1
|
Yang L, Wang R, Liu Q, Shah T, Zhou J, Zhao W, Wang Y, Deng L, Wang B. Genomic Characterization and Phylogenetic Analysis of Five Avian Influenza H5N1 Subtypes from Wild Anser indicus in Yunnan, China. Vet Sci 2025; 12:280. [PMID: 40267014 PMCID: PMC11945867 DOI: 10.3390/vetsci12030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/25/2025] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5 viruses have been found to have a substantial geographic distribution since they were first reported in Guangdong Province, China. The emergence of new genotypes threatens the poultry industry and human health worldwide. Here, we report five HPAI H5N1 variants isolated from Anser indicus in Yunnan Province, China. A phylogenetic analysis of the hemagglutinin (HA) gene showed that all isolates belong to the highly pathogenic H5 clade 2.3.4.4b and formed two distinct genetic clusters. Bayesian phylogenetic analysis also revealed that the viruses were initially disseminated from wild birds to Anser indicus, implying that infected birds most likely contributed to viral transmission in the region. Genomic sequence analysis revealed several amino acid substitutions, also implying that the infected birds contributed to the spread of the virus throughout the region. Substitutions in the HA glycoprotein increased the virus's binding affinity to human α-2,6 sialic acid residues. Substitutions in the PB1, PA, and PB2 motifs increased viral polymerase activity and replication in hosts, whereas substitutions in the NP, M1, and NS motifs increased viral pathogenicity in chickens and mice.
Collapse
Affiliation(s)
- Lingsi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (L.Y.); (R.W.); (T.S.); (L.D.)
| | - Rui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (L.Y.); (R.W.); (T.S.); (L.D.)
| | - Qi Liu
- Yunnan Province Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China;
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (L.Y.); (R.W.); (T.S.); (L.D.)
| | - Jiuxuan Zhou
- Research Institute of Forest Protection, Yunnan Academy of Forestry and Grassland, Kunming 650500, China; (J.Z.); (Y.W.)
| | - Wenhua Zhao
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratary, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China;
| | - Yixuan Wang
- Research Institute of Forest Protection, Yunnan Academy of Forestry and Grassland, Kunming 650500, China; (J.Z.); (Y.W.)
| | - Lulu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (L.Y.); (R.W.); (T.S.); (L.D.)
| | - Binghui Wang
- Yunnan Province Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China;
| |
Collapse
|
2
|
Tekwani Movellan K, Wegstroth M, Overkamp K, Leonov A, Becker S, Andreas LB. Real-time tracking of drug binding to influenza A M2 reveals a high energy barrier. J Struct Biol X 2023; 8:100090. [PMID: 37363040 PMCID: PMC10285276 DOI: 10.1016/j.yjsbx.2023.100090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The drug Rimantadine binds to two different sites in the M2 protein from influenza A, a peripheral site and a pore site that is the primary site of efficacy. It remained enigmatic that pore binding did not occur in certain detergent micelles, and in particular incomplete binding was observed in a mixture of lipids selected to match the viral membrane. Here we show that two effects are responsible, namely changes in the protein upon pore binding that prevented detergent solubilization, and slow binding kinetics in the lipid samples. Using 55-100 kHz magic-angle spinning NMR, we characterize kinetics of drug binding in three different lipid environments: DPhPC, DPhPC with cholesterol and viral mimetic membrane lipid bilayers. Slow pharmacological binding kinetics allowed the characterization of spectral changes associated with non-specific binding to the protein periphery in the kinetically trapped pore-apo state. Resonance assignments were determined from a set of proton-detected 3D spectra. Chemical shift changes associated with functional binding in the pore of M2 were tracked in real time in order to estimate the activation energy. The binding kinetics are affected by pH and the lipid environment and in particular cholesterol. We found that the imidazole-imidazole hydrogen bond at residue histidine 37 is a stable feature of the protein across several lipid compositions. Pore binding breaks the imidazole-imidazole hydrogen bond and limits solubilization in DHPC detergent.
Collapse
|
3
|
Stampolaki Μ, Hoffmann A, Tekwani K, Georgiou K, Tzitzoglaki C, Ma C, Becker S, Schmerer P, Döring K, Stylianakis I, Turcu AL, Wang J, Vázquez S, Andreas LB, Schmidtke M, Kolocouris A. A Study of the Activity of Adamantyl Amines against Mutant Influenza A M2 Channels Identified a Polycyclic Cage Amine Triple Blocker, Explored by Molecular Dynamics Simulations and Solid-State NMR. ChemMedChem 2023; 18:e202300182. [PMID: 37377066 DOI: 10.1002/cmdc.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
We compared the anti-influenza potencies of 57 adamantyl amines and analogs against influenza A virus with serine-31 M2 proton channel, usually termed as WT M2 channel, which is amantadine sensitive. We also tested a subset of these compounds against viruses with the amantadine-resistant L26F, V27A, A30T, G34E M2 mutant channels. Four compounds inhibited WT M2 virus in vitro with mid-nanomolar potency, with 27 compounds showing sub-micromolar to low micromolar potency. Several compounds inhibited L26F M2 virus in vitro with sub-micromolar to low micromolar potency, but only three compounds blocked L26F M2-mediated proton current as determined by electrophysiology (EP). One compound was found to be a triple blocker of WT, L26F, V27A M2 channels by EP assays, but did not inhibit V27A M2 virus in vitro, and one compound inhibited WT, L26F, V27A M2 in vitro without blocking V27A M2 channel. One compound blocked only L26F M2 channel by EP, but did not inhibit virus replication. The triple blocker compound is as long as rimantadine, but could bind and block V27A M2 channel due to its larger girth as revealed by molecular dynamics simulations, while MAS NMR informed on the interaction of the compound with M2(18-60) WT or L26F or V27A.
Collapse
Affiliation(s)
- Μarianna Stampolaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Anja Hoffmann
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kumar Tekwani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kyriakos Georgiou
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Christina Tzitzoglaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Chunlong Ma
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Patrick Schmerer
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kristin Döring
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Ioannis Stylianakis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Andreea L Turcu
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Jun Wang
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Santiago Vázquez
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Michaela Schmidtke
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Antonios Kolocouris
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| |
Collapse
|
4
|
Kotha S, Nandan Chaurasia U, Ansari S. Early and Late‐Stage Functionalization of Cage Systems: Stereochemically Divergent Synthesis of Oxa‐cages
via
Olefin Metathesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202202497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry Indian Institute of Technology, Bombay Powai 400076 Mumbai India
| | - Usha Nandan Chaurasia
- Department of Chemistry Indian Institute of Technology, Bombay Powai 400076 Mumbai India
| | - Saima Ansari
- Department of Chemistry Indian Institute of Technology, Bombay Powai 400076 Mumbai India
| |
Collapse
|
5
|
Rajput SS, Alam M. Designing a Propellane-based Nonlinear Optically Active System Absorbing in Three Different Wavelength Regions. Chemphyschem 2022; 23:e202200529. [PMID: 36001463 DOI: 10.1002/cphc.202200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Indexed: 01/05/2023]
Abstract
The aim of this work is to demonstrate the possibility of using propellane in designing a molecule that can absorb in three different wavelength regions and their nonlinear optical (NLO) activity can be fine-tuned by varying the three wings. We considered 22 tailor-made propellane derivatives consisting of phenyl, naphthyl, and biphenyl wings for this purpose. Using the state-of-the-art linear and quadratic response methods within TD-DFT and RI-CC2 theories and a suitable generalized few-state model that quantifies the effect of orientation of different transition moments on NLO properties, we discussed how and why the linear and nonlinear optical activity of propellane vary when the three wings are assembled successively to construct a full-propellane.
Collapse
Affiliation(s)
- Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, CG-492015, India
| | - Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, CG-492015, India
| |
Collapse
|
6
|
Bhargav A, Chaurasia P, Kumar R, Ramachandran S. Phytovid19: a compilation of phytochemicals research in coronavirus. Struct Chem 2022; 33:2169-2177. [PMID: 36039155 PMCID: PMC9402405 DOI: 10.1007/s11224-022-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 pandemic has immensely impacted global health causing colossal damage. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has increased the quest to explore phytochemicals as treatment options. We summarize phytochemicals with activity against various coronaviruses including SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). We compiled 705 phytochemical compounds through text mining of 893 PubMed articles. The physicochemical properties including molecular weight, lipophilicity, and the number of hydrogen bond donors and acceptors were determined from the structures of these compounds. A structure-based evaluation of these properties with respect to drug likeness showed that most compounds have a positive score of drug likeness. QSAR analysis showed that 5 descriptors, namely polar surface area, relative polar surface area, number of hydrogen bond donors, solubility, and lipophilicity, are significantly related to IC50. We envisage that these phytochemicals could be further explored for developing new potential therapeutic molecules for COVID-19.
Collapse
Affiliation(s)
- Anasuya Bhargav
- Informatics and Big Data, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Pratibha Chaurasia
- Informatics and Big Data, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rohit Kumar
- Informatics and Big Data, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Srinivasan Ramachandran
- Informatics and Big Data, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
7
|
Aledavood E, Selmi B, Estarellas C, Masetti M, Luque FJ. From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus. Front Mol Biosci 2022; 8:796229. [PMID: 35096969 PMCID: PMC8795881 DOI: 10.3389/fmolb.2021.796229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
With an estimated 1 billion people affected across the globe, influenza is one of the most serious health concerns worldwide. Therapeutic treatments have encompassed a number of key functional viral proteins, mainly focused on the M2 proton channel and neuraminidase. This review highlights the efforts spent in targeting the M2 proton channel, which mediates the proton transport toward the interior of the viral particle as a preliminary step leading to the release of the fusion peptide in hemagglutinin and the fusion of the viral and endosomal membranes. Besides the structural and mechanistic aspects of the M2 proton channel, attention is paid to the challenges posed by the development of efficient small molecule inhibitors and the evolution toward novel ligands and scaffolds motivated by the emergence of resistant strains.
Collapse
Affiliation(s)
- Elnaz Aledavood
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Beatrice Selmi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - F. Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| |
Collapse
|
8
|
Mechanism and Kinetics of Copper Complexes Binding to the Influenza A M2 S31N and S31N/G34E Channels. Biophys J 2020; 120:168-177. [PMID: 33248127 DOI: 10.1016/j.bpj.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 01/13/2023] Open
Abstract
Copper(II) is known to bind in the influenza virus His37 cluster in the homotetrameric M2 proton channel and block the proton current needed for uncoating. Copper complexes based on iminodiacetate also block the M2 proton channel and show reduced cytotoxicity and zebrafish-embryo toxicity. In voltage-clamp oocyte studies using the ubiquitous amantadine-insensitive M2 S31N variant, the current block showed fast and slow phases, in contrast to the single phase found for amantadine block of wild-type M2. Here, we evaluate the mechanism of block by copper adamantyl iminodiacitate and copper cyclooctyl iminodiacitate complexes and address whether the complexes can coordinate with one or more of the His37 imidazoles. The current traces were fitted to parametrized master equations. The energetics of binding and the rate constants suggest that the first step is copper complex binding within the channel, and the slow step in the current block is the formation of a Cu-histidine coordination complex. Solution-phase isothermal titration calorimetry and density functional theory (DFT) calculations indicate that imidazole binds to the copper complexes. Structural optimization using DFT reveals that the complexes fit inside the channel and project the Cu(II) toward the His37 cluster, allowing one imidazole to form a coordination complex with Cu(II). Electrophysiology and DFT studies also show that the complexes block the G34E amantadine-resistant mutant despite some crowding in the binding site by the glutamates.
Collapse
|
9
|
Ginex T, Luque FJ. Searching for effective antiviral small molecules against influenza A virus: A patent review. Expert Opin Ther Pat 2020; 31:53-66. [PMID: 33012213 DOI: 10.1080/13543776.2020.1831471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Despite the current interest caused by SARS-Cov-2, influenza continues to be one of the most serious health concerns, with an estimated 1 billion cases across the globe, including 3-5 million severe cases and 290,000-650,000 deaths worldwide. Areas covered: This manuscript reviews the efforts made in the development of small molecules for the treatment of influenza virus, primarily focused on patent applications in the last 5 years. Attention is paid to compounds targeting key functional viral proteins, such as the M2 channel, neuraminidase, and hemagglutinin, highlighting the evolution toward new ligands and scaffolds motivated by the emergence of resistant strains. Finally, the discovery of compounds against novel viral targets, such as the RNA-dependent RNA polymerase, is discussed. Expert opinion: The therapeutic potential of antiviral agents is limited by the increasing presence of resistant strains. This should encourage research on novel strategies for therapeutic intervention. In this context, the discovery of arbidol and JNJ7918 against hemagglutinin, and current efforts on RNA-dependent RNA polymerase have disclosed novel opportunities for therapeutic treatment. Studies should attempt to expand the therapeutic arsenal of anti-flu agents, often in combined therapies, to prevent future health challenges caused by influenza virus. Abbreviations: AlphaLISA: amplified luminescent proximity homogeneous assay; HA: hemagglutinin; NA: neuraminidase; RBD: receptor binding domain; RdRp: RNA-dependent RNA polymerase; SA: sialic Acid; TBHQ: tert-butyl hydroquinone; TEVC: two-electrode voltage clamp.
Collapse
Affiliation(s)
- Tiziana Ginex
- Translational Medicinal and Biological Chemistry Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Biológicas (CIB-CSIC) , Madrid, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona , Santa Coloma de Gramanet, Spain
| |
Collapse
|
10
|
Shiryaev VA, Klimochkin YN. Heterocyclic Inhibitors of Viroporins in the Design of Antiviral Compounds. Chem Heterocycl Compd (N Y) 2020; 56:626-635. [PMID: 32836315 PMCID: PMC7366462 DOI: 10.1007/s10593-020-02712-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Ion channels of viruses (viroporins) represent a common type of protein targets for drugs. The relative simplicity of channel architecture allows convenient computational modeling and enables virtual search for new inhibitors. In this review, we analyze the data published over the last 10 years on known ion channels of viruses that cause socially significant diseases. The effectiveness of inhibition by various types of heterocyclic compounds of the viroporins of influenza virus, hepatitis С virus, human immunodeficiency virus, human papillomaviruses, coronaviruses, and respiratory syncytial virus is discussed. The presented material highlights the promise held by the search for heterocyclic antiviral compounds that act by inhibition of viroporins.
Collapse
Affiliation(s)
- Vadim A. Shiryaev
- Samara State Technical University, 244 Molodogvardeiskaya St, Samara, 443100 Russia
| | - Yuri N. Klimochkin
- Samara State Technical University, 244 Molodogvardeiskaya St, Samara, 443100 Russia
| |
Collapse
|
11
|
Jalily PH, Duncan MC, Fedida D, Wang J, Tietjen I. Put a cork in it: Plugging the M2 viral ion channel to sink influenza. Antiviral Res 2020; 178:104780. [PMID: 32229237 PMCID: PMC7102647 DOI: 10.1016/j.antiviral.2020.104780] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
The ongoing threat of seasonal and pandemic influenza to human health requires antivirals that can effectively supplement existing vaccination strategies. The M2 protein of influenza A virus (IAV) is a proton-gated, proton-selective ion channel that is required for virus replication and is an established antiviral target. While licensed adamantane-based M2 antivirals have been historically used, M2 mutations that confer major adamantane resistance are now so prevalent in circulating virus strains that these drugs are no longer recommended. Here we review the current understanding of IAV M2 structure and function, mechanisms of inhibition, the rise of drug resistance mutations, and ongoing efforts to develop new antivirals that target resistant forms of M2.
Collapse
Affiliation(s)
- Pouria H Jalily
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tuscon, AZ, USA
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Efremova MM, Molchanov AP, Novikov AS, Starova GL, Muryleva AA, Slita AV, Zarubaev VV. 1,3-Dipolar cycloaddition of N-allyl substituted polycyclic derivatives of isoindole-1,3-dione with nitrones and nitrile oxides: An experimental and theoretical investigation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Thomaston JL, Konstantinidi A, Liu L, Lambrinidis G, Tan J, Caffrey M, Wang J, DeGrado WF, Kolocouris A. X-ray Crystal Structures of the Influenza M2 Proton Channel Drug-Resistant V27A Mutant Bound to a Spiro-Adamantyl Amine Inhibitor Reveal the Mechanism of Adamantane Resistance. Biochemistry 2020; 59:627-634. [PMID: 31894969 PMCID: PMC7224692 DOI: 10.1021/acs.biochem.9b00971] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The V27A mutation confers adamantane resistance on the influenza A matrix 2 (M2) proton channel and is becoming more prevalent in circulating populations of influenza A virus. We have used X-ray crystallography to determine structures of a spiro-adamantyl amine inhibitor bound to M2(22-46) V27A and also to M2(21-61) V27A in the Inwardclosed conformation. The spiro-adamantyl amine binding site is nearly identical for the two crystal structures. Compared to the M2 "wild type" (WT) with valine at position 27, we observe that the channel pore is wider at its N-terminus as a result of the V27A mutation and that this removes V27 side chain hydrophobic interactions that are important for binding of amantadine and rimantadine. The spiro-adamantyl amine inhibitor blocks proton conductance in the WT and V27A mutant channels by shifting its binding site in the pore depending on which residue is present at position 27. Additionally, in the structure of the M2(21-61) V27A construct, the C-terminus of the channel is tightly packed relative to that of the M2(22-46) construct. We observe that residues Asp44, Arg45, and Phe48 face the center of the channel pore and would be well-positioned to interact with protons exiting the M2 channel after passing through the His37 gate. A 300 ns molecular dynamics simulation of the M2(22-46) V27A-spiro-adamantyl amine complex predicts with accuracy the position of the ligands and waters inside the pore in the X-ray crystal structure of the M2(22-46) V27A complex.
Collapse
Affiliation(s)
- Jessica L. Thomaston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- DLX Scientific, Lawrence, KS 66049, USA
| | - George Lambrinidis
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Jingquan Tan
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
14
|
Hassan AA, Mohamed NK, Aly AA, Tawfeek HN, Bräse S, Nieger M. Regioselective and stereoselective synthesis of epithiomethanoiminoindeno[1,2-b]furan-3-carbonitrile: heterocyclic [3.3.3]propellanes. Mol Divers 2020; 25:99-108. [PMID: 31919738 DOI: 10.1007/s11030-019-10027-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022]
Abstract
Synthesis of heteropropellanes in one step: the reaction between dicyanomethylene-1,3-indanedione (CNIND) and N-substituted-2-(2,4-dinitrophenyl)hydrazinecarbothioamides, furnished (3aR,8bS,Z)-2-amino-9-substituted-10-(2-(2,4-dinitrophenyl)hydrazono)-4-oxo-4H-3a,8b-(epithiomethanoimino)indeno[1,2-b]furan-3-carbonitrile as a type of (2,4-dinitrophenyl)hydrazono[3.3.3]propellanes in good yields as single diastereomers. Structure determination and confirmation of the synthesized products have been achieved using various and modern spectroscopic techniques such as IR, NMR (1H NMR and 13C NMR), mass spectrometry, as well as X-ray crystal analysis. The X-ray structure data cleared that the molecule of 7a was crystalized as monoclinic, space group C2/c (no.15).
Collapse
Affiliation(s)
- Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt.
| | - Nasr K Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio I, 00014, Helsinki, Finland
| |
Collapse
|
15
|
Kotha S, Cheekatla SR. Synthesis and Acid Catalyzed Rearrangement of Cage Propellanes. ChemistrySelect 2019. [DOI: 10.1002/slct.201903441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sambasivarao Kotha
- Department of ChemistryIndian Institute of Technology-Bombay, Powai India
| | | |
Collapse
|
16
|
Hassan AA, Aly AA, Mohamed NK, El Shaieb KM, Makhlouf MM, Abdelhafez ESMN, Bräse S, Nieger M, Dalby KN, Kaoud TS. Design, synthesis, and DNA interaction studies of furo-imidazo[3.3.3]propellane derivatives: Potential anticancer agents. Bioorg Chem 2019; 85:585-599. [PMID: 30878891 PMCID: PMC6543821 DOI: 10.1016/j.bioorg.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
A large number of natural products containing the propellane scaffold have been reported to exhibit cytotoxicity against several cancers; however, their mechanism of action is still unknown. Anticancer drugs targeting DNA are mainly composed of small planar molecule/s that can interact with the DNA helix, causing DNA malfunction and cell death. The aim of this study was to design and synthesize propellane derivatives that can act as DNA intercalators and/or groove binders. The unique structure of the propellane derivatives and their ability to display planar ligands with numerous possible geometries, renders them potential starting points to design new drugs targeting DNA in cancer cells. New substituted furo-imidazo[3.3.3]propellanes were synthesized via the reaction of substituted alkenylidene-hydrazinecarbothioamides with 2-(1,3-dioxo-2,3-dihydro-1H-2-ylidene)propanedinitrile in tetrahydrofuran at room temperature. The structures of the products were confirmed by a combination of elemental analysis, NMR, ESI-MS, IR and single crystal X-ray analysis. Interestingly, 5c, 5d and 5f showed an ability to interact with Calf Thymus DNA (CT-DNA). Their DNA-binding mode was investigated using a combination of absorption spectroscopy, DNA melting, viscosity, CD spectroscopy measurements, as well as competitive binding studies with several dyes. Their cytotoxicity was evaluated against the NCI-60 panel of cancer cell lines. 5c, 5d and 5f exhibited similar anti-proliferative activity against the A549 non-small cell lung cancer (NSCLC) cell line. Further mechanistic studies revealed their ability to induce DNA damage in the A549 cell line, as well as apoptosis, evidenced by elevated Annexin V expression, enhanced caspase 3/7 activation and PARP cleavage. In this study, we present the potential for designing novel propellanes to provoke cytotoxic activity, likely through DNA binding-induced DNA damage and apoptosis.
Collapse
Affiliation(s)
- Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Nasr K Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Kamal M El Shaieb
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Maysa M Makhlouf
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | | | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany; Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio I, Helsinki 00014, Finland
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S Kaoud
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt; Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Discovery of novel anti-influenza agents via contemporary medicinal chemistry strategies (2014–2018 update). Future Med Chem 2019; 11:375-378. [PMID: 30887815 DOI: 10.4155/fmc-2018-0397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Leiva R, Phillips MB, Turcu AL, Gratacòs-Batlle E, León-García L, Sureda FX, Soto D, Johnson JW, Vázquez S. Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. ACS Chem Neurosci 2018; 9:2722-2730. [PMID: 29767953 DOI: 10.1021/acschemneuro.8b00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This work reports the synthesis and pharmacological and electrophysiological evaluation of new N-methyl-d-aspartic acid receptor (NMDAR) channel blocking antagonists featuring polycyclic scaffolds. Changes in the chemical structure modulate the potency and voltage dependence of inhibition. Two of the new antagonists display properties comparable to those of memantine, a clinically approved NMDAR antagonist.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Matthew B. Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Esther Gratacòs-Batlle
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Lara León-García
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Francesc X. Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - David Soto
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Zhao X, Li R, Zhou Y, Xiao M, Ma C, Yang Z, Zeng S, Du Q, Yang C, Jiang H, Hu Y, Wang K, Mok CKP, Sun P, Dong J, Cui W, Wang J, Tu Y, Yang Z, Hu W. Discovery of Highly Potent Pinanamine-Based Inhibitors against Amantadine- and Oseltamivir-Resistant Influenza A Viruses. J Med Chem 2018; 61:5187-5198. [PMID: 29799746 DOI: 10.1021/acs.jmedchem.8b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Influenza pandemic is a constant major threat to public health caused by influenza A viruses (IAVs). IAVs are subcategorized by the surface proteins hemagglutinin (HA) and neuraminidase (NA), in which they are both essential targets for drug discovery. While it is of great concern that NA inhibitor oseltamivir resistant strains are frequently identified from human or avian influenza virus, structural and functional characterization of influenza HA has raised hopes for new antiviral therapies. In this study, we explored a structure-activity relationship (SAR) of pinanamine-based antivirals and discovered a potent inhibitor M090 against amantadine-resistant viruses, including the 2009 H1N1 pandemic strains, and oseltamivir-resistant viruses. Mechanism of action studies, particularly hemolysis inhibition, indicated that M090 targets influenza HA and it occupied a highly conserved pocket of the HA2 domain and inhibited virus-mediated membrane fusion by "locking" the bending state of HA2 during the conformational rearrangement process. This work provides new binding sites within the HA protein and indicates that this pocket may be a promising target for broad-spectrum anti-influenza A drug design and development.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China.,Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yang Zhou
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Mengjie Xiao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Zhongjin Yang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Shaogao Zeng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Kefeng Wang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China.,HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine , The University of Hong Kong , 5 Sassoon Road , Pokfulam , Hong Kong
| | - Ping Sun
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Jianghong Dong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Wei Cui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Wenhui Hu
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| |
Collapse
|
20
|
Li Y, Lin Z, Guo M, Zhao M, Xia Y, Wang C, Xu T, Zhu B. Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways. Int J Nanomedicine 2018; 13:2005-2016. [PMID: 29662313 PMCID: PMC5892959 DOI: 10.2147/ijn.s155994] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction As a therapeutic antiviral agent, the clinical application of amantadine (AM) is limited by the emergence of drug-resistant viruses. To overcome the drug-resistant viruses and meet the growing demand of clinical diagnosis, the use of biological nanoparticles (NPs) has increased in order to develop novel anti-influenza drugs. The antiviral activity of selenium NPs with low toxicity and excellent activities has attracted increasing attention for biomedical intervention in recent years. Methods and results In the present study, surface decoration of selenium NPs by AM (Se@AM) was designed to reverse drug resistance caused by influenza virus infection. Se@ AM with less toxicity remarkably inhibited the ability of H1N1 influenza to infect host cells through suppression of the neuraminidase activity. Moreover, Se@AM could prevent H1N1 from infecting Madin Darby Canine Kidney cell line and causing cell apoptosis supported by DNA fragmentation and chromatin condensation. Furthermore, Se@AM obviously inhibited the generation of reactive oxygen species and activation of phosphorylation of AKT. Conclusion These results demonstrate that Se@AM is a potentially efficient antiviral pharmaceutical agent for H1N1 influenza virus.
Collapse
Affiliation(s)
- Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhengfang Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Min Guo
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yu Xia
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Changbing Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Kuznetsov NY, Tikhov RM, Godovikov IA, Medvedev MG, Lyssenko KA, Burtseva EI, Kirillova ES, Bubnov YN. Stereoselective synthesis of novel adamantane derivatives with high potency against rimantadine-resistant influenza A virus strains. Org Biomol Chem 2018; 15:3152-3157. [PMID: 28338150 DOI: 10.1039/c7ob00331e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of (R)- and (S)-isomers of new adamantane-substituted heterocycles (1,3-oxazinan-2-one, piperidine-2,4-dione, piperidine-2-one and piperidine) with potent activity against rimantadine-resistant strains of influenza A virus were synthesized through the transformation of adamantyl-substituted N-Boc-homoallylamines 8 into piperidine-2,4-diones 11 through the cyclic bromourethanes 9 and key intermediate enol esters 10. Biological assays of the prepared compounds were performed on the rimantadine-resistant S31N mutated strains of influenza A - A/California/7/2009(H1N1)pdm09 and modern pandemic strain A/IIV-Orenburg/29-L/2016(H1N1)pdm09. The most potent compounds were both enantiomers of the enol ester 10 displaying IC50 = 7.7 μM with the 2016 Orenburg strain.
Collapse
Affiliation(s)
- Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Rabdan M Tikhov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Ivan A Godovikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Michael G Medvedev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Konstantin A Lyssenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation.
| | - Elena I Burtseva
- N.F. Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medicinal Sciences, Gamaleya 18, 123098, Moscow, Russian Federation
| | - Elena S Kirillova
- N.F. Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medicinal Sciences, Gamaleya 18, 123098, Moscow, Russian Federation
| | - Yuri N Bubnov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov 28, 119991, Moscow, Russian Federation. and N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
22
|
Kotha S, Pulletikurti S. Synthesis of propellanes containing a bicyclo[2.2.2]octene unitviathe Diels–Alder reaction and ring-closing metathesis as key steps. RSC Adv 2018; 8:14906-14915. [PMID: 35541332 PMCID: PMC9079985 DOI: 10.1039/c8ra02687d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
A simple and convenient method to synthesize propellane derivatives containing a bicyclo[2.2.2]octene unit which are structurally similar to 11β-HSD1 inhibitors by sequential usage of the Diels–Alder reaction, C-allylation and ring-closing metathesis (RCM) is reported.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry
- Indian Institute of Technology-Bombay
- Mumbai-400 076
- India
| | - Sunil Pulletikurti
- Department of Chemistry
- Indian Institute of Technology-Bombay
- Mumbai-400 076
- India
| |
Collapse
|
23
|
Leiva R, Barniol-Xicota M, Codony S, Ginex T, Vanderlinden E, Montes M, Caffrey M, Luque FJ, Naesens L, Vázquez S. Aniline-Based Inhibitors of Influenza H1N1 Virus Acting on Hemagglutinin-Mediated Fusion. J Med Chem 2017; 61:98-118. [PMID: 29220568 DOI: 10.1021/acs.jmedchem.7b00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two series of easily accessible anilines were identified as inhibitors of influenza A virus subtype H1N1, and extensive chemical synthesis and analysis of the structure-activity relationship were performed. The compounds were shown to interfere with low pH-induced membrane fusion mediated by the H1 and H5 (group 1) hemagglutinin (HA) subtypes. A combination of virus resistance, HA interaction, and molecular dynamics simulation studies elucidated the binding site of these aniline-based influenza fusion inhibitors, which significantly overlaps with the pocket occupied by some H3 HA-specific inhibitors, indicating the high relevance of this cavity for drug design.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Marta Barniol-Xicota
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Prat de la Riba 171, Santa Coloma de Gramanet E-08921, Spain
| | | | - Marta Montes
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Michael Caffrey
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago , 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Prat de la Riba 171, Santa Coloma de Gramanet E-08921, Spain
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven , B-3000 Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| |
Collapse
|
24
|
Leiva R, Griñan-Ferré C, Seira C, Valverde E, McBride A, Binnie M, Pérez B, Luque FJ, Pallàs M, Bidon-Chanal A, Webster SP, Vázquez S. Design, synthesis and in vivo study of novel pyrrolidine-based 11β-HSD1 inhibitors for age-related cognitive dysfunction. Eur J Med Chem 2017; 139:412-428. [PMID: 28818766 DOI: 10.1016/j.ejmech.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Recent findings suggest that treatment with 11β-HSD1 inhibitors provides a novel approach to deal with age-related cognitive dysfunctions, including Alzheimer's disease. In this work we report potent 11β-HSD1 inhibitors featuring unexplored pyrrolidine-based polycyclic substituents. A selected candidate administered to 12-month-old SAMP8 mice for four weeks prevented memory deficits and displayed a neuroprotective action. This is the first time that 11β-HSD1 inhibitors have been studied in this broadly-used mouse model of accelerated senescence and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Christian Griñan-Ferré
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Constantí Seira
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Andrew McBride
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Margaret Binnie
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Belén Pérez
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Mercè Pallàs
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Axel Bidon-Chanal
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom.
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain.
| |
Collapse
|
25
|
Barniol-Xicota M, Gazzarrini S, Torres E, Hu Y, Wang J, Naesens L, Moroni A, Vázquez S. Slow but Steady Wins the Race: Dissimilarities among New Dual Inhibitors of the Wild-Type and the V27A Mutant M2 Channels of Influenza A Virus. J Med Chem 2017; 60:3727-3738. [PMID: 28418242 DOI: 10.1021/acs.jmedchem.6b01758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
New insights on the amantadine resistance mechanism of the V27A mutant were obtained through the study of novel, easily accessible 4-(1- and 2-adamantyl)piperidines, identified as dual binders of the wild-type and V27A mutant M2 channels of influenza A virus. Their antiviral activity and channel blocking ability were determined using cell-based assays and two-electrode voltage clamp (TEVC) technique on M2 channels, respectively. In addition, electrophysiology experiments revealed two interesting findings: (i) these inhibitors display a different behavior against the wild-type versus V27A mutant A/M2 channels, and (ii) the compounds display antiviral activity when they have kd equal or smaller than 10-6 while they do not exhibit antiviral activity when kd is 10-5 or higher although they may show blocking activity in the TEV assay. Thus, caution must be taken when predicting antiviral activity based on percent channel blockage in electrophysiological assays. These findings provide experimental evidence of the resistance mechanism of the V27A mutation to wild-type inhibitors, previously predicted in silico, offer an explanation for the lack of antiviral activity of compounds active in the TEV assay, and may help design new and more effective drugs.
Collapse
Affiliation(s)
- Marta Barniol-Xicota
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Sabrina Gazzarrini
- Department of Biosciences and National Research Council (CNR) Biophysics Institute (IBF), University of Milan , Via Celoria 26, 20133 Milan, Italy
| | - Eva Torres
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States.,BI05 Institute, The University of Arizona , Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States.,BI05 Institute, The University of Arizona , Tucson, Arizona 85721, United States
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven , B-3000 Leuven, Belgium
| | - Anna Moroni
- Department of Biosciences and National Research Council (CNR) Biophysics Institute (IBF), University of Milan , Via Celoria 26, 20133 Milan, Italy
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| |
Collapse
|
26
|
Dilmaç AM, Spuling E, de Meijere A, Bräse S. Propellane: von chemischen Kuriositäten zu “explosiven” Materialen und Naturstoffen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201603951] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alicia M. Dilmaç
- Institut für Organische Chemie (IOC); Karlsruher Institut für Technologie (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Eduard Spuling
- Institut für Organische Chemie (IOC); Karlsruher Institut für Technologie (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Armin de Meijere
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| | - Stefan Bräse
- Institut für Organische Chemie (IOC); Karlsruher Institut für Technologie (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
- Institut für Toxikologie und Genetik (ITG); Karlsruher Institut für Technologie (KIT); Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
27
|
Dilmaç AM, Spuling E, de Meijere A, Bräse S. Propellanes-From a Chemical Curiosity to "Explosive" Materials and Natural Products. Angew Chem Int Ed Engl 2017; 56:5684-5718. [PMID: 27905166 DOI: 10.1002/anie.201603951] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/26/2016] [Indexed: 12/19/2022]
Abstract
Propellanes are a unique class of compounds currently consisting of well over 10 000 representatives, all featuring two more or less inverted tetrahedral carbon atoms that are common to three bridging rings. The central single bond between the two bridgeheads is significantly weakened in the smaller entities, which leads to unusual reactivities of these structurally interesting propeller-like molecules. This Review highlights the synthesis of such propellanes and their occurrence in material sciences, natural products, and medicinal chemistry. The conversion of [1.1.1]propellane into bridgehead derivatives of bicyclo[1.1.1]pentane, including oligomers and polymers with bicyclo[1.1.1]penta-1,3-diyl repeat units, is also featured. A selection of natural products with larger propellane subunits are discussed in detail. Heteropropellanes and inorganic propellanes are also addressed. The historical background is touched in brief to show the pioneering work of David Ginsburg, Günther Snatzke, Kenneth B. Wiberg, Günter Szeimies, and others.
Collapse
Affiliation(s)
- Alicia M Dilmaç
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Eduard Spuling
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Armin de Meijere
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
28
|
Tzitzoglaki C, Wright A, Freudenberger K, Hoffmann A, Tietjen I, Stylianakis I, Kolarov F, Fedida D, Schmidtke M, Gauglitz G, Cross TA, Kolocouris A. Binding and Proton Blockage by Amantadine Variants of the Influenza M2WT and M2S31N Explained. J Med Chem 2017; 60:1716-1733. [DOI: 10.1021/acs.jmedchem.6b01115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christina Tzitzoglaki
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| | - Anna Wright
- Institute
of Molecular Biophysics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Kathrin Freudenberger
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Anja Hoffmann
- Department
of Virology and Antiviral Therapy, Jena University Hospital, Hans Knoell Strasse 2, D-07745 Jena, Germany
| | - Ian Tietjen
- Department
of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ioannis Stylianakis
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| | - Felix Kolarov
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - David Fedida
- Department
of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michaela Schmidtke
- Department
of Virology and Antiviral Therapy, Jena University Hospital, Hans Knoell Strasse 2, D-07745 Jena, Germany
| | - Günter Gauglitz
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Timothy A. Cross
- Institute
of Molecular Biophysics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Antonios Kolocouris
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| |
Collapse
|
29
|
Ju H, Zhang J, Huang B, Kang D, Huang B, Liu X, Zhan P. Inhibitors of Influenza Virus Polymerase Acidic (PA) Endonuclease: Contemporary Developments and Perspectives. J Med Chem 2017; 60:3533-3551. [PMID: 28118010 DOI: 10.1021/acs.jmedchem.6b01227] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Influenza virus (IFV) causes periodic global influenza pandemics, resulting in substantial socioeconomic loss and burden on medical facilities. Yearly variation in the effectiveness of vaccines, slow responsiveness to vaccination in cases of pandemic IFV, and emerging resistance to available drugs highlight the need to develop additional small-molecular inhibitors that act on IFV proteins. One promising target is polymerase acidic (PA) endonuclease, which is a bridged dinuclear metalloenzyme that plays a crucial role in initiating IFV replication. During the past decade, intensive efforts have been made to develop small-molecular inhibitors of this endonuclease as candidate agents for treatment of IFV infection. Here, we review the current status of development of PA endonuclease inhibitors and we discuss the applicability of newer medicinal-chemistry strategies for the discovery more potent, selective, and safer inhibitors.
Collapse
Affiliation(s)
- Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Bing Huang
- Poultry Institute, Shandong Academy of Agricultural Sciences , 1, Jiaoxiao Road, 250023, Jinan, Shandong, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
30
|
Barniol-Xicota M, Kwak SH, Lee SD, Caseley E, Valverde E, Jiang LH, Kim YC, Vázquez S. Escape from adamantane: Scaffold optimization of novel P2X7 antagonists featuring complex polycycles. Bioorg Med Chem Lett 2017; 27:759-763. [PMID: 28126517 DOI: 10.1016/j.bmcl.2017.01.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 11/25/2022]
Abstract
The adamantane scaffold, despite being widely used in medicinal chemistry, is not devoid of problems. In recent years we have developed new polycyclic scaffolds as surrogates of the adamantane group with encouraging results in multiple targets. As an adamantane scaffold is a common structural feature in several P2X7 receptor antagonists, herein we report the synthesis and pharmacological evaluation of multiple replacement options of adamantane that maintain a good activity profile. Molecular modeling studies support the binding of the compounds to a site close to the central pore, rather than to the ATP-binding site and shed light on the structural requirements for novel P2X7 antagonists.
Collapse
Affiliation(s)
- Marta Barniol-Xicota
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Seung-Hwa Kwak
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - So-Deok Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Emily Caseley
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea.
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain.
| |
Collapse
|
31
|
Hu Y, Musharrafieh R, Ma C, Zhang J, Smee DF, DeGrado WF, Wang J. An M2-V27A channel blocker demonstrates potent in vitro and in vivo antiviral activities against amantadine-sensitive and -resistant influenza A viruses. Antiviral Res 2017; 140:45-54. [PMID: 28087313 DOI: 10.1016/j.antiviral.2017.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Abstract
Adamantanes such as amantadine (1) and rimantadine (2) are FDA-approved anti-influenza drugs that act by inhibiting the wild-type M2 proton channel from influenza A viruses, thereby inhibiting the uncoating of the virus. Although adamantanes have been successfully used for more than four decades, their efficacy was curtailed by emerging drug resistance. Among the limited number of M2 mutants that confer amantadine resistance, the M2-V27A mutant was found to be the predominant mutant under drug selection pressure, thereby representing a high profile antiviral drug target. Guided by molecular dynamics simulations, we previously designed first-in-class M2-V27A inhibitors. One of the potent lead compounds, spiroadamantane amine (3), inhibits both the M2-WT and M2-V27A mutant with IC50 values of 18.7 and 0.3 μM, respectively, in in vitro electrophysiological assays. Encouraged by these findings, in this study we further examine the in vitro and in vivo antiviral activity of compound 3 in inhibiting both amantadine-sensitive and -resistant influenza A viruses. Compound 3 not only had single to sub-micromolar EC50 values against M2-WT- and M2-V27A-containing influenza A viruses in antiviral assays, but also rescued mice from lethal viral infection by either M2-WT- or M2-V27A-containing influenza A viruses. In addition, we report the design of two analogs of compound 3, and one was found to have improved in vitro antiviral activity over compound 3. Collectively, this study represents the first report demonstrating the in vivo antiviral efficacy of inhibitors targeting M2 mutants. The results suggest that inhibitors targeting drug-resistant M2 mutants are promising antiviral drug candidates worthy of further development.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Chunlong Ma
- BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94158, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
32
|
Powell K, Thomas E, Cockerill G. Antiviral Drugs for Acute Infections. COMPREHENSIVE MEDICINAL CHEMISTRY III 2017. [PMCID: PMC7149606 DOI: 10.1016/b978-0-12-409547-2.12408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
33
|
Llabrés S, Juárez-Jiménez J, Masetti M, Leiva R, Vázquez S, Gazzarrini S, Moroni A, Cavalli A, Luque FJ. Mechanism of the Pseudoirreversible Binding of Amantadine to the M2 Proton Channel. J Am Chem Soc 2016; 138:15345-15358. [DOI: 10.1021/jacs.6b07096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Salomé Llabrés
- Department
of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and
Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Avgda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Jordi Juárez-Jiménez
- Department
of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and
Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Avgda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Matteo Masetti
- Department
of Pharmacy and Biotecnology (FaBit), Alma Mater Studiorum, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Rosana Leiva
- Laboratori
de Química Farmacèutica (Unitat Associada al CSIC),
Facultat de Farmàcia i Ciències de l’Alimentació,
and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan
XXIII 27-31, 08028 Barcelona, Spain
| | - Santiago Vázquez
- Laboratori
de Química Farmacèutica (Unitat Associada al CSIC),
Facultat de Farmàcia i Ciències de l’Alimentació,
and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan
XXIII 27-31, 08028 Barcelona, Spain
| | - Sabrina Gazzarrini
- Department
of Biosciences and National Research Council (CNR) Biophysics Institute
(IBF), University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Anna Moroni
- Department
of Biosciences and National Research Council (CNR) Biophysics Institute
(IBF), University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Cavalli
- Department
of Pharmacy and Biotecnology (FaBit), Alma Mater Studiorum, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
- CompuNet, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova,Italy
| | - F. Javier Luque
- Department
of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and
Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Avgda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
34
|
Desuzinges Mandon E, Traversier A, Champagne A, Benier L, Audebert S, Balme S, Dejean E, Rosa Calatrava M, Jawhari A. Expression and purification of native and functional influenza A virus matrix 2 proton selective ion channel. Protein Expr Purif 2016; 131:42-50. [PMID: 27825980 DOI: 10.1016/j.pep.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
Influenza A virus displays one of the highest infection rates of all human viruses and therefore represents a severe human health threat associated with an important economical challenge. Influenza matrix protein 2 (M2) is a membrane protein of the viral envelope that forms a proton selective ion channel. Here we report the expression and native isolation of full length active M2 without mutations or fusions. The ability of the influenza virus to efficiently infect MDCK cells was used to express native M2 protein. Using a Calixarene detergents/surfactants based approach; we were able to solubilize most of M2 from the plasma membrane and purify it. The tetrameric form of native M2 was maintained during the protein preparation. Mass spectrometry shows that M2 was phosphorylated in its cytoplasmic tail (serine 64) and newly identifies an acetylation of the highly conserved Lysine 60. ELISA shows that solubilized and purified M2 was specifically recognized by M2 antibody MAB65 and was able to displace the antibody from M2 MDCK membranes. Using a bilayer voltage clamp measurement assay, we demonstrate a pH dependent proton selective ion channel activity. The addition of the M2 ion channel blocker amantadine allows a total inhibition of the channel activity, illustrating therefore the specificity of purified M2 activity. Taken together, this work shows the production and isolation of a tetrameric and functional native M2 ion channel that will pave the way to structural and functional characterization of native M2, conformational antibody development, small molecules compounds screening towards vaccine treatment.
Collapse
Affiliation(s)
| | - Aurélien Traversier
- Laboratoire de Virologie et Pathologie Humaine (VirPath), Centre International de Recherche en Infectiologie (CIRI), U1111 INSERM, UMR 5308 CNRS, ENS Lyon, Université Claude Bernard Lyon1 (UCBL1), Lyon, France
| | - Anne Champagne
- CALIXAR, 60 Avenue Rockefeller, 69008 Lyon, France; CNRS, Institut de Chimie et Biologie de Protéines, 69007 Lyon, France
| | | | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | - Manuel Rosa Calatrava
- Laboratoire de Virologie et Pathologie Humaine (VirPath), Centre International de Recherche en Infectiologie (CIRI), U1111 INSERM, UMR 5308 CNRS, ENS Lyon, Université Claude Bernard Lyon1 (UCBL1), Lyon, France; VirNext, Faculté de Médecine RTH Laennec, EZUS, Lyon, France
| | | |
Collapse
|
35
|
Wang J, Li F, Ma C. Recent progress in designing inhibitors that target the drug-resistant M2 proton channels from the influenza A viruses. Biopolymers 2016; 104:291-309. [PMID: 25663018 DOI: 10.1002/bip.22623] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022]
Abstract
Influenza viruses are the causative agents for seasonal influenza, which results in thousands of deaths and millions of hospitalizations each year. Moreover, sporadic transmission of avian or swan influenza viruses to humans often leads to an influenza pandemic, as there is no preimmunity in the human body to fight against such novel strains. The metastable genome of the influenza viruses, coupled with the reassortment of different strains from a wide range of host origins, leads to the continuous evolution of the influenza virus diversity. Such characteristics of influenza viruses present a grand challenge in devising therapeutic strategies to combat influenza virus infection. This review summarizes recent progress in designing small molecule inhibitors that target the drug-resistant influenza A virus M2 proton channels and highlights the contribution of mechanistic studies of proton conductance to drug discovery. The lessons learned throughout the course of M2 drug discovery might provide insights for designing inhibitors that target other therapeutically important ion channels.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721.,BIO5 Institute, University of Arizona, Tucson, AZ, 85721
| | - Fang Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
36
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
37
|
Wang J. M2 as a target to combat influenza drug resistance: what does the evidence say? Future Virol 2016. [DOI: 10.2217/fvl.15.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jun Wang
- Department of Pharmacology & Toxicology, College of Pharmacy & the BIO5 Institute, The University of Arizona, 1657 E. Helen St., Tucson, AZ 85718, USA
| |
Collapse
|
38
|
Li Y, Lin Z, Zhao M, Guo M, Xu T, Wang C, Xia H, Zhu B. Reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine. RSC Adv 2016. [DOI: 10.1039/c6ra18493f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine.
Collapse
Affiliation(s)
- Yinghua Li
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Zhengfang Lin
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Mingqi Zhao
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Min Guo
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Tiantian Xu
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Changbing Wang
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Huimin Xia
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Bing Zhu
- Center Laboratory
- Guangzhou Women and Children's Medical Center
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|
39
|
Imidazole-based pinanamine derivatives: Discovery of dual inhibitors of the wild-type and drug-resistant mutant of the influenza A virus. Eur J Med Chem 2016; 108:605-615. [DOI: 10.1016/j.ejmech.2015.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023]
|
40
|
Valverde E, Seira C, McBride A, Binnie M, Luque FJ, Webster SP, Bidon-Chanal A, Vázquez S. Searching for novel applications of the benzohomoadamantane scaffold in medicinal chemistry: Synthesis of novel 11β-HSD1 inhibitors. Bioorg Med Chem 2015; 23:7607-17. [DOI: 10.1016/j.bmc.2015.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 12/28/2022]
|
41
|
Wu S, Huang J, Gazzarrini S, He S, Chen L, Li J, Xing L, Li C, Chen L, Neochoritis CG, Liao GP, Zhou H, Dömling A, Moroni A, Wang W. Isocyanides as Influenza A Virus Subtype H5N1 Wild-Type M2 Channel Inhibitors. ChemMedChem 2015; 10:1837-45. [DOI: 10.1002/cmdc.201500318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Shuwen Wu
- Key Laboratory of Combinatorial Biosynthesis & Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 P.R. China
- State Key Laboratory of Virology of China; Wuhan University; Wuhan 430071 P.R. China
| | - Jing Huang
- Key Laboratory of Combinatorial Biosynthesis & Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 P.R. China
| | - Sabrina Gazzarrini
- Department of Biosciences; University of Milan and; Institute of Biophysics (IBF) Milan, National Research Council (CNR); Via Celoria 26 20133 Milan Italy
| | - Si He
- Key Laboratory of Combinatorial Biosynthesis & Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 P.R. China
| | - Lihua Chen
- Key Laboratory of Combinatorial Biosynthesis & Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 P.R. China
| | - Jun Li
- Key Laboratory of Combinatorial Biosynthesis & Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 P.R. China
| | - Li Xing
- Worldwide Research & Development; Pfizer Inc.; 200 Cambridge Park Drive Cambridge MA 02421 USA
| | - Chufang Li
- Guangzhou Institute of Biomedicine & Health; Chinese Academy of Sciences; Guangzhou Guangdong 510530 P.R. China
| | - Ling Chen
- Guangzhou Institute of Biomedicine & Health; Chinese Academy of Sciences; Guangzhou Guangdong 510530 P.R. China
| | - Constantinos G. Neochoritis
- Department of Drug Design; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - George P. Liao
- Department of Drug Design; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Haibing Zhou
- Key Laboratory of Combinatorial Biosynthesis & Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 P.R. China
| | - Alexander Dömling
- Department of Drug Design; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Anna Moroni
- Department of Biosciences; University of Milan and; Institute of Biophysics (IBF) Milan, National Research Council (CNR); Via Celoria 26 20133 Milan Italy
| | - Wei Wang
- Key Laboratory of Combinatorial Biosynthesis & Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Wuhan University; Wuhan 430071 P.R. China
| |
Collapse
|
42
|
Camps P, Lozano D, Font-Bardia M. Synthesis of Polycycles by Single or Double Domino Nucleophilic Substitution/Diels-Alder Reaction. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
44
|
Rey-Carrizo M, Gazzarrini S, Llabrés S, Frigolé-Vivas M, Juárez-Jiménez J, Font-Bardia M, Naesens L, Moroni A, Luque FJ, Vázquez S. New polycyclic dual inhibitors of the wild type and the V27A mutant M2 channel of the influenza A virus with unexpected binding mode. Eur J Med Chem 2015; 96:318-29. [DOI: 10.1016/j.ejmech.2015.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 01/08/2023]
|
45
|
Zhao X, Zhang ZW, Cui W, Chen S, Zhou Y, Dong J, Jie Y, Wan J, Xu Y, Hu W. Identification of camphor derivatives as novel M2 ion channel inhibitors of influenza A virus. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00515e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amantadine derivatives have been the only drugs marketed as M2 inhibitors of influenza A for decades.
Collapse
|
46
|
Gianti E, Carnevale V, DeGrado WF, Klein ML, Fiorin G. Hydrogen-bonded water molecules in the M2 channel of the influenza A virus guide the binding preferences of ammonium-based inhibitors. J Phys Chem B 2014; 119:1173-83. [PMID: 25353315 DOI: 10.1021/jp506807y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tetrameric M2 proton channel of influenza A virus is an integral membrane protein responsible for the acidification of the viral interior. Drugs such as amantadine target the transmembrane region of wild type M2 by acting as pore blockers. However, a number of mutations affecting this domain confer drug resistance, prompting the need for alternative inhibitors. The availability of high-resolution structures of drug-bound M2, paired with computational investigations, revealed that inhibitors can bind at different sites, and provided useful insights in understanding the principles governing proton conduction. Here, we investigated by computation the energetic and geometric factors determining the relative stability of pore blockers at individual sites of different M2 strains. We found that local free energy minima along the translocation pathway of positively charged chemical species correspond to experimentally determined binding sites of inhibitors. Then, by examining the structure of water clusters hydrating each site, as well as of those displaced by binding of hydrophobic scaffolds, we predicted the binding preferences of M2 ligands. This information can be used to guide the identification of novel classes of inhibitors.
Collapse
Affiliation(s)
- Eleonora Gianti
- Institute for Computational Molecular Science, Temple University , SERC Building, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | | | | | | | | |
Collapse
|
47
|
Ludwig S, Zell R, Schwemmle M, Herold S. Influenza, a One Health paradigm--novel therapeutic strategies to fight a zoonotic pathogen with pandemic potential. Int J Med Microbiol 2014; 304:894-901. [PMID: 25220817 DOI: 10.1016/j.ijmm.2014.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza virus is a paradigm for a pathogen that frequently crosses the species barrier from animals to humans, causing severe disease in the human population. This ranges from frequent epidemics to occasional pandemic outbreaks with millions of death. All previous pandemics in humans were caused by animal viruses or virus reassortants carrying animal virus genes, underlining that the fight against influenza requires a One Health approach integrating human and veterinary medicine. Furthermore, the fundamental question of what enables a flu pathogen to jump from animals to humans can only be tackled in a transdisciplinary approach between virologists, immunologists and cell biologists. To address this need the German FluResearchNet was established as a first nationwide influenza research network that virtually integrates all national expertise in the field of influenza to unravel viral and host determinants of pathogenicity and species transmission and to explore novel avenues of antiviral intervention. Here we focus on the various novel anti-flu approaches that were developed as part of the FluResearchNet activities.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany.
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Martin Schwemmle
- Institute for Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | - Susanne Herold
- Universities Giessen & Marburg Lung Center (UGMLC), Department of Internal Medicine II, Section of Infectious Diseases, Klinikstr. 33, D-35392 Giessen, Germany
| |
Collapse
|
48
|
Strategies for the Development of Influenza Drugs: Basis for New Efficient Combination Therapies. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|