1
|
Bosak F, Baradaran Rahimi V, Sobhani B, Dabbaghi MM, Soukhtanloo M, Zahedi Avval F, Askari VR. Evaluation of the Protective Effects of Noscapine on Paraquat-Induced Parkinson's Disease in Rats. Mol Neurobiol 2025:10.1007/s12035-025-05000-6. [PMID: 40327305 DOI: 10.1007/s12035-025-05000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a degenerative central nervous system disease pathologically attributed to dopaminergic neuron damage in the substantia nigra. Noscapine is a natural alkaloid with several benefits, including anti-inflammatory, neural protection, and anti-oxidant effects. Hence, the current study evaluated the protective effects of Noscapine against paraquat (PQ)-induced Parkinson's disease model in rats. Male Wistar rats were into six groups: sham and PQ-induced models treated with vehicle, vitamin-E (20 mg/kg/d), or Noscapine (6, 18, and 55 mg/kg/d) for four weeks. Meanwhile, the rats were assessed for weight and food consumption (FC) daily and PD-associated behavior changes using rotarod, bar, and parallel bar tests every week. The animals were ethically sacrificed at the end of the study, and biochemical, immunological, and histopathological markers were measured in the brain. As a result, the levels of weight, FC, parallel bar, and rotarod test (both speed and latency), number of neurons, total thiol content, and interleukin-10 (IL-10) were significantly reduced. In contrast, the levels of dark neurons, TNF-α, bar test, and malondialdehyde (MDA) were markedly increased in the PQ-vehicle group compared to the sham group (P < 0.001-0.5). In contrast, comedication with Noscapine significantly reversed the histological damages and improved deteriorated behavioral, biochemical, and immunological parameters in a dose-dependent manner compared to the PQ-vehicle group (0.001-0.05). Taken together, it was determined that using Noscapine has antiparkinsonian effects and improved behavioral tests, catalepsy, bradykinesia, and motor dysfunction and has a protective impact on the brain's neurons through its anti-oxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Fatemeh Bosak
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bashir Sobhani
- Department of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mahdi Dabbaghi
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Li D, Shen S, Liu C, Guo T, Liu Y, Pan P, Zhao X, Ma Y, Li L, Huang S, Shen W, YoupingZhang, Jiang B, Wang W, Yin Q, Zhang Y. Discovery of novel and highly potent anticancer agents enabled by selenium scanning of noscapine. Eur J Med Chem 2025; 293:117714. [PMID: 40339472 DOI: 10.1016/j.ejmech.2025.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Herein, the structural modification of noscapine via an elegant selenium scanning strategy has been demonstrated, which enables the production of three classes of novel seleno-containing noscapinoids, namely 6', 7', and 9'-seleno-substituted noscapines. Among them, 9'-seleno-substituted noscapines exhibited superior in vitro anti-proliferative activity, and 9'-cycloheptylselenomethyl-noscapine 17a16 with a large hydrophobic cycloheptyl group showed the most potent activity and good selectivity. Unlike most of the reported noscapinoids that induce G2/M phase arrest by targeting microtubules, 17a16 exhibited a distinct ability to induce S-phase arrest and displayed superior potency in inducing apoptosis, which attribute to the activation of two parallel checkpoint pathways orchestrating DNA damage response, including DNA-PKcs-dependent p53 stabilization and ATR-Chk1 axis activation. Dissecting the upstream mechanism revealed that 17a16 targets mitochondria and induces mitochondrial dysfunction. This study elucidates the interplay of mitochondrial stress, DNA damage response, p53 and ATR-Chk1 checkpoint activation in mediating the anticancer effects of 17a16. Furthermore, 17a16 treatment significantly suppressed tumor growth in p53-deficient JeKo-1 subcutaneous xenograft model in vivo, without inducing systemic toxicity. Overall, our findings highlight 17a16 as a promising lead compound in cancer therapy and demonstrate the potential of selenium scanning as a valuable strategy for anticancer drug discovery.
Collapse
Affiliation(s)
- Defeng Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuting Shen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Chuanxu Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Tingyu Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuhuan Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Peng Pan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoyi Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yiwen Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lei Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Shitao Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wenhao Shen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - YoupingZhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
3
|
Predescu IA, Jîjie AR, Pătraşcu D, Pasc ALV, Piroş EL, Trandafirescu C, Oancea C, Dehelean CA, Moacă EA. Unveiling the Complexities of Medications, Substance Abuse, and Plants for Recreational and Narcotic Purposes: An In-Depth Analysis. PHARMACY 2025; 13:7. [PMID: 39998006 PMCID: PMC11859396 DOI: 10.3390/pharmacy13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
The complexities surrounding the use of medications, substance abuse, and the recreational use of plants are multifaceted and warrant a comprehensive examination. This review highlights the complexities surrounding the consumption of chemical substances in excess or for non-medical purposes, obtained through legal prescriptions, over-the-counter purchases, or illicit means, with an emphasis on the predictive role of stressors and individual-level variables in the development of substance use disorders, as well as the influence of the regulatory environment on patterns of consumption. Additionally, the alarming escalation in the mortality rate associated with illicit drug and opioid overdoses is also underscored. The recreational use of prescription medications can lead to significant health risks, particularly when combined with other substances; therefore, the need for interventions and preventive measures to address substance abuse among various populations is imperative. Furthermore, novel insights on substance abuse addiction, exploring the neurobiological mechanisms underlying addiction, and discussing treatment approaches and interventions are elucidated. Advancements in technology for detecting substance abuse are also highlighted, displaying innovative tools for more effective identification and monitoring. In conclusion, the complexities of medications, substance abuse, and the recreational use of plants reveal a landscape marked by overlapping motivations and health implications. The distinction between medical and recreational use is critical for understanding user behavior and addressing public health concerns.
Collapse
Affiliation(s)
- Iasmina-Alexandra Predescu
- Discipline of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.-A.P.); (A.-R.J.); (A.-L.-V.P.); (C.A.D.); (E.-A.M.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alex-Robert Jîjie
- Discipline of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.-A.P.); (A.-R.J.); (A.-L.-V.P.); (C.A.D.); (E.-A.M.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Dalia Pătraşcu
- Discipline of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.-A.P.); (A.-R.J.); (A.-L.-V.P.); (C.A.D.); (E.-A.M.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Aida-Luisa-Vanessa Pasc
- Discipline of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.-A.P.); (A.-R.J.); (A.-L.-V.P.); (C.A.D.); (E.-A.M.)
| | - Elisaveta-Ligia Piroş
- Faculty of Medicine, “Vasile Goldiş” Western University of Arad, 86 Liviu Rebreanu Street, 310048 Arad, Romania;
| | - Cristina Trandafirescu
- Discipline of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Cristian Oancea
- Discipline of Pneumology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Discipline of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.-A.P.); (A.-R.J.); (A.-L.-V.P.); (C.A.D.); (E.-A.M.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Discipline of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.-A.P.); (A.-R.J.); (A.-L.-V.P.); (C.A.D.); (E.-A.M.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Cui G, Fan Y, Yang Y, Ma Y, Deng H, Wang P, Zhu Y, Li J, Wei J, Zhang Y. Discovery of N-Trifluoromethylated Noscapines as Novel and Potent Agents for the Treatment of Glioblastoma. J Med Chem 2025; 68:247-260. [PMID: 39688535 DOI: 10.1021/acs.jmedchem.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The search for new and effective chemotherapeutic agents for the treatment of glioblastoma (GBM) represents an unmet need in drug discovery. Herein, a class of novel N-trifluoromethylated noscapines has been disclosed. Among them, 9'-bromo-N-trifluoromethyl noscapine 15c displayed superior in vitro anti-GBM potency. Unexpectedly, in contrast with the general N-trifluoromethyl amines, these compounds exhibited good hydrolytic stability and further investigation of this distinct stability revealed a novel strategy for the structure modification of tetrahydroisoquinoline alkaloids, where N-methyl could be bioisosterically replaced with trifluoromethyl. Furthermore, 15c showed excellent BBB permeability and good in vivo anti-GBM activity and could efficiently suppress the migration of GBM cells, while no apparent toxicity was observed, thus representing an attractive lead for further drug discovery. Further mechanistic studies revealed that 15c exhibited an ability to induce G2/M-phase arrest in GBM cells associated with the disruption of tubulin polymerization, which is consistent with the mechanism of action of noscapine.
Collapse
Affiliation(s)
- Guangwei Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuhang Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yiwen Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haiyang Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Pan Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuxin Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Mir MA, Banik BK. Heterocyclic Phytochemicals as Anticancer Agents. Curr Top Med Chem 2025; 25:533-553. [PMID: 39350414 DOI: 10.2174/0115680266314693240914070250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 04/25/2025]
Abstract
Cancer continues to be a major global health challenge, driving the need for the discovery of novel therapeutic agents. Among these, heterocyclic phytochemicals have gained significant attention for their potential as anticancer agents. This review offers a detailed analysis of various classes of heterocyclic compounds with proven anticancer properties, shedding light on their mechanisms of action. The study draws from a diverse array of natural product sources, detailing the chemical structures and bioactivities of these compounds. Key heterocyclic classes such as alkaloids, flavonoids, coumarins, and terpenoids are emphasized due to their potent anticancer effects. Heterocyclic phytochemicals exhibit diverse anticancer mechanisms, including the modulation of cellular pathways like apoptosis, angiogenesis, and cell cycle progression. The combination of heterocyclic phytochemicals with conventional cancer therapies has shown promising synergistic effects, enhanced treatment efficacy and reducing side effects. The review systematically evaluates both preclinical and clinical studies, revealing the efficacy, safety profiles, and pharmacokinetics of selected heterocyclic compounds. The promising outcomes highlighted in this review underscore the critical need for ongoing research to fully realize the therapeutic potential of heterocyclic phytochemicals in cancer treatment.
Collapse
Affiliation(s)
- M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| | - Bimal Krishna Banik
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| |
Collapse
|
6
|
Nemati F, Ata Bahmani Asl A, Salehi P. Synthesis and modification of noscapine derivatives as promising future anticancer agents. Bioorg Chem 2024; 153:107831. [PMID: 39321713 DOI: 10.1016/j.bioorg.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Noscapine, a tetrahydroisoquinoline alkaloid, was first isolated from Papaver somniferum and identified by Rabiquet in 1817. It has been used as an anti-tussive agent since the mid-1950 s. After the discovery of its anti-mitotic potential, it was into the limelight once again. Due to its low toxicity, high bioactivity and oral administration, It was regarded as a formidable framework for subsequent modification and advancement in the pursuit of innovative chemotherapeutic agents. Up to now, the rational derivatives of the noscapine have been designed and the biological activities of these analogues have been extensively investigated. This review provides a comprehensive examination of the chemical characteristics of noscapine and its semi-synthetic derivatives up to the present, encompassing a concise investigation into the biological properties of these compounds and additionally a discussion about biosynthesis and total synthesis of noscapine is also provided. In summary, our aim is to contribute to a more thorough comprehension of this structure. It can be asserted that a promising future lies ahead for noscapine and its engineered derivatives as noteworthy candidates for pharmaceutical drugs.
Collapse
Affiliation(s)
- Faezeh Nemati
- Department of Synthesis of Medicinal Organic Compounds, Institute of Medicinal Chemistry, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran
| | - Amir Ata Bahmani Asl
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran.
| |
Collapse
|
7
|
Shahcheraghi SH, Alimardani M, Lotfi M, Lotfi M, Uversky VN, Guetchueng ST, Palakurthi SS, Charbe NB, Hromić-Jahjefendić A, Aljabali AAA, Gadewar MM, Malik S, Goyal R, El-Tanani M, Mishra V, Mishra Y, Tambuwala MM. Advances in glioblastoma multiforme: Integrating therapy and pathology perspectives. Pathol Res Pract 2024; 257:155285. [PMID: 38653089 DOI: 10.1016/j.prp.2024.155285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors. Recent years have witnessed a surge in interest in natural products derived from plants, particularly alkaloids, for their potential anticancer effects. Alkaloids have shown promise in cancer chemotherapy by selectively targeting crucial signaling pathways implicated in tumor progression and survival. Specifically, they modulate the NF-κB and MAPK pathways, resulting in reduced tumor growth and altered gene expression across various cancer types. Additionally, alkaloids exhibit the capacity to induce cell cycle arrest, further impeding tumor proliferation in several malignancies. This review aims to delineate recent advances in understanding the pathology of glioblastoma multiforme (GBM) and to explore the potential therapeutic implications of alkaloids in managing this deadly disease. By segregating discussions on GBM pathology from those on alkaloid-based therapies, we provide a structured overview of the current challenges in GBM treatment and the promising opportunities presented by alkaloid-based interventions. Furthermore, we briefly discuss potential future directions in GBM research and therapy beyond alkaloids, including emerging treatment modalities or areas of investigation that hold promise for improving patient outcomes. In conclusion, our efforts offer hope for enhanced outcomes and improved quality of life for GBM patients through alkaloid-based therapies. By integrating insights from pathology and therapeutic perspectives, we underscore the significance of a comprehensive approach in addressing this devastating disease.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Stephanie Tamdem Guetchueng
- Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, PO Box 6163, Yaoundé, Cameroon
| | - Sushesh Shrivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School Of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Manoj M Gadewar
- Department of Pharmacology, School of medical and allied sciences, K.R. Mangalam University, Gurgaon, Haryana 122103, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Murtaza M Tambuwala
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
8
|
Elbagory AM, Hull R, Meyer M, Dlamini Z. Reports of Plant-Derived Nanoparticles for Prostate Cancer Therapy. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091870. [PMID: 37176928 PMCID: PMC10181082 DOI: 10.3390/plants12091870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Plants have demonstrated potential in providing various types of phytomedicines with chemopreventive properties that can combat prostate cancer. However, despite their promising in vitro activity, the incorporation of these phytochemicals into the market as anticancer agents has been hindered by their poor bioavailability, mainly due to their inadequate aqueous solubility, chemical instability, and unsatisfactory circulation time. To overcome these drawbacks, it has been suggested that the incorporation of phytochemicals as nanoparticles can offer a solution. The use of plant-based chemicals can also improve the biocompatibility of the formulated nanoparticles by avoiding the use of certain hazardous chemicals in the synthesis, leading to decreased toxicity in vivo. Moreover, in some cases, phytochemicals can act as targeting agents to tumour sites. This review will focus on and summarize the following points: the different types of nanoparticles that contain individual phytochemicals or plant extracts in their design with the aim of improving the bioavailability of the phytochemicals; the therapeutic evaluation of these nanoparticles against prostate cancer both in vitro and in vivo and the reported mode of action and the different types of anticancer experiments used; how the phytochemicals can also improve the targeting effects of these nanoparticles in some instances; and the potential toxicity of these nanoparticles.
Collapse
Affiliation(s)
- Abdulrahman M Elbagory
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Cape Town, Private Bag X17, Bellville 7535, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Cape Town, Private Bag X17, Bellville 7535, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
9
|
Panchal S, Sehrawat H, Sharma N, Chandra R. Biochemical interaction of human hemoglobin with ionic liquids of noscapinoids: Spectroscopic and computational approach. Int J Biol Macromol 2023; 239:124227. [PMID: 37003390 DOI: 10.1016/j.ijbiomac.2023.124227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
In this work, we have developed noscapine based ionic liquids i.e., Noscapine (MeNOS) and 9-Bromonoscapine (MeBrNOS) as cation supported with bis(trifluoromethylsulfonyl)amide (NTf2-) as anion. We have reported the mechanism of binding interaction between noscapine based ILs and human hemoglobin (Hb) using various spectroscopic and computational techniques. The corresponding thermodynamics studies showed that the binding is exothermic in nature and major forces responsible for binding are Van der waals and hydrogen bonding interaction. The fluorescence spectra showed that the intensity of Hb decreases in the presence of [MeNOS]NTf2 and [MeBrNOS]NTf2 both shows static quenching. The secondary structural changes in Hb were observed and calculated by using CD spectroscopy. Molecular docking studies revealed that both the ILs show strong binding in β1 fragment of the tetrameric structure of Hb, but the binding of [MeNOS]NTf2 is relatively stronger than [MeBrNOS]NTf2 and the results are supported by MD simulations.
Collapse
Affiliation(s)
- Sagar Panchal
- Drug Discovery and Development Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hitesh Sehrawat
- Drug Discovery and Development Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Neera Sharma
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India.
| | - Ramesh Chandra
- Drug Discovery and Development Lab, Department of Chemistry, University of Delhi, Delhi 110007, India; Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India; Institute of Nanomedical Sciences, University of Delhi, Delhi 110007, India; Vice-chancellor, Maharaja Surajmal Brij University, Bharatpur, Rajasthan 321201, India.
| |
Collapse
|
10
|
Kumar Pedapati R, Pragyandipta P, Pranathi Abburi N, Chirra N, Kantevari S, Naik PK. Antiproliferative Noscapinoids Bearing an Amidothiadiazole Scaffold as Apoptosis Inducers: Design, Synthesis and Molecular Docking. Chem Biodivers 2023; 20:e202201089. [PMID: 36690497 DOI: 10.1002/cbdv.202201089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
Noscapine an FDA-approved antitussive agent. With low cytotoxicity with higher concentrations, noscapine and its derivatives have been shown to have exceptional anticancer properties against a variety of cancer cell lines. In order to increase its potency, in this study, we synthesized a series of new amido-thiadiazol coupled noscapinoids and tested their cytotoxicity in vitro. All of the newly synthesised compounds demonstrated potent cytotoxic potential, with IC50 values ranging from 2.1 to 61.2 μM than the lead molecule, noscapine (IC50 value ranges from 31 to 65.5 μM) across all cell lines, without affecting normal cells (IC50 value is>300 μM). Molecular docking of all these molecules with tubulin (PDB ID: 6Y6D, resolution 2.20 Å) also revealed better binding affinity (docking score range from -5.418 to -9.679 kcal/mol) compared to noscapine (docking score is -5.304 kcal/mol). One of the most promising synthetic derivatives 6aa (IC50 value ranges from 2.5 to 7.3 μM) was found to bind tubulin with the highest binding affinity (ΔGbinding is -28.97 kcal/mol) and induced apoptosis in cancer cells more effectively.
Collapse
Affiliation(s)
- Ravi Kumar Pedapati
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratyush Pragyandipta
- Center of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur768 019, Odisha, India
| | - Naga Pranathi Abburi
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nagaraju Chirra
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Naik
- Center of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur768 019, Odisha, India
| |
Collapse
|
11
|
Kumar Pedapati R, Chirra N, Pranathi Abburi N, Bollikonda R, Alekhya D, Sridhar B, Naik PK, Kantevari S. Substrate-directed Synthesis of Isocoumarin and 3-Ylidenephthalide Conjugated Noscapinoids and their Antiproliferative Activities. Chem Asian J 2023; 18:e202201131. [PMID: 36416383 DOI: 10.1002/asia.202201131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
A series of new noscapinoids designed; synthesized and assessed whether its 3-ylidenephthalide and isocoumarin conjugates improved cytotoxicity. Cu-catalysed Sonogashira coupling of N-propargyl noscapine with 2-bromobenzoic acids followed by in-situ substrate-directed 5-exo-dig or 6-endo-dig cyclization produced 3-ylidenephthalide 6 a-6 f and isocoumarin 7 a-7 h analogues in very good yields. In comparison to the lead drug, noscapine, all the newly synthesised derivatives exhibited strong cytotoxic potential in vitro with IC50 ranging from 5.4 μM to 39.5 μM across the evaluated panel of cancer cell lines, without harming normal cells (IC50 >300 μM).
Collapse
Affiliation(s)
- Ravi Kumar Pedapati
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Nagaraju Chirra
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Naga Pranathi Abburi
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Rakesh Bollikonda
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Danaboiena Alekhya
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Balasubramanian Sridhar
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.,Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Pradeep K Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, 768 019, Odisha, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
12
|
Synthesis of heterocycles by utilizing phthalaldehydic acid: An overview. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Mousavimanesh Z, Shahnani M, Faraji-Shovey A, Bararjanian M, Sadr AS, Ghassempour A, Salehi P. A new chiral stationary phase based on noscapine: Synthesis, enantioseparation, and docking study. Chirality 2022; 34:1371-1382. [PMID: 35778873 DOI: 10.1002/chir.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 11/07/2022]
Abstract
Noscapine is an isolated compound from the opium poppy, with distinctive chiral structure and chemistry, interacts with other compounds due to having multiple π-acceptors, hydrogen bond acceptors, and ionic sites. Therefore, it has promising applicability for the enantioselective separation of a wide range of polar, acidic, basic, and neutral compounds. A new noscapine derivative chiral stationary phase (ND-CSP) has been synthesized by consecutive N-demethylation, reduction, and N-propargylation of noscapine followed by attachment of a solid epoxy-functionalized silica bed through the 1,3-dipolar Huisgen cycloaddition. The noscapine derivative-based stationary phase provides a considerable surface coverage, which is greater than some commercial CSPs and can validate better enantioresolution performance. The major advantages inherent to this chiral selector are stability, reproducibility after more than 200 tests, and substantial loading capacity. The characterization by Fourier transform infrared (FTIR) spectroscopy and elemental analysis indicated successful functionalization of the silica surface. Chromatographic method conditions like flow rate and mobile phase composition for enantioseparation of various compounds such as warfarin, propranolol, mandelic acid, and a sulfanilamide derivative were optimized. Comparing the experimental results with docking data revealed a clear correlation between the calculated binding energy of ND-CSP and each enantiomer with the resolution of enantiomer peaks.
Collapse
Affiliation(s)
- Zohreh Mousavimanesh
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Shahnani
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Morteza Bararjanian
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ahmad Shahir Sadr
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Bioinformatics Research Center, Sabzevar University of Medical Sciences, School of Medicine, Sabzevar, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Peyman Salehi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
14
|
Pavanello A, Fabbri D, Calza P, Battiston D, Miranda MA, Marin ML. Biomimetic photooxidation of noscapine sensitized by a riboflavin derivative in water: The combined role of natural dyes and solar light in environmental remediation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112415. [PMID: 35231758 DOI: 10.1016/j.jphotobiol.2022.112415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Noscapine (NSC) is a benzyl-isoquinoline alkaloid discovered in 1930 as an antitussive agent. Recently, NSC has also been reported to exhibit antitumor activity and, according to computational studies, it is able to attack the protease enzyme of Coronavirus (COVID-19) and thus could be used as antiviral for COVID-19 pandemic. Therefore, an increasing use of this drug could be envisaged in the coming years. NSC is readily metabolized with a half-life of 4.5 h giving rise to cotarnine, hydrocotarnine, and meconine, arising from the oxidative breaking of the CC bond between isoquinoline and phthalide moieties. Because of its potentially increasing use, high concentrations of NSC but also its metabolites will be delivered in the environment and potentially affect natural ecosystems. Thus, the aim of this work is to investigate the degradation of NSC in the presence of naturally occurring photocatalysts. As a matter of fact, the present contribution has demonstrated that NSC can be efficiently degraded in the presence of a derivative of the natural organic dye Riboflavin (RFTA) upon exposure to visible light. Indeed, a detailed study of the mechanism involved in the photodegradation revealed the similarities between the biomimetic and the photocatalyzed processes. In fact, the main photoproducts of NSC were identified as cotarnine and opianic acid based on a careful UPLC-MS2 analysis compared to the independently synthesized standards. The former is coincident with one of the main metabolites obtained in humans, whereas the latter is related to meconine, a second major metabolite of NSC. Photophysical experiments demonstrated that the observed oxidative cleavage is mediated mainly by singlet oxygen in a medium in which the lifetime of 1O2 is long enough, or by electron transfer to the triplet excited state of RFTA if the photodegradation occurs in aqueous media, where the 1O2 lifetime is very short.
Collapse
Affiliation(s)
- Alice Pavanello
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, E-46022, Valencia, Spain
| | - Debora Fabbri
- Dipartimento di Chimica, Università di Torino, via P. Giuria 5, 10125 Torino, Italy
| | - Paola Calza
- Dipartimento di Chimica, Università di Torino, via P. Giuria 5, 10125 Torino, Italy
| | - Debora Battiston
- Dipartimento di Chimica, Università di Torino, via P. Giuria 5, 10125 Torino, Italy
| | - Miguel A Miranda
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, E-46022, Valencia, Spain
| | - M Luisa Marin
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, E-46022, Valencia, Spain.
| |
Collapse
|
15
|
Vikram ENT, Ilavarasan R, Kamaraj R. Anti-cancer activities of Schedule E1 drugs used in ayurvedic formulations. J Ayurveda Integr Med 2022; 13:100545. [PMID: 35661925 PMCID: PMC9163510 DOI: 10.1016/j.jaim.2022.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Schedule E1 is an important part of Drugs and Cosmetics Act (Government of India) that comprises the list of poisonous drugs from plant, animal and mineral origins to be consumed under medical supervision. Ayurveda, the world's oldest medicinal system has a list of drugs represented in schedule E1 that are used since thousands of years. This review reports the anti-cancer activities of fifteen toxic ayurvedic drugs from plant origin represented in Drugs and Cosmetics Act, 1940. The information was collected from the various authentic sources, compiled and summarised. The plant extracts, formulations, phytoconstituents and other preparations of these drugs have shown effective activities against mammary carcinoma, neuroblastoma, non-small cell lung carcinoma, lymphocytic leukaemia, colorectal adenocarcinoma, Ehrlich ascites carcinoma, prostate adenocarcinoma, glioblastoma asterocytoma and other malignancies. They have various mechanisms of action including Bax upregulation, Bcl2 downregulation, induction of cell cycle arrest at S phase, G2/M phase, inhibition of vascular endothelial growth factors, inhibition of Akt/mTOR signalling etc. Certain traditional ayurvedic preparations containing these plants are reported beneficial and the possibilities of these drugs as the alternative and adjuvant therapeutic agents in the current cancer care have been discussed. The studies suggest that these drugs could be utilised in future for the critical care of malignancies.
Collapse
Affiliation(s)
- E N T Vikram
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (Dt.), Tamilnadu 603203, India
| | - R Ilavarasan
- Captain Srinivasa Murthy Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Arumbakkam, Chennai, Tamilnadu 600106, India
| | - R Kamaraj
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (Dt.), Tamilnadu 603203, India.
| |
Collapse
|
16
|
Shetge SA, Redan BW. Assessment of Dry Heating, Water Rinsing, and Baking on Concentrations of the Opium Alkaloid Noscapine in Poppy Seeds. ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:541-547. [PMID: 35558138 PMCID: PMC9087206 DOI: 10.1021/acsfoodscitech.1c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Limited information is available on methods to reduce concentrations of the opium alkaloid noscapine in poppy seeds. A series of experiment were conducted using poppy seeds to evaluate the impact of thermal treatments, water rinsing, and baking on noscapine concentrations. A sample set of commercially available poppy seeds (n=15) was screened for noscapine using liquid chromatography-tandem mass spectrometry. The mean and median noscapine concentrations for poppy seed samples above the limit of quantitation (LOQ) was 89.9 and 28.4 mg kg-1, respectively. Six out of 15 samples were less than the LOQ. Poppy seed samples containing a mean noscapine concentration of 121 mg kg-1 were subjected to dry heat treatments ranging from 120-200 °C and a 5 min rinse with water. Baking experiments were also done by incorporating the poppy seeds into a muffin batter and baking in an oven at 200 °C. The dry heat treatment experiments showed that noscapine degraded at 160-200 °C, with a 50% loss of noscapine observed after 3.44 ± 0.46 min at 200 °C. Although the mean concentration of noscapine decreased when a muffin containing poppy seeds was baked at 200 °C for 16 min, these changes were not statistically significant (P>0.05). Rinsing the poppy seeds with water did not have a significant effect on noscapine concentrations. Together, these data allow for better characterization of potential dietary exposure to noscapine and indicate that certain thermal treatments can be effective for reduction of noscapine in poppy seeds.
Collapse
Affiliation(s)
- Shalaka A. Shetge
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Food Processing Science and Technology, Bedford Park, IL,To whom correspondence should be addressed:
| |
Collapse
|
17
|
Butnariu M, Quispe C, Herrera-Bravo J, Pentea M, Sarac I, Küşümler AS, Özçelik B, Painuli S, Semwal P, Imran M, Gondal TA, Emamzadeh-Yazdi S, Lapava N, Yousaf Z, Kumar M, Eid AH, Al-Dhaheri Y, Suleria HAR, del Mar Contreras M, Sharifi-Rad J, Cho WC. Papaver Plants: Current Insights on Phytochemical and Nutritional Composition Along with Biotechnological Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2041769. [PMID: 36824615 PMCID: PMC9943628 DOI: 10.1155/2022/2041769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/13/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
The genus Papaver is highly esteemed in the pharmacy industry, in the culinary field, and as ornamental plants. These plants are also valued in traditional medicine. Among all Papaver species, Papaver somniferum L. (opium poppy) is the most important species in supplying phytochemicals for the formulation of drugs, mainly alkaloids like morphine, codeine, rhoeadine, thebaine, and papaverine. In addition, Papaver plants present other types of phytochemicals, which altogether are responsible for its biological activities. Therefore, this review covers the phytochemical composition of Papaver plants, including alkaloids, phenolic compounds, and essential oils. The traditional uses are reviewed along with their pharmacological activities. Moreover, safety aspects are reported to provide a deep overview of the pharmacology potential of this genus. An updated search was carried out in databases such as Google Scholar, ScienceDirect, and PubMed to retrieve the information. Overall, this genus is a rich source of alkaloids of different types and also contains interesting phenolic compounds, such as anthocyanins, flavonols, and the characteristic indole derivatives nudicaulins. Among other pharmacological properties, numerous preclinical studies have been published about the analgesic, anticancer, antimicrobial, antioxidant, and antidiabetic activities of Papaver plants. Although it highlights the significant impact of this genus for the treatment of a variety of diseases and conditions, as a future prospect, characterization works accompanying preclinical studies are required along with clinical and toxicology studies to establish a correlation between the scientific and traditional knowledge.
Collapse
Affiliation(s)
- Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Marius Pentea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Aylin Seylam Küşümler
- İstanbul Okan University, Nutrition and Dietetics Department, Tuzla, İstanbul, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co., Maslak, Istanbul 34469, Turkey
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, 248001, Dehradun, Uttarakhand, India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, 248001 Uttarakhand, India
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, 248001, Dehradun, Uttarakhand, India
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun-248002, Uttarakhand, India
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | | | - Simin Emamzadeh-Yazdi
- Department of Plant and Soil Sciences, University of Pretoria, Gauteng 0002, South Africa
| | - Natallia Lapava
- Medicine Standardization Department of Vitebsk State Medical University, Belarus
| | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, 400019, Mumbai, India
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, UAE
| | | | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus las Lagunillas, s/n, 23071 Jaén, Spain
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
18
|
Han Z, Meng L, Huang X, Tan J, Liu W, Chen W, Zou Y, Cai Y, Huang S, Chen A, Zhan T, Huang M, Chen X, Tian X, Zhu Q. Inhibition of p38 MAPK increases the sensitivity of 5-fluorouracil-resistant SW480 human colon cancer cells to noscapine. Oncol Lett 2022; 23:52. [PMID: 35035538 PMCID: PMC8756816 DOI: 10.3892/ol.2021.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
A major cause of treatment failure in advanced colon cancer is resistance to chemotherapy. p38 mitogen-activated protein kinase (MAPK) has been associated with cellular apoptosis and plays an important role in multidrug resistance (MDR) in cancer cells. In the present study the effect of p38 MAPK on the sensitivity of 5-fluorouracil (5-FU)-resistant SW480 (SW480/5-FU) human colon cancer cells to noscapine was investigated. Following p38 MAPK interference, the inhibitory effect of noscapine on cell viability and proliferation was increased in the SW480/5-FU cells and there was also a decrease in the expression level of minichromosome maintenance proteins, recombinant Ki-67 and proliferating cell nuclear antigen. Inhibition of p38 MAPK also enhanced noscapine-induced G1-phase cell cycle arrest in the SW480/5-FU cells and there was also a decrease in the protein and mRNA expression level of cyclin D, cyclin E and cyclin-dependent kinase 2, and an increase in the expression level of P57. Furthermore, p38 MAPK interference increased noscapine-induced apoptosis of the SW480/5-FU cells and there was an increase in the protein and mRNA expression level of caspases-3 and 8 and Bax, and decreased Bcl-2 expression level. The sensitivity of the SW480/5-FU cells to noscapine was also increased following p38 MAPK interference, as demonstrated by MDR inhibition via decreased Akt activity and reduced protein expression level of the MDR proteins P-glycoprotein, multidrug resistance protein 1 and ATP-binding cassette G2. These observations indicated that inhibition of p38 MAPK increased the sensitivity of the SW480/5-FU cells to noscapine by suppressing proliferation, induction of cell cycle arrest and apoptosis, and reversal of MDR in the SW480/5-FU cells.
Collapse
Affiliation(s)
- Zheng Han
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Liu Meng
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Xiaodong Huang
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Jie Tan
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Weijie Liu
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Wei Chen
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Yanli Zou
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Yishan Cai
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Shasha Huang
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Aifang Chen
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Ting Zhan
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Min Huang
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Xiaoli Chen
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Xia Tian
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Qingxi Zhu
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
19
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_66_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Chaudhry GES, Jan R, Akim A, Zafar MN, Sung YY, Muhammad TST. Breast Cancer: A Global Concern, Diagnostic and Therapeutic Perspectives, Mechanistic Targets in Drug Development. Adv Pharm Bull 2021; 11:580-594. [PMID: 34888205 PMCID: PMC8642807 DOI: 10.34172/apb.2021.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a complex multifactorial process, unchecked and abrupt division, and cell growth—conventional chemotherapy, along with radiotherapy, is used to treat breast cancer. Due to reduce efficacy and less survival rate, there is a particular need for the discovery of new active anticancer agents. Natural resources such as terrestrial/marine plants or organisms are a promising source for the generation of new therapeutics with improving efficacy. The screening of natural plant extracts and fractions, isolations of phytochemicals, and mechanistic study of those potential compounds play a remarkable role in the development of new therapeutic drugs with increased efficacy. Cancer is a multistage disease with complex signaling cascades. The initial study of screening whole extracts or fractions and later the isolation of secondary compounds and their mechanism of action study gives a clue of potential therapeutic agents for future drug development. The phytochemicals present in extracts/fractions produce remarkable effects due to synergistically targeting multiple signals. In this review, the molecular targets of extracts/ fractions and isolated compounds highlighted. The therapeutic agent's mechanistic targets in drug development focused involves; i) Induction of Apoptosis, ii) modulating cell cycle arrest, iii) Inhibition or suppression of invasion and metastasis and iv) various other pro-survival signaling pathways. The phytochemicals and their modified analogs identified as future potential candidates for anticancer chemotherapy.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Rehmat Jan
- Department of Environmental Sciences, Fatima Jinnah University, Rawalpindi, Pakistan
| | - Abdah Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | | | - Yeong Yik Sung
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | |
Collapse
|
22
|
Abstract
1,2,3,4-Tetrahydroisoquinolines form a valuable scaffold for a variety of bioactive secondary metabolites and commercial pharmaceuticals. Due to the harsh or complex conditions of the conventional chemical synthesis of this molecular motif, alternative mild reaction pathways are in demand. Here we present an easy-to-operate chemoenzymatic one-pot process for the synthesis of tetrahydroisoquinolines starting from benzylic alcohols and an amino alcohol. We initially demonstrate the oxidation of 12 benzylic alcohols by a laccase/TEMPO system to the corresponding aldehydes, which are subsequently integrated in a phosphate salt mediated Pictet–Spengler reaction with m-tyramine. The reaction conditions of both individual reactions were analyzed separately, adapted to each other, and a straightforward one-pot process was developed. This enables the production of 12 1,2,3,4-tetrahydroisoquinolines with yields of up to 87% with constant reaction conditions in phosphate buffer and common laboratory glass bottles without the supplementation of any additives.
Collapse
|
23
|
Nourbakhsh F, Askari VR. Biological and pharmacological activities of noscapine: Focusing on its receptors and mechanisms. Biofactors 2021; 47:975-991. [PMID: 34534373 DOI: 10.1002/biof.1781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Noscapine has been mentioned as one of the effective drugs with potential therapeutic applications. With few side effects and amazing capabilities, noscapine can be considered different from other opioids-like structure compounds. Since 1930, extensive studies have been conducted in the field of pharmacological treatments from against malaria to control cough and cancer treatment. Furthermore, recent studies have shown that noscapine and some analogues, like 9-bromonoscapine, amino noscapine, and 9-nitronoscapine, can be used to treat polycystic ovaries syndrome, stroke, and other diseases. Given the numerous results presented in this field and the role of different receptors in the therapeutic effects of noscapine, we aimed to review the properties, therapeutic effects, and the role of receptors in the treatment of noscapine.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Nagireddy PKR, Kumar D, Kommalapati VK, Pedapati RK, Kojja V, Tangutur AD, Kantevari S. 9-Ethynyl noscapine induces G2/M arrest and apoptosis by disrupting tubulin polymerization in cervical cancer. Drug Dev Res 2021; 83:605-614. [PMID: 34612529 DOI: 10.1002/ddr.21888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
Noscapine is a phthalide isoquinoline alkaloid present in the latex of Papaver somniferum and has demonstrated potent antitumor activity in various cancer models. Structural changes in the core molecule of noscapine architecture have produced a number of potent analogs. We have recently synthesized the novel noscapine analogs (3, 4, and 5) with different functional groups appended at ninth position of natural noscapine. The anticancer activity of these compounds has been investigated using various human cancer cell lines such as HeLa (cervical cancer), DU-145 (prostate cancer), MCF-7 (breast cancer), and IMR-32 (neuroblastoma). One of the compounds in this series, 9-ethynyl noscapine (5), has demonstrated good anticancer activity against HeLa cells. Biological studies demonstrated that compound 5 decreased cell viability and colony formation in HeLa cells in a concentration dependent manner. To further uncover the mechanism in detail, we evaluated compound 5 effect on cell cycle progression, microtubule dynamics, and apoptosis. Cell cycle and western blotting analysis revealed that 9-ethynyl noscapine treatment resulted in cell cycle arrest at G2/M and decreased CDK1 and cyclinB1 protein expression. We also observed that 9-ethynyl noscapine (5) treatment leads to disruption in tubulin polymerization and induction of apoptosis by decreasing expression of bcl2, pro-caspase 3, and activation of cytochrome C. Taken together, our results indicate that 9-ethynyl noscapine (5) effectively supresses the growth of cervical cancer cells (HeLa) by disrupting tubulin polymerization, cell cycle progression leading to apoptosis.
Collapse
Affiliation(s)
- Praveen Kumar Reddy Nagireddy
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Dinesh Kumar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Vamsi Krishna Kommalapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Ravi Kumar Pedapati
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Venkateswarlu Kojja
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
25
|
Hasanpour Z, Salehi P, Bararjanian M, Esmaeili MA, Alilou M, Mohebbi M. Semi-Synthesis of New 1,2,3-Triazole Derivatives of 9-Bromonoscapine and their Anticancer Activities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:546-560. [PMID: 34567181 PMCID: PMC8457714 DOI: 10.22037/ijpr.2020.113213.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Novel 1,2,3-triazole-tethered 9-bromonoscapine derivatives were synthesized by the propargylation of N-nornoscapine followed by Huisgen's 1,3-dipolar cycloaddition of the terminal alkynes with different azides. Cytotoxicity of the products was studied by MTT assay against the MCF-7 breast cancer cell line. Most of the compounds revealed a better cytotoxicity than N-nornoscapine and 9-bromonornoscapine as the parent compounds. Among the synthesized compounds, those with a hydroxylated aliphatic side chain (5p, 5q, and 5r) showed the highest activities (IC50s: 47.2, 37.9, and 32.3 μg/mL, respectively). Molecular docking studies showed that these compounds also had the highest docking scores and effective interactions with binding sites equal to -8.074, -7.425 and -7.820 kcal/mol, respectively.
Collapse
Affiliation(s)
- Zahra Hasanpour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Morteza Bararjanian
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Ali Esmaeili
- Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, Ontario, Canada
| | - Mostafa Alilou
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Maryam Mohebbi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
26
|
Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook. Appl Microbiol Biotechnol 2021; 105:6649-6668. [PMID: 34468803 PMCID: PMC8408309 DOI: 10.1007/s00253-021-11539-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022]
Abstract
Medicinal plants have been used by mankind since ancient times, and many bioactive plant secondary metabolites are applied nowadays both directly as drugs, and as raw materials for semi-synthetic modifications. However, the structural complexity often thwarts cost-efficient chemical synthesis, and the usually low content in the native plant necessitates the processing of large amounts of field-cultivated raw material. The biotechnological manufacturing of such compounds offers a number of advantages like predictable, stable, and year-round sustainable production, scalability, and easier extraction and purification. Plant cell and tissue culture represents one possible alternative to the extraction of phytochemicals from plant material. Although a broad commercialization of such processes has not yet occurred, ongoing research indicates that plant in vitro systems such as cell suspension cultures, organ cultures, and transgenic hairy roots hold a promising potential as sources for bioactive compounds. Progress in the areas of biosynthetic pathway elucidation and genetic manipulation has expanded the possibilities to utilize plant metabolic engineering and heterologous production in microorganisms. This review aims to summarize recent advances in the in vitro production of high-value plant secondary metabolites of medicinal importance. Key points • Bioactive plant secondary metabolites are important for current and future use in medicine • In vitro production is a sustainable alternative to extraction from plants or costly chemical synthesis • Current research addresses plant cell and tissue culture, metabolic engineering, and heterologous production
Collapse
|
27
|
Chiu W, Lin Y, Barve IJ, Sun C. Diastereospecific Synthesis of Tetrahydroisoquinolines via Radical Cyclization: Application in the Synthesis of ent‐Tadalafil. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wei‐Jung Chiu
- Department of Applied Chemistry National Chiao-Tung University Hsinchu 300-10 Taiwan
| | - Yan‐Liang Lin
- Department of Applied Chemistry National Chiao-Tung University Hsinchu 300-10 Taiwan
| | - Indrajeet J. Barve
- Department of Applied Chemistry National Chiao-Tung University Hsinchu 300-10 Taiwan
- Department of Chemistry MES Abasaheb Garware College Pune India
| | - Chung‐Ming Sun
- Department of Applied Chemistry National Chiao-Tung University Hsinchu 300-10 Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807-08 Taiwan
| |
Collapse
|
28
|
Zareena B, Khadim A, Jeelani SUY, Hussain S, Ali A, Musharraf SG. High-Throughput Detection of an Alkaloidal Plant Metabolome in Plant Extracts Using LC-ESI-QTOF-MS. J Proteome Res 2021; 20:3826-3839. [PMID: 34308647 DOI: 10.1021/acs.jproteome.1c00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant alkaloids represent a diverse group of nitrogen-containing natural products. These compounds are considered valuable in drug discovery and development. High-throughput identification of such plant secondary metabolites in complex plant extracts is essential for drug discovery, lead optimization, and understanding the biological pathway. The present study aims to rapidly identify different classes of alkaloids in plant extracts through the liquid chromatography with electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) approach using 161 isolated and purified alkaloids. These are biologically important unique alkaloids belonging to different sub-classes such as isoquinoline, quinoline, indole, tropane, pyridine, piperidine, quinolizidine, aporphine, steroidal, and terpenoid. The majority of these are not available commercially and are known to manifest valuable biological activities. Four pools of a maximum of 50 phytostandards each were prepared, based on their log P value to minimize co-elution for rapid and cost-effective analyses. MS/MS spectra were acquired in the positive ionization mode by using their [M + H]+ and/or [M + Na]+ with both the average collisional energy (25.5-62 eV) and individual collisional energies (10, 20, 30, and 40 eV). Accurate mass, high-resolution mass spectrometry (HR-MS) data, MS/MS data, and retention times were curated for each compound. The developed LC-MS/MS method was successfully used to interrogate and fast dereplicate alkaloids in 13 medicinal plant extracts and a herbal formulation. A total of 56 alkaloids were identified based on the reference standard retention times (RTs), HR-MS spectra, and/or MS/MS spectra. The MS data have been submitted to the MetaboLights online database (MTBLS2914). The mass spectrometric and chromatographic data will be useful for the discovery of new congeners and the study of biological pathways of alkaloids in the plant kingdom.
Collapse
Affiliation(s)
- Bibi Zareena
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Adeeba Khadim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Usama Y Jeelani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saddam Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
29
|
Yong C, Devine SM, Abel AC, Tomlins SD, Muthiah D, Gao X, Callaghan R, Steinmetz MO, Prota AE, Capuano B, Scammells PJ. 1,3-Benzodioxole-Modified Noscapine Analogues: Synthesis, Antiproliferative Activity, and Tubulin-Bound Structure. ChemMedChem 2021; 16:2882-2894. [PMID: 34159741 DOI: 10.1002/cmdc.202100363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/08/2022]
Abstract
Since the revelation of noscapine's weak anti-mitotic activity, extensive research has been conducted over the past two decades, with the goal of discovering noscapine derivatives with improved potency. To date, noscapine has been explored at the 1, 7, 6', and 9'-positions, though the 1,3-benzodioxole motif in the noscapine scaffold that remains unexplored. The present investigation describes the design, synthesis and pharmacological evaluation of noscapine analogues consisting of modifications to the 1,3-benzodioxole moiety. This includes expansion of the dioxolane ring and inclusion of metabolically robust deuterium and fluorine atoms. Favourable structural modifications were subsequently incorporated into multi-functionalised noscapine derivatives that also possessed modifications previously shown to promote anti-proliferative activity in the 1-, 6'- and 9'-positions. Our research efforts afforded the deuterated noscapine derivative 14 e and the dioxino-containing analogue 20 as potent cytotoxic agents with EC50 values of 1.50 and 0.73 μM, respectively, against breast cancer (MCF-7) cells. Compound 20 also exhibited EC50 values of <2 μM against melanoma, non-small cell lung carcinoma, and cancers of the brain, kidney and breast in an NCI screen. Furthermore, compounds 14 e and 20 inhibit tubulin polymerisation and are not vulnerable to the overexpression of resistance conferring P-gp efflux pumps in drug-resistant breast cancer cells (NCIADR/RES ). We also conducted X-ray crystallography studies that yielded the high-resolution structure of 14 e bound to tubulin. Our structural analysis revealed the key interactions between this noscapinoid and tubulin and will assist with the future design of noscapine derivatives with improved properties.
Collapse
Affiliation(s)
- Cassandra Yong
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Anne-Catherine Abel
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Stefan D Tomlins
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Divya Muthiah
- Research School of Biology, Australian National University, Canberra, ACT, 2061, Australia
| | - Xuexin Gao
- Research School of Biology, Australian National University, Canberra, ACT, 2061, Australia
| | - Richard Callaghan
- Research School of Biology, Australian National University, Canberra, ACT, 2061, Australia
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.,Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
30
|
Abstract
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Angela Sester
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
- Current address: Chair of Technical BiochemistryTechnical University of DresdenBergstrasse 6601069DresdenGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|
31
|
Singh M, Sharma P, Singh PK, Singh TG, Saini B. Medicinal Potential of Heterocyclic Compounds from Diverse Natural Sources for the Management of Cancer. Mini Rev Med Chem 2021; 20:942-957. [PMID: 32048967 DOI: 10.2174/1389557520666200212104742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
Natural products form a significant portion of medicinal agents that are currently used for the management of cancer. All these natural products have unique structures along with diverse action mechanisms with the capacity to interact with different therapeutic targets of several complex disorders. Although plants contribute as a major source of natural products with anti-cancer potential, the marine environment and microbes have also bestowed some substantial chemotherapeutic agents. A few examples of anti-cancer agents of natural origin include vincristine, vinblastine, paclitaxel, camptothecin and topotecan obtained from plants, bryostatins, sarcodictyin and cytarabine from marine organisms and bleomycin and doxorubicin from micro-organisms (dactinomycin, bleomycin and doxorubicin). The incredible diversity in the chemical structures and biological properties of compounds obtained from million species of plants, marine organisms and microorganisms present in nature has commenced a new era of potential therapeutic anti-cancer agents.
Collapse
Affiliation(s)
- Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, University of Sassari 07100, Italy
| | | | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
32
|
Bradley SA, Zhang J, Jensen MK. Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Front Bioeng Biotechnol 2020; 8:594126. [PMID: 33195162 PMCID: PMC7644825 DOI: 10.3389/fbioe.2020.594126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Plants produce some of the most potent therapeutics and have been used for thousands of years to treat human diseases. Today, many medicinal natural products are still extracted from source plants at scale as their complexity precludes total synthesis from bulk chemicals. However, extraction from plants can be an unreliable and low-yielding source for human therapeutics, making the supply chain for some of these life-saving medicines expensive and unstable. There has therefore been significant interest in refactoring these plant pathways in genetically tractable microbes, which grow more reliably and where the plant pathways can be more easily engineered to improve the titer, rate and yield of medicinal natural products. In addition, refactoring plant biosynthetic pathways in microbes also offers the possibility to explore new-to-nature chemistry more systematically, and thereby help expand the chemical space that can be probed for drugs as well as enable the study of pharmacological properties of such new-to-nature chemistry. This perspective will review the recent progress toward heterologous production of plant medicinal alkaloids in microbial systems. In particular, we focus on the refactoring of halogenated alkaloids in yeast, which has created an unprecedented opportunity for biosynthesis of previously inaccessible new-to-nature variants of the natural alkaloid scaffolds.
Collapse
Affiliation(s)
| | | | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
33
|
Discovery of noscapine derivatives as potential β-tubulin inhibitors. Bioorg Med Chem Lett 2020; 30:127489. [PMID: 32784088 DOI: 10.1016/j.bmcl.2020.127489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Twenty novel 1,2,3-triazole noscapine derivatives were synthesized starting from noscapine by consecutive N-demethylation, reduction of lactone ring, N-propargylation and Huisgen 1,3-dipolar cycloaddition reaction. In order to select the most promising molecules to subject to further biophysical and biological evaluation, a molecular docking analysis round was performed using noscapine as reference compound. The molecules featuring docking predicted binding affinity better than that of noscapine were then subjected to MTT assay against MCF7 cell line. The obtained results disclosed that all the selected triazole derivatives exhibited a remarkably lower cell viability compared to noscapine in the range of 20 μM in 48 h. In an attempt to correlate the biological activity with the ability to bind tubulin, the surface plasmon resonance (SPR) assay was employed. Compounds 8a, 8h, 9c, 9f and 9j were able to bind tubulin with affinity constant values in the nanomolar range and higher if compared to noscapine. Integrating computational predictions and experimental evaluation, two promising compounds (8h and 9c) were identified, whose relevant cytotoxicity was supposed to be correlated with tubulin binding affinity. These findings shed lights onto structural modifications of noscapine toward the identification of more potent cytotoxic agents targeting tubulin.
Collapse
|
34
|
Bozorgi A, Khazaei S, Khademi A, Khazaei M. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:970-983. [PMID: 32952942 PMCID: PMC7478260 DOI: 10.22038/ijbms.2020.43745.10270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are known as the major reason for therapy resistance. Recently, natural herbal compounds are suggested to have a significant role in inhibiting the breast cancer stem cells (BCSCs). The aim of this study was to explore the effective natural herbal compounds against BCSCs.This review article was designed based on the BCSCs, mechanisms of therapy resistance and natural herbal compounds effective to inhibit their activity. Therefore, Science direct, PubMed and Scopus databases were explored and related original articles were investigated from 2010 to 2019. BCSCs use different mechanisms including special membrane transporters, anti-apoptotic, pro-survival, and self-renewal- related signaling pathways. Natural herbal compounds could disturb these mechanisms, therefore may inhibit or eradicate the BCSCs. Studies show that a broad range of plants, either as a food or medicine, contain anti-cancer agents that phenolic components and their different derivatives share a large quantity. Natural herbal compounds play a pivotal role in the eradication of BCSCs, through the inhibition of biological activities and induction of apoptosis. Although it is necessary to conduct more clinical investigation.
Collapse
Affiliation(s)
- Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saber Khazaei
- Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Khademi
- Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
35
|
Vitovcova B, Skarkova V, Rudolf K, Rudolf E. Biology of Glioblastoma Multiforme-Exploration of Mitotic Catastrophe as a Potential Treatment Modality. Int J Mol Sci 2020; 21:ijms21155324. [PMID: 32727112 PMCID: PMC7432846 DOI: 10.3390/ijms21155324] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) represents approximately 60% of all brain tumors in adults. This malignancy shows a high biological and genetic heterogeneity associated with exceptional aggressiveness, leading to a poor survival of patients. This review provides a summary of the basic biology of GBM cells with emphasis on cell cycle and cytoskeletal apparatus of these cells, in particular microtubules. Their involvement in the important oncosuppressive process called mitotic catastrophe will next be discussed along with select examples of microtubule-targeting agents, which are currently explored in this respect such as benzimidazole carbamate compounds. Select microtubule-targeting agents, in particular benzimidazole carbamates, induce G2/M cell cycle arrest and mitotic catastrophe in tumor cells including GBM, resulting in phenotypically variable cell fates such as mitotic death or mitotic slippage with subsequent cell demise or permanent arrest leading to senescence. Their effect is coupled with low toxicity in normal cells and not developed chemoresistance. Given the lack of efficient cytostatics or modern molecular target-specific compounds in the treatment of GBM, drugs inducing mitotic catastrophe might offer a new, efficient alternative to the existing clinical management of this at present incurable malignancy.
Collapse
|
36
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
37
|
Kumar Reddy Nagireddy P, Krishna Kommalapati V, Siva Krishna V, Sriram D, Devi Tangutur A, Kantevari S. Anticancer Potential of
N
‐Sulfonyl Noscapinoids: Synthesis and Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Anjana Devi Tangutur
- Department of Applied BiologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
38
|
Alijanvand SH, Christensen MH, Christiansen G, Harikandei KB, Salehi P, Schiøtt B, Moosavi-Movahedi AA, Otzen DE. Novel noscapine derivatives stabilize the native state of insulin against fibrillation. Int J Biol Macromol 2020; 147:98-108. [DOI: 10.1016/j.ijbiomac.2020.01.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
|
39
|
Yuan S, Zhang DQ, Zhang JY, Yu B, Liu HM. Palladium-Catalyzed Ligand-Free Double Cyclization Reactions for the Synthesis of 3-(1′-Indolyl)-phthalides. Org Lett 2020; 22:814-817. [DOI: 10.1021/acs.orglett.9b04241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuo Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dan-Qing Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Ya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
40
|
Microbiological Advances in Bioactives from High Altitude. MICROBIOLOGICAL ADVANCEMENTS FOR HIGHER ALTITUDE AGRO-ECOSYSTEMS & SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-1902-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Lobe MMM, Efange SMN. 3',4'-Dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones as potential anti-cancer agents: synthesis and preliminary screening. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191316. [PMID: 32218955 PMCID: PMC7029914 DOI: 10.1098/rsos.191316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Both tetrahydroisoquinolines (THIQs) and oxindoles (OXs) display a broad range of biological activities including anti-cancer activity, and are therefore recognized as two privileged scaffolds in drug discovery. In the present study, 24 3',4'-dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones, designed as molecular hybrids of THIQ and OX, were synthesized and screened in vitro against 59 cell lines in the NCI-60 screen. Twenty compounds displayed weak to moderate inhibition of cell proliferation; among them, three compounds displayed at least 50% inhibition of cell proliferation. The compounds appeared to target primarily renal cell cancer lines; however, leukaemia, melanoma, non-small cell lung cancer, prostate, ovarian and even breast cancer cell lines were also affected. Therefore, this class of spirooxindoles may provide useful leads in the search for new anti-cancer agents.
Collapse
|
42
|
Mir MA, Hamdani SS, Sheikh BA, Mehraj U. Recent Advances in Metabolites from Medicinal Plants in Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573395515666191102094330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer is the second leading cause of death and morbidity in the world among noncommunicable diseases after cardiovascular ailments. With the advancement in science and research, a number of therapies have been developed to treat cancer, including chemotherapy, radiotherapy and immunotherapy. Chemo and radiotherapy have been in use since the last two decades, however these are not devoid of their own intrinsic problems, such as myelotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity and immunosuppression. Hence, there is an urgent need to develop alternative methods for the treatment of cancer. An increase in the cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. In this review, fifteen medicinal plants alongside their products with anticancer effects will be introduced and discussed, as well as the most important plant compounds responsible for the anticancer activity of the plant. Several phenolic and alkaloid compounds have been demonstrated to have anticancer effects on various types of cancers. The most fundamental and efficient role exhibited by these secondary plant metabolites against cancer involves removing free radicals and antioxidant effects, induction of apoptosis, cell cycle arrest and inhibition of angiogenesis. Moreover, recent studies have shown that plants and their metabolites may provide an alternative to the existing approaches, including chemotherapies and radiotherapies, in the treatment of cancer. In this review, a brief overview of important secondary metabolites having anticancer activity will be given, along with the major molecular mechanisms involved in the disease. In addition to this, recent advances in secondary metabolites from various medicinal plants in the prevention and treatment of cancer will be explored.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Syed S. Hamdani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
43
|
Song R, Yu H, Huang H, Chen Y. Controlled One‐Pot Synthesis of Multiple Heterocyclic Scaffolds Based on an Amphiphilic Claisen‐Schmidt Reaction Intermediate. ChemistrySelect 2019. [DOI: 10.1002/slct.201904110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong Song
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| | - Hui Yu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education, School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| |
Collapse
|
44
|
Nagireddy PR, Kommalapati VK, Siva Krishna V, Sriram D, Tangutur AD, Kantevari S. Imidazo[2,1- b]thiazole-Coupled Natural Noscapine Derivatives as Anticancer Agents. ACS OMEGA 2019; 4:19382-19398. [PMID: 31763563 PMCID: PMC6868913 DOI: 10.1021/acsomega.9b02789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Noscapine, a phthalide isoquinoline alkaloid isolated from the opium poppy Papaver somniferum, is traditionally being used as an anticough drug. With a safe in vitro toxicological profile, noscapine and its analogues have been explored to show microtubule-regulating properties and anticancer activity against various mammalian cancer cell lines. Since then, our group and other research groups worldwide are working on developing new noscapinoids to tap its potential as the leading drug molecule. With our continuing efforts, we herein present synthesis and anticancer evaluation of a series of imidazothiazole-coupled noscapinoids 7a-o and 11a-o. Natural α-noscapine was N-demethylated to nornoscapine 4 and then reacted with 4-(chloromethyl) thiazole-2-amine. The resultant noscapinoid 5 was coupled with various bromomethyl ketones 10a-o to give N-imidazothiazolyl noscapinoids 7a-o in very good yields. Similarly, natural α-noscapine 1 was O-demethylated using sodium azide/sodium iodide, reacted with 4-(chloromethyl)thiazole-2-amine, and coupled with bromomethyl ketones 10a-o to result in O-imidazothiazolyl noscapinoids 11a-o. All the new analogues 7a-o and 11a-o were fully characterized by their NMR and mass spectral analysis. In vitro cytotoxicity assay was performed for compounds 5, 7a-o, 9, and 11a-o against four different cancer cell lines: HeLa (cervical), MIA PaCa-2 (pancreatic), SK-N-SH (neuroblastoma), and DU145 (prostate cancer). Among these conjugates, 5, 7a, 9, 11b, 11c, 11e, and 11o showed potent cytotoxicity with low IC50 values. Further, flow cytometry analysis revealed that MIA PaCa-2 cells treated with these compounds induced cell cycle G2/M-phase arrest. In addition, Western blot analysis revealed that the cells treated with these conjugates accumulate tubulin in the soluble fraction and also elevate cyclin-B1 protein expression levels. Moreover, the conjugates also increased the expression of caspase-3 and PARP levels which is indicative of apoptotic cell death. In silico molecular docking studies showed several noncovalent interactions like van der Waals and hydrogen-bonding with tubulin protein and with good binding energy. The results indicated that these noscapine analogues may serve as novel compounds that can possibly inhibit tubulin protein and can be considered for further optimization as a clinical candidate for treating pancreatic cancer.
Collapse
Affiliation(s)
- Praveen
Kumar Reddy Nagireddy
- Fluoro
and Agrochemicals Division and Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Vamsi Krishna Kommalapati
- Fluoro
and Agrochemicals Division and Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Vagolu Siva Krishna
- Medicinal
Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Dharmarajan Sriram
- Medicinal
Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Anjana Devi Tangutur
- Fluoro
and Agrochemicals Division and Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, Tamil Nadu, India
| | - Srinivas Kantevari
- Fluoro
and Agrochemicals Division and Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, Tamil Nadu, India
| |
Collapse
|
45
|
Yong C, Devine SM, Gao X, Yan A, Callaghan R, Capuano B, Scammells PJ. A Novel Class of N-Sulfonyl and N-Sulfamoyl Noscapine Derivatives that Promote Mitotic Arrest in Cancer Cells. ChemMedChem 2019; 14:1968-1981. [PMID: 31714012 DOI: 10.1002/cmdc.201900477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/12/2019] [Indexed: 01/14/2023]
Abstract
Noscapine displays weak anticancer efficacy and numerous research efforts have attempted to generate more potent noscapine analogues. These modifications included the replacement of the N-methyl group in the 6'-position with a range of substituents, where N-ethylcarbamoyl substitution was observed to possess enhanced anticancer activity. Herein, we describe advances in this area, namely the synthesis and pharmacological evaluation of a series of N-sulfonyl and N-sulfamoyl noscapine derivatives. A number of these sulfonyl-containing noscapinoids demonstrated improved activities compared to noscapine. ((R)-5-((S)-4,5-Dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-((1-methyl-1H-imidazol-4-yl)sulfonyl)-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline) (14 q) displayed sub-micromolar activities of 560, 980, 271 and 443 nM against MCF-7, PANC-1, MDA-MB-435 and SK-MEL-5 cells, respectively. This antiproliferative effect was also maintained against drug-resistant NCI/AdrRES cells despite high expression of the multidrug efflux pump, P-glycoprotein.
Collapse
Affiliation(s)
- Cassandra Yong
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Xuexin Gao
- Research School of Biology and Medical School, Australian National University, Canberra, ACT 0200, Australia
| | - Angelina Yan
- Research School of Biology and Medical School, Australian National University, Canberra, ACT 0200, Australia
| | - Richard Callaghan
- Research School of Biology and Medical School, Australian National University, Canberra, ACT 0200, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
46
|
Metal- and additive-free cascade trifluoroethylation/cyclization of organic isoselenocyanates by phenyl(2,2,2-trifluoroethyl)iodonium triflate. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Maurya N, Alzahrani KA, Patel R. Probing the Intercalation of Noscapine from Sodium Dodecyl Sulfate Micelles to Calf Thymus Deoxyribose Nucleic Acid: A Mechanistic Approach. ACS OMEGA 2019; 4:15829-15841. [PMID: 31592453 PMCID: PMC6777008 DOI: 10.1021/acsomega.9b01543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/09/2019] [Indexed: 06/07/2023]
Abstract
Noscapine (NOS) is efficient in inhibiting cellular proliferation and induces apoptosis in nonsmall cell, lung, breast, lymphatic, and prostate cancers. The micelle-assisted drug delivery is a well-known phenomenon; however, the proper mechanism is still unclear. Therefore, in the present study, we have shown a mechanistic approach for the delivery of NOS from sodium dodecyl sulfate (SDS) micelles to calf thymus deoxyribose nucleic acid (ctDNA) base-pairs using various spectroscopic techniques. The absorption and emission spectroscopy results revealed that NOS interacts with the SDS micelle and resides in its hydrophobic core. Further, the intercalation of NOS from SDS micelles to ctDNA was also shown by these techniques. The anisotropy and quenching results further confirmed the relocation of NOS from SDS micelles to ctDNA. The CD analysis suggested that SDS micelles do not perturb the structure of ctDNA, which supported that SDS micelles can be used as a safe delivery vehicle for NOS. This work may be helpful for the invention of advanced micelle-based vehicles for the delivery of an anticancer drug to their specific target site.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
48
|
Production of metabolites of the anti-cancer drug noscapine using a P450 BM3 mutant library. ACTA ACUST UNITED AC 2019; 24:e00372. [PMID: 31516852 PMCID: PMC6728265 DOI: 10.1016/j.btre.2019.e00372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022]
Abstract
Mutants of P450BM3 can metabolise noscapine. Noscapine is N-demethylated with high selectivity. The metabolites produced are of interest for drug development. The profile of metabolites generated resembles that of mammalian CYP3A4.
Cytochrome P450 enzymes are a promising tool for the late-stage diversification of lead drug candidates and can provide an alternative route to structural modifications that are difficult to achieve with synthetic chemistry. In this study, a library of P450BM3 mutants was produced using site-directed mutagenesis and the enzymes screened for metabolism of the opium poppy alkaloid noscapine, a drug with anticancer activity. Of the 18 enzyme mutants screened, 12 showed an ability to metabolise noscapine that was not present in the wild-type enzyme. Five noscapine metabolites were detected by LC-MS/MS, with the major metabolite for all mutants being N-demethylated noscapine. The highest observed regioselectivity for N-demethylation was 88%. Two hydroxylated metabolites, a catechol and two C-C cleavage products were also detected. P450-mediated production of hydroxylated and N-demethylated noscapine structures may be useful for the development of noscapine analogues with improved biological activity. The variation in substrate turnover, coupling efficiency and product distribution between the active mutants was considered alongside in silico docking experiments to gain insight into structural and functional effects of the introduced mutations. Selected mutants were identified as targets for further mutagenesis to improve activity and when coupled with an optimised process may provide a route for the preparative-scale production of noscapine metabolites.
Collapse
|
49
|
N-substituted noscapine derivatives as new antiprotozoal agents: Synthesis, antiparasitic activity and molecular docking study. Bioorg Chem 2019; 91:103116. [PMID: 31377384 DOI: 10.1016/j.bioorg.2019.103116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022]
Abstract
Novel N-substituted noscapine derivatives were synthesized by a three-component Strecker reaction of cyclic ether of N-nornoscapine with varied aldehydes, in the presence of cyanide ion. Moreover, the corresponding amides were synthesized by the oxidation of cyanide moieties in good yields. The in vitro antiprotozoal activity of the products was also investigated. Interestingly, some analogues did put on display promising antiparasitic activity against Trypanosoma brucei rhodesiense with IC50 values between 2.5 and 10.0 µM and selectivity index (SI) ranged from 0.8 to 13.2. Eight compounds exhibited activity against Plasmodium falciparum K1 strain with IC50 ranging 1.7-6.4 µM, and SI values between 2.8 and 10.5 against L6 rat myoblast cell lines. Molecular docking was carried out on trypanothione reductase (TbTR, PDB ID: 2WOW) and UDP-galactose 4' epimerase (TbUDPGE PDB: 1GY8) as targets for studying the envisaged mechanism of action. Compounds 6j2 and 6b2 displayed excellent docking scores with -8.59 and -8.86 kcal/mol for TbTR and TbUDPGE, respectively.
Collapse
|
50
|
Altinoz MA, Topcu G, Hacimuftuoglu A, Ozpinar A, Ozpinar A, Hacker E, Elmaci İ. Noscapine, a Non-addictive Opioid and Microtubule-Inhibitor in Potential Treatment of Glioblastoma. Neurochem Res 2019; 44:1796-1806. [PMID: 31292803 DOI: 10.1007/s11064-019-02837-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
Noscapine is a phthalide isoquinoline alkaloid that easily traverses the blood brain barrier and has been used for years as an antitussive agent with high safety. Despite binding opioid receptors, noscapine lacks significant hypnotic and euphoric effects rendering it safe in terms of addictive potential. In 1954, Hans Lettré first described noscapine as a mitotic poison. The drug was later tested for cancer treatment in the early 1960's, yet no effect was observed likely as a result of its short biological half-life and limited water solubility. Since 1998, it has regained interest thanks to studies from Emory University, which showed its anticancer activity in animal models with negligible toxicity. In contrast to other microtubule-inhibitors, noscapine does not affect the total intracellular tubulin polymer mass. Instead, it forces the microtubules to spend an increased amount of time in a paused state leading to arrest in mitosis and subsequently inducing mitotic slippage/mitotic catastrophe/apoptosis. In experimental models, noscapine does not induce peripheral neuropathy, which is common with other microtubule inhibitors. Noscapine also inhibits tumor growth and enhances cancer chemosensitivity via selective blockage of NF-κB, an important transcription factor in glioblastoma pathogenesis. Due to their anticancer activities and high penetration through the blood-brain barrier, noscapine analogues strongly deserve further study in various animal models of glioblastoma as potential candidates for future patient therapy.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey. .,Department of Psychiatry, Maastricht University, Maastricht, The Netherlands.
| | - Gulacti Topcu
- Department of Pharmacy, Bezmi Alem University, Istanbul, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Erzurum Ataturk University, Erzurum, Turkey
| | - Alp Ozpinar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, USA
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Emily Hacker
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, USA
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital, Istanbul, Turkey
| |
Collapse
|