Conclusion Here, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.
Collapse
Affiliation(s)
- John A. Kavouris
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America
| | - Laura-Isobel McCall
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Miriam A. Giardini
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Geraldine De Muylder
- Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Diane Thomas
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Adolfo Garcia-Pérez
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Juan Cantizani
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Ignacio Cotillo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Jose M. Fiandor
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Camila I. De Oliveira
- HUPES, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT) -Salvador, Brazil; Instituto de Investigação em Imunologia (iii-INCT), São Paulo, Brazil
| | - Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Department of Pathology, Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Silvia González
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America
| | - Scott E. Schaus
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, United States of America.,Correspondence: Scott E. Schaus,
| |
Collapse
|
4
|
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur J Med Chem 2022; 236:114334. [DOI: 10.1016/j.ejmech.2022.114334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
5
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
6
|
Miles X, Vandevoorde C, Hunter A, Bolcaen J. MDM2/X Inhibitors as Radiosensitizers for Glioblastoma Targeted Therapy. Front Oncol 2021; 11:703442. [PMID: 34307171 PMCID: PMC8296304 DOI: 10.3389/fonc.2021.703442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Inhibition of the MDM2/X-p53 interaction is recognized as a potential anti-cancer strategy, including the treatment of glioblastoma (GB). In response to cellular stressors, such as DNA damage, the tumor suppression protein p53 is activated and responds by mediating cellular damage through DNA repair, cell cycle arrest and apoptosis. Hence, p53 activation plays a central role in cell survival and the effectiveness of cancer therapies. Alterations and reduced activity of p53 occur in 25-30% of primary GB tumors, but this number increases drastically to 60-70% in secondary GB. As a result, reactivating p53 is suggested as a treatment strategy, either by using targeted molecules to convert the mutant p53 back to its wild type form or by using MDM2 and MDMX (also known as MDM4) inhibitors. MDM2 down regulates p53 activity via ubiquitin-dependent degradation and is amplified or overexpressed in 14% of GB cases. Thus, suppression of MDM2 offers an opportunity for urgently needed new therapeutic interventions for GB. Numerous small molecule MDM2 inhibitors are currently undergoing clinical evaluation, either as monotherapy or in combination with chemotherapy and/or other targeted agents. In addition, considering the major role of both p53 and MDM2 in the downstream signaling response to radiation-induced DNA damage, the combination of MDM2 inhibitors with radiation may offer a valuable therapeutic radiosensitizing approach for GB therapy. This review covers the role of MDM2/X in cancer and more specifically in GB, followed by the rationale for the potential radiosensitizing effect of MDM2 inhibition. Finally, the current status of MDM2/X inhibition and p53 activation for the treatment of GB is given.
Collapse
Affiliation(s)
- Xanthene Miles
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Alistair Hunter
- Radiobiology Section, Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
7
|
He S, Ma J, Fang Y, Liu Y, Wu S, Dong G, Wang W, Sheng C. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm Sin B 2021; 11:1617-1628. [PMID: 34221872 PMCID: PMC8245912 DOI: 10.1016/j.apsb.2020.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
The dose-related adverse effects of MDM2‒P53 inhibitors have caused significant concern in the development of clinical safe anticancer agents. Herein we report an unprecedented homo-PROTAC strategy for more effective disruption of MDM2‒P53 interaction. The design concept is inspired by the capacity of sub-stoichiometric catalytic PROTACs enabling to degrade an unwanted protein and the dual functions of MDM2 as an E3 ubiquitin ligase and a binding protein with tumor suppressor P53. The new homo-PROTACs are designed to induce self-degradation of MDM2. The results of the investigation have shown that PROTAC 11a efficiently dimerizes MDM2 with highly competitive binding activity and induces proteasome-dependent self-degradation of MDM2 in A549 non-small cell lung cancer cells. Furthermore, markedly, enantiomer 11a-1 exhibits potent in vivo antitumor activity in A549 xenograft nude mouse model, which is the first example of homo-PROTAC with in vivo therapeutic potency. This study demonstrates the potential of the homo-PROTAC as an alternative chemical tool for tumorigenic MDM2 knockdown, which could be developed into a safe therapy for cancer treatment.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Junhui Ma
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuxin Fang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Shanchao Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 81871239.
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Corresponding authors. Tel./fax: +86 21 81871239.
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200072, China
- Corresponding authors. Tel./fax: +86 21 81871239.
| |
Collapse
|
8
|
Luo KW, Zhu XH, Zhao T, Zhong J, Gao HC, Luo XL, Huang WR. EGCG Enhanced the Anti-tumor Effect of Doxorubicine in Bladder Cancer via NF-κB/MDM2/p53 Pathway. Front Cell Dev Biol 2021; 8:606123. [PMID: 33425912 PMCID: PMC7793730 DOI: 10.3389/fcell.2020.606123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Doxorubicin (DOX), the first-line chemotherapy for bladder cancer, usually induces side effects. We previously demonstrated that green tea polyphenol EGCG had potent anti-tumor effect in bladder cancer via down regulation of NF-κB. This study aimed to investigate the additive/synergistic effect EGCG and DOX against bladder cancer. Our results demonstrated that the combined use of DOX and EGCG inhibited T24 and SW780 cell proliferation. EGCG enhanced the apoptosis induction effect of DOX in both SW780 and T24 cells and resulted in significant differences. Besides, EGCG promoted the inhibitory effect of DOX against bladder cancer cell migration. In addition, the in vivo results demonstrated that DOX in combination with EGCG showed the most potent anti-tumor effects among DOX, EGCG and DOX+EGCG treatment groups. Further mechanistic studies determined that the combination of DOX and EGCG inhibited phosphorylated NF-κB and MDM2 expression, and up-regulated p53 expression in tumor, as assessed by western blot and immunohistochemistry. Western blot in SW780 cells also confirmed that the combined use of EGCG and DOX caused significant increase in p53, p21, and cleaved-PARP expression, and induced significant inhibition in phosphorylated NF-κB and MDM2. When NF-κB was inhibited, the expression of p53 and p-MDM2 were changed, and the combination of DOX and EGCG showed no obvious effect in transwell migration and cell viability. In conclusion, the novel application of chemotherapy DOX and EGCG demonstrated potent anti-tumor, anti-migration and anti-proliferation effects against bladder cancer. EGCG enhanced the anti-tumor effect of DOX in bladder cancer via NF-κB/MDM2/p53 pathway, suggesting the potential clinical application against bladder cancer patients.
Collapse
Affiliation(s)
- Ke-Wang Luo
- Key Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China.,Key Laboratory of Medical Programming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiao-Hong Zhu
- Key Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Ting Zhao
- Key Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Jin Zhong
- Key Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Han-Chao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xin-Le Luo
- Key Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Wei-Ren Huang
- Key Laboratory of Medical Programming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020; 27:3706-3734. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide. It initiates when cell cycle regulatory genes lose their function either by environmental and/or by internal factors. Tumor suppressor protein p53, known as "Guardian of genome", plays a central role in maintaining genomic stability of the cell. Mutation of TP53 is documented in more than 50% of human cancers, usually by overexpression of negative regulator protein MDM2. Hence, reactivation of p53 by blocking the protein-protein interaction between the murine double minute 2 (MDM2) and the tumor suppressor protein p53 has become the most promising therapeutic strategy in oncology. Several classes of small molecules have been identified as potent, selective and efficient p53-MDM2 inhibitors. Herein, we review the druggability of p53-MDM2 inhibitors and their optimization approaches as well as clinical candidates categorized by scaffold type.
Collapse
Affiliation(s)
- Krupa R Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
10
|
Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm Sin B 2020; 10:1253-1278. [PMID: 32874827 PMCID: PMC7452049 DOI: 10.1016/j.apsb.2020.01.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022] Open
Abstract
Blocking the MDM2/X–P53 protein–protein interaction has been widely recognized as an attractive therapeutic strategy for the treatment of cancers. Numerous small-molecule MDM2 inhibitors have been reported since the release of the structure of the MDM2–P53 interaction in 1996, SAR405838, NVP-CGM097, MK-8242, RG7112, RG7388, DS-3032b, and AMG232 currently undergo clinical evaluation for cancer therapy. This review is intended to provide a comprehensive and updated overview of MDM2 inhibitors and proteolysis targeting chimera (PROTAC) degraders with a particular focus on how these inhibitors or degraders are identified from starting points, strategies employed, structure–activity relationship (SAR) studies, binding modes or co-crystal structures, biochemical data, mechanistic studies, and preclinical/clinical studies. Moreover, we briefly discuss the challenges of designing MDM2/X inhibitors for cancer therapy such as dual MDM2/X inhibition, acquired resistance and toxicity of P53 activation as well as future directions.
Collapse
|
11
|
Pasricha S, Gahlot P. Synthetic Strategies and Biological Potential of Coumarin-Chalcone Hybrids: A New Dimension to Drug Design. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200219091830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Privileged scaffolds are ubiquitous as effective templates in drug discovery regime.
Natural and synthetically derived hybrid molecules are one such attractive scaffold
for therapeutic agent development due to their dual or multiple modes of action, minimum
or no side effects, favourable pharmacokinetics and other advantages. Coumarins and
chalcone are two important classes of natural products affording diverse pharmacological
activities which make them ideal templates for building coumarin-chalcone hybrids as effective
biological scaffold for drug discovery research. Provoked by the promising medicinal
application of hybrid molecules as well as those of coumarins and chalcones, the
medicinal chemists have used molecular hybridisation strategy to report dozens of coumarin-
chalcone hybrids with a wide spectrum of biological properties including anticancer,
antimicrobial, antimalarial, antioxidant, anti-tubercular and so on. The present review provides a systematic
summary on synthetic strategies, biological or chemical potential, SAR studies, some mechanisms of action
and some plausible molecular targets of synthetic coumarin-chalcone hybrids published from 2001 till
date. The review is expected to assist medicinal chemists in the effective and successful development of coumarin-
chalcone hybrid based drug discovery regime.
Collapse
Affiliation(s)
- Sharda Pasricha
- Department of Chemistry, Sri Venkateswara College, University of Delhi, P.O. Box: 110021, New Delhi, India
| | - Pragya Gahlot
- Department of Chemistry, Sri Venkateswara College, University of Delhi, P.O. Box: 110021, New Delhi, India
| |
Collapse
|
12
|
Li W, Peng X, Lang J, Xu C. Targeting Mouse Double Minute 2: Current Concepts in DNA Damage Repair and Therapeutic Approaches in Cancer. Front Pharmacol 2020; 11:631. [PMID: 32477121 PMCID: PMC7232544 DOI: 10.3389/fphar.2020.00631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 01/14/2023] Open
Abstract
Defects in DNA damage repair may cause genome instability and cancer development. The tumor suppressor gene p53 regulates cell cycle arrest to allow time for DNA repair. The oncoprotein mouse double minute 2 (MDM2) promotes cell survival, proliferation, invasion, and therapeutic resistance in many types of cancer. The major role of MDM2 is to inhibit p53 activity and promote its degradation. In this review, we describe the influence of MDM2 on genomic instability, the role of MDM2 on releasing p53 and binding DNA repair proteins to inhibit repair, and the regulation network of MDM2 including its transcriptional modifications, protein stability, and localization following DNA damage in genome integrity maintenance and in MDM2-p53 axis control. We also discuss p53-dependent and p53 independent oncogenic function of MDM2 and the outcomes of clinical trials that have been used with clinical inhibitors targeting p53-MDM2 to treat certain cancers.
Collapse
Affiliation(s)
- Wen Li
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinhao Peng
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
14
|
Zhu JN, Wang WK, Jin ZH, Wang QK, Zhao SY. Pyrrolo[3,4- c]pyrazole Synthesis via Copper(Ι) Chloride-Catalyzed Oxidative Coupling of Hydrazones to Maleimides. Org Lett 2019; 21:5046-5050. [PMID: 31247786 DOI: 10.1021/acs.orglett.9b01641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A variety of pyrrolo[3,4- c]pyrazole derivatives from readily available aldehyde hydrazones and maleimides via direct oxidative coupling under radical cascade reaction have been reported. This method offers satisfactory chemical yields and good functional group compatibility. Moreover, this practical approach is catalyzed by CuCl utilizing air as the oxidant and some control experiments were performed to elaborate the mechanism.
Collapse
Affiliation(s)
- Jia-Nan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Ze-Hui Jin
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Qian-Kun Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| |
Collapse
|
15
|
Bakthadoss M, Jayakumar S, Raman S, Devaraj A, Sharada DS. A novel multicomponent quadruple/double quadruple domino reaction: highly efficient synthesis of polyheterocyclic architectures. Org Biomol Chem 2019; 17:3884-3893. [PMID: 30574986 DOI: 10.1039/c8ob02970a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel multicomponent quadruple domino reaction (MCQDR) for the assembly of structurally complex molecular architectures via the formation of three rings and three contiguous stereogenic centers has been accomplished with high regio- and diastereoselectivity. Solvents, catalysts and work-up were not required to obtain the target molecules. In addition, this new protocol is also extended for the multicomponent double quadruple domino reaction (MCDQDR) to create novel polyheterocyclic architectures in an orthogonal manner.
Collapse
Affiliation(s)
- Manickam Bakthadoss
- Department of Chemistry, Pondicherry University, Puducherry - 605 014, India.
| | | | | | | | | |
Collapse
|
16
|
Wang Y, Chen Y, Li X, Mao Y, Chen W, Zhan R, Huang H. Enantioselective synthesis of pyrano[2,3-c]pyrrole via an organocatalytic [4 + 2] cyclization reaction of dioxopyrrolidines and azlactones. Org Biomol Chem 2019; 17:3945-3950. [DOI: 10.1039/c9ob00419j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present work provides a simple and efficient access to chiral pyrano[2,3-c]pyrrole via an asymmetric [4 + 2] cyclization reaction catalyzed by a cinchona-squaramide catalyst.
Collapse
Affiliation(s)
- Yichen Wang
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Yuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Xiaoping Li
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Yukang Mao
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| |
Collapse
|
17
|
Allosteric Modulators of Protein-Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:313-334. [PMID: 31707709 DOI: 10.1007/978-981-13-8719-7_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions (PPIs) represent promising drug targets of broad-spectrum therapeutic interests due to their critical implications in both health and disease circumstances. Hence, they are widely accepted as the Holy Grail of drug development. Historically, PPIs were rendered "undruggable" for their large, flat, and pocket-less structures. Current attempts to drug these "intractable" targets include orthosteric and allosteric methodologies. Previous efforts employing orthosteric approaches like protein therapeutics and orthosteric small molecules frequently suffered from poor performance caused by the difficulties in directly targeting PPI interfaces. As structural biology progresses rapidly, allosteric modulators, which direct to the allosteric regulatory sites remote to the PPI surfaces, have gradually established as a potential solution. Allosteric pockets are topologically distal from the PPI orthosteric sites, and their ligands do not need to compete with the PPI partners, which helps to improve the physiochemical and pharmacological properties of allosteric PPI modulators. Thus, exploiting allostery to tailor PPIs is regarded as a tempting strategy in future PPI drug discovery. Here, we provide a comprehensive review of our representative achievements along the way we utilize allosteric effects to tame the difficult PPI systems into druggable targets. Importantly, we provide an in-depth mechanistic analysis of this success, which will be instructive to future related lead optimizations and drug design. Finally, we discuss the current challenges in allosteric PPI drug discovery. Their solutions as well as future perspectives are also presented.
Collapse
|
18
|
Small molecules inhibit ex vivo tumor growth in bone. Bioorg Med Chem 2018; 26:6128-6134. [PMID: 30470597 DOI: 10.1016/j.bmc.2018.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Bone is a common site of metastasis for breast, prostate, lung, kidney and other cancers. Bone metastases are incurable, and substantially reduce patient quality of life. To date, there exists no small-molecule therapeutic agent that can reduce tumor burden in bone. This is partly attributed to the lack of suitable in vitro assays that are good models of tumor growth in bone. Here, we take advantage of a novel ex vivo model of bone colonization to report a series of pyrrolopyrazolone small molecules that inhibit cancer cell invasion and ex vivo tumor growth in bone at single-digit micromolar concentration. We find that the compounds modulated the expression levels of genes associated with bone-forming osteoblasts, bone-destroying osteoclasts, cancer cell viability and metastasis. Our compounds provide chemical tools to uncover novel targets and pathways associated with bone metastasis, as well as for the development of compounds to prevent and reverse bone tumor growth in vivo.
Collapse
|
19
|
He S, Dong G, Wu S, Fang K, Miao Z, Wang W, Sheng C. Small Molecules Simultaneously Inhibiting p53-Murine Double Minute 2 (MDM2) Interaction and Histone Deacetylases (HDACs): Discovery of Novel Multitargeting Antitumor Agents. J Med Chem 2018; 61:7245-7260. [PMID: 30045621 DOI: 10.1021/acs.jmedchem.8b00664] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53-Murine double minute 2 (MDM2) interaction and histone deacetylases (HDACs) are important targets in antitumor drug development. Inspired by the synergistic effects between MDM2 and HDACs, the first MDM2/HDACs dual inhibitors were identified, which showed excellent activities against both targets. In particular, compound 14d was proven to be a potent and orally active MDM2/HDAC dual inhibitor, whose antitumor mechanisms were validated in cancer cells. Compound 14d showed excellent in vivo antitumor potency in the A549 xenograft model, providing a promising lead compound for the development of novel antitumor agents. Also, this proof-of-concept study offers a novel and efficient strategy for multitargeting antitumor drug discovery.
Collapse
Affiliation(s)
- Shipeng He
- School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , P.R. China
| | - Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , P.R. China
| | - Kun Fang
- School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , P.R. China
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , P.R. China
| | - Wei Wang
- School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , P.R. China.,Department of Chemistry and Chemical Biology , University of New Mexico , MSC03 2060, Albuquerque , New Mexico 87131-0001 , United States
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , P.R. China
| |
Collapse
|
20
|
Huang Y, Dong G, Li H, Liu N, Zhang W, Sheng C. Discovery of Janus Kinase 2 (JAK2) and Histone Deacetylase (HDAC) Dual Inhibitors as a Novel Strategy for the Combinational Treatment of Leukemia and Invasive Fungal Infections. J Med Chem 2018; 61:6056-6074. [PMID: 29940115 DOI: 10.1021/acs.jmedchem.8b00393] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clinically, leukemia patients often suffer from the limited efficacy of chemotherapy and high risks of infection by invasive fungal pathogens. Herein, a novel therapeutic strategy was developed in which a small molecule can simultaneously treat leukemia and invasive fungal infections (IFIs). Novel Janus kinase 2 (JAK2) and histone deacetylase (HDAC) dual inhibitors were identified to possess potent anti-proliferative activity toward hematological cell lines and excellent synergistic effects with fluconazole to treat resistant Candida albicans infections. In particular, compound 20a, a highly active and selective JAK2/HDAC6 dual inhibitor, showed excellent in vivo antitumor efficacy in several acute myeloid leukemia (AML) models and synergized with fluconazole for the treatment of resistant C. albicans infections. This study highlights the therapeutic potential of JAK2/HDAC dual inhibitors in treating AML and IFIs and provides an efficient strategy for multitargeting drug discovery.
Collapse
Affiliation(s)
- Yahui Huang
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , PR China
| | - Guoqiang Dong
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , PR China
| | - Huanqiu Li
- College of Pharmaceutical Science , Soochow University , Suzhou 215123 , PR China
| | - Na Liu
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , PR China
| | - Wannian Zhang
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , PR China
| | - Chunquan Sheng
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , PR China
| |
Collapse
|
21
|
Li JL, Fu L, Wu J, Yang KC, Li QZ, Gou XJ, Peng C, Han B, Shen XD. Highly enantioselective synthesis of fused bicyclic dihydropyranones via low-loading N-heterocyclic carbene organocatalysis. Chem Commun (Camb) 2018; 53:6875-6878. [PMID: 28604911 DOI: 10.1039/c7cc02921g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly diastereo and enantioselective [4+2] cycloadditions have been achieved between pyrrolidone-derived cyclic enones and α-haloaldehydes under mild conditions. Relying on extremely reactive in-situ generated chiral N-heterocyclic carbenes, this stereoselective annulation proceeds efficiently even on the gram scale with the catalyst loading as low as 0.025 mol% (250 ppm). A variety of cis-substituted bicyclic dihydropyranones can be produced in up to 96% yield with up to >99% ee. In addition, simple, inexpensive linear aldehydes such as n-propanal can be used directly in asymmetric cycloadditions via oxidative N-heterocyclic carbene organocatalysis with low catalyst loading. This method may provide an economical and practical approach for the asymmetric synthesis of medicinally relevant molecules.
Collapse
Affiliation(s)
- Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reddy Bonam S, Naidu Gorantla J, Thangarasu AK, Lankalapalli RS, Sampath Kumar HM. Polyhydroxy-N-alkyl-2-pyrrolidinones as a new class of glycolipid analogues with immune modulation potential. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2017.1413193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire, University of Strasbourg, Strasbourg, France
| | - Jaggaiah Naidu Gorantla
- Organic Chemistry Section, Chemical Sciences and Technology Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India
| | - Arun Kumar Thangarasu
- Organic Chemistry Section, Chemical Sciences and Technology Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India
| | - Ravi Shankar Lankalapalli
- Organic Chemistry Section, Chemical Sciences and Technology Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
23
|
Shaik AB, Rao GK, Kumar GB, Patel N, Reddy VS, Khan I, Routhu SR, Kumar CG, Veena I, Chandra Shekar K, Barkume M, Jadhav S, Juvekar A, Kode J, Pal-Bhadra M, Kamal A. Design, synthesis and biological evaluation of novel pyrazolochalcones as potential modulators of PI3K/Akt/mTOR pathway and inducers of apoptosis in breast cancer cells. Eur J Med Chem 2017; 139:305-324. [PMID: 28803046 DOI: 10.1016/j.ejmech.2017.07.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/25/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
Cancer has been established as the "Emperor of all maladies". In recent years, medicinal chemistry has focused on identifying novel anti-cancer compounds; though discovery of these compounds appears to be a herculean task. In present study, we synthesized forty pyrazolochalcone conjugates and explored their cytotoxic activity against a panel of sixty cancer cell lines. Fifteen conjugates of the series showed excellent growth inhibition (13b-e, 13h-j, 14c-d, 15 a, 15 c-d, 16b, 16d and 18f; GI50 for MCF-7: 0.4-20 μM). Conjugates 13b, 13c, 13d, 16b and 14d were also evaluated for their cytotoxic activity in human breast cancer cell line (MCF-7). The promising candidates induced cell cycle arrest, mitochondrial membrane depolarization and apoptosis in MCF-7 cells at a 2 μM concentration. Furthermore, inhibition of PI3K/Akt/mTOR pathway-regulators such as PI3K, p-PI3K, p-AKT, and mTOR were observed; as well as upregulation of p-GSK3β and tumor-suppressor protein, PTEN. Our study indicates that pyrazolochalcone conjugates could serve as potential leads in the development of tailored cancer therapeutics.
Collapse
Affiliation(s)
- Anver Basha Shaik
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Garikapati Koteswara Rao
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - G Bharath Kumar
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Nibeditha Patel
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Vangala Santhosh Reddy
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Irfan Khan
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sunitha Rani Routhu
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Immadi Veena
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Kunta Chandra Shekar
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Madan Barkume
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Shailesh Jadhav
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Aarti Juvekar
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Jyoti Kode
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
24
|
Design, synthesis and biological evaluation of novel antitumor spirotetrahydrothiopyran–oxindole derivatives as potent p53-MDM2 inhibitors. Bioorg Med Chem 2017; 25:5268-5277. [DOI: 10.1016/j.bmc.2017.07.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022]
|
25
|
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 2017; 117:7762-7810. [PMID: 28488435 PMCID: PMC6131713 DOI: 10.1021/acs.chemrev.7b00020] [Citation(s) in RCA: 840] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive,
Gainesville, Florida 32610, United States
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
26
|
Shymanska NV, Pierce JG. Stereoselective Synthesis of Quaternary Pyrrolidine-2,3-diones and β-Amino Acids. Org Lett 2017; 19:2961-2964. [PMID: 28537396 PMCID: PMC5540151 DOI: 10.1021/acs.orglett.7b01185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile, diastereoselective synthesis of highly substituted pyrrolidine-2,3-diones is reported, along with the one-step conversion of these heterocycles to novel β-amino acids and further functionalized derivatives. This method involves an unusually mild, one-pot, three-component cyclization/allylation followed by a Claisen rearrangement to provide unusual pyrrolidinone products that are densely functionalized and contain an all-carbon quaternary stereocenter. The reported reaction sequence is operationally simple, exquisitely diastereoselective, and provides gram-scale access to valuable heterocyclic scaffolds and β-amino acids not readily accessible via existing approaches.
Collapse
Affiliation(s)
- Nataliia V. Shymanska
- Department of Chemistry, College of Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
27
|
Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther 2017; 178:92-108. [PMID: 28351719 DOI: 10.1016/j.pharmthera.2017.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is one of the most important proteins for protection of genomic stability and cancer prevention. Cancers often inactivate it by either mutating its gene or disabling its function. Thus, activating p53 becomes an attractive approach for the development of molecule-based anti-cancer therapy. The past decade and half have witnessed tremendous progress in this area. This essay offers readers with a grand review on this progress with updated information about small molecule activators of p53 either still at bench work or in clinical trials.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States.
| |
Collapse
|
28
|
Zhou WH, Xu XG, Li J, Min X, Yao JZ, Dong GQ, Zhuang CL, Miao ZY, Zhang WN. Design, synthesis and structure–activity relationship of 4,5-dihydropyrrolo[3,4- c ]pyrazol-6(1 H )-ones as potent p53-MDM2 inhibitors. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Kwon M, Jang H, Kim EH, Roh JL. Efficacy of poly (ADP-ribose) polymerase inhibitor olaparib against head and neck cancer cells: Predictions of drug sensitivity based on PAR-p53-NF-κB interactions. Cell Cycle 2016; 15:3105-3114. [PMID: 27686740 DOI: 10.1080/15384101.2016.1235104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) is a key molecule in the DNA damage response (DDR), which is a major target of both chemotherapies and radiotherapies. PARP inhibitors therefore comprise a promising class of anticancer therapeutics. In this study, we evaluated the efficacy of the PARP inhibitor olaparib, and also sought to identify the mechanism and predictive marker associated with olaparib sensitivity in head and neck cancer (HNC) cells. A total of 15 HNC cell lines, including AMC HNC cells, were tested. AMC-HN3 and HN4 exhibited stronger responses to olaparib. Among cisplatin-resistant cell lines, only AMC HN9-cisR cells were significantly suppressed by olaparib. We found that basal poly (ADP-ribose) (PAR) levels, but not PARP-1 levels, correlated with olaparib sensitivity. AMC-HN3 and HN4 cells exhibited higher basal levels of NF-κB that decreased significantly after olaparib treatment. In contrast, apoptotic proteins were intrinsically expressed in AMC-HN9-cisR cells. As interference with p53 expression led to NF-κB reactivation, we concluded that elevated basal PAR and NF-κB levels are predictive of olaparib responsiveness in HNC cells; in addition, olaparib inhibits HNC cells via PAR-p53-NF-κB interactions.
Collapse
Affiliation(s)
- Minsu Kwon
- a Department of Otorhinolaryngology , Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine , Changwon , Republic of Korea
| | - Hyejin Jang
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Eun Hye Kim
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Jong-Lyel Roh
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
30
|
Chemical Variations on the p53 Reactivation Theme. Pharmaceuticals (Basel) 2016; 9:ph9020025. [PMID: 27187415 PMCID: PMC4932543 DOI: 10.3390/ph9020025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/31/2023] Open
Abstract
Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the "guardian of the genome", playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX). Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented.
Collapse
|
31
|
Wang S, Jiang Y, Wu S, Dong G, Miao Z, Zhang W, Sheng C. Meeting Organocatalysis with Drug Discovery: Asymmetric Synthesis of 3,3'-Spirooxindoles Fused with Tetrahydrothiopyrans as Novel p53-MDM2 Inhibitors. Org Lett 2016; 18:1028-31. [PMID: 26883465 DOI: 10.1021/acs.orglett.6b00155] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An organocatalytic enantioselective Michael-Michael cascade reaction is developed for the synthesis of chiral spirotetrahydrothiopyrans. This highly functionalized scaffold was assembled in moderate to good yield (55-74%) and excellent diastereo- and enantioselectivities (>30:1 dr, ≥ 99% ee) with the creation of four consecutive stereogenic centers. The novel spiro-oxindole scaffold is validated as a new class of p53-MDM2 protein-protein interaction inhibitors with good antitumor activity.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China.,Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University , 169 Changle West Road, Xi'an, 710032, P.R. China
| | - Yan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Wannian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
32
|
Zhuang C, Sheng C, Shin WS, Wu Y, Li J, Yao J, Dong G, Zhang W, Sham YY, Miao Z, Zhang W. A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget 2015; 5:10830-9. [PMID: 25350970 PMCID: PMC4279413 DOI: 10.18632/oncotarget.2521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/24/2014] [Indexed: 01/02/2023] Open
Abstract
The p53 and nuclear factor κB (NF-κB) pathways play crucial roles in human cancer development. Simultaneous targeting of both pathways is an attractive therapeutic strategy against cancer. In this study, we report an antitumor molecule that bears a pyrrolo[3,4-c]pyrazole scaffold and functions as an enantiomeric inhibitor against both the p53-MDM2 interaction and the NF-κB activation. It is a first-in-class enantiomeric inhibitor with dual efficacy for cancer therapy. Synergistic effect was observed in vitro and in vivo. Docking and molecular dynamics simulation studies further provided insights into the nature of stereoselectivity.
Collapse
Affiliation(s)
- Chunlin Zhuang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China. Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Woo Shik Shin
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, 55455, Minnesota
| | - Yuelin Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jin Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jianzhong Yao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wen Zhang
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yuk Yin Sham
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, 55455, Minnesota
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wannian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
33
|
Sheng C, Dong G, Miao Z, Zhang W, Wang W. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem Soc Rev 2015; 44:8238-59. [PMID: 26248294 DOI: 10.1039/c5cs00252d] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeting protein-protein interactions (PPIs) has emerged as a viable approach in modern drug discovery. However, the identification of small molecules enabling us to effectively interrupt their interactions presents significant challenges. In the recent past, significant advances have been made in the development of new biological and chemical strategies to facilitate the discovery process of small-molecule PPI inhibitors. This review aims to highlight the state-of-the-art technologies and the achievements made recently in this field. The "hot spots" of PPIs have been proved to be critical for small molecules to bind. Three strategies including screening, designing, and synthetic approaches have been explored for discovering PPI inhibitors by targeting the "hot spots". Although the classic high throughput screening approach can be used, fragment screening, fragment-based drug design and newly improved virtual screening are demonstrated to be more effective in the discovery of PPI inhibitors. In addition to screening approaches, design strategies including anchor-based and small molecule mimetics of secondary structures involved in PPIs have become powerful tools as well. Finally, constructing new chemically spaced libraries with high diversity and complexity is becoming an important area of interest for PPI inhibitors. The successful cases from the recent five year studies are used to illustrate how these approaches are implemented to uncover and optimize small molecule PPI inhibitors and notably some of them have become promising therapeutics.
Collapse
Affiliation(s)
- Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China.
| | | | | | | | | |
Collapse
|
34
|
Bisbenzimidazole derivatives as potent inhibitors of the trypsin-like sites of the immunoproteasome core particle. Biochimie 2015; 108:94-100. [DOI: 10.1016/j.biochi.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023]
|
35
|
Batchu H, Batra S. Synthesis of dihydropyrazolo[4,3-c]azepines via iodine-mediated intramolecular hydrative cyclization. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Yu Z, Zhuang C, Wu Y, Guo Z, Li J, Dong G, Yao J, Sheng C, Miao Z, Zhang W. Design, synthesis and biological evaluation of sulfamide and triazole benzodiazepines as novel p53-MDM2 inhibitors. Int J Mol Sci 2014; 15:15741-53. [PMID: 25198897 PMCID: PMC4200789 DOI: 10.3390/ijms150915741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 11/16/2022] Open
Abstract
A series of sulfamide and triazole benzodiazepines were obtained with the principle of bioisosterism. The p53-murine double minute 2 (MDM2) inhibitory activity and in vitro antitumor activity were evaluated. Most of the novel benzodiazepines exhibited moderate protein binding inhibitory activity. Particularly, triazole benzodiazepines showed good inhibitory activity and antitumor potency. Compound 16 had promising antitumor activity against the U-2 OS human osteosarcoma cell line with an IC50 value of 4.17 μM, which was much better than that of nutlin-3. The molecular docking model also successfully predicted that this class of compounds mimicked the three critical residues of p53 binding to MDM2.
Collapse
Affiliation(s)
- Zhiliang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Yuelin Wu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Zizhao Guo
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Jin Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
37
|
Discovery of 1-arylpyrrolidone derivatives as potent p53-MDM2 inhibitors based on molecule fusing strategy. Bioorg Med Chem Lett 2014; 24:2648-50. [PMID: 24813735 DOI: 10.1016/j.bmcl.2014.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 11/20/2022]
Abstract
Introducing an aryl moiety to our previous pyrrolidone scaffold by molecule fusing strategy afforded two sets of isopropylether-pyrrolidone and α-phenylethylamine-pyrrolidone derivatives. Two novel compounds 8b and 8g of the latter serial showed potent p53-MDM2 inhibitory activities with Ki values of 90nM which were three-time higher than that of the parent compound. We also confirmed compound 8b can activate p53 proteins in lung cancer A549 cells. The results offered us valuable information for further lead optimization.
Collapse
|