1
|
Maurya MR, Maurya SK, Kumar N, Avecilla F. Nonoxidovanadium(IV) Complex-Catalyzed Synthesis of 2-Amino-3-cyano-4 H-pyrans/4 H-chromenes, Biscoumarins, and Xanthenes under Green Conditions. J Org Chem 2024; 89:12143-12158. [PMID: 39177312 DOI: 10.1021/acs.joc.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Reaction of [VIVO(acac)2] (Hacac = acetylacetone) with a Mannich base, N,N,N',N'-tetrakis(2-hydroxy-3,5-di-tert-butyl benzyl)-1,2-diaminoethane (H4L, I) in a 1:1 molar ratio in MeOH, leads to the formation of the nonoxidovanadium(IV) complex [VIVL] (1). Air stable complex 1 has been characterized using various spectroscopic techniques, DFT calculations, and single-crystal X-ray studies. 1 adopts distorted octahedral geometry where ligand coordinates through all coordination functionalities available. This complex has been used as a catalyst in the one-pot, three-component synthesis of 2-amino-3-cyano-4H-pyrans using 1,3-dicarbonyls (1,3-cyclohexanedione, dimedone, barbituric acid, and 4-hydroxycoumarin), malononitrile, and various substituted aromatic aldehydes in equimolar amounts employing ethanol as a green solvent. The catalytic reaction revealed that the multicomponent synthesis of 4H-pyrans and chromenes is greatly influenced by both types of 1,3-dicarbonyl compound employed and the nature of the substituent on the aromatic ring of the aldehyde. Synthesized catalyst has also been used in the synthesis of pharmacologically relevant oxygen-containing heterocycles, specifically, 1,8-dioxo-octahydro-1H-xanthenes and biscoumarins. The possible mechanism for the synthesized one-pot, multicomponent product has been proposed by isolating intermediate(s) generated during synthesis.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shailendra K Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruna, A Coruna 15071, Spain
| |
Collapse
|
2
|
Pedroso de Lima F, Costa M, Sousa A, Proença MF. The Chromenopyridine Scaffold: A Privileged Platform in Drug Design. Molecules 2024; 29:3004. [PMID: 38998955 PMCID: PMC11243271 DOI: 10.3390/molecules29133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The chromenopyridine scaffold represents an important class of heterocyclic compounds exhibiting a broad spectrum of biological properties. This review describes novel and efficient procedures for the synthesis of this scaffold. Herein, several methods were detailed and grouped according to their starting material (e.g., salicylaldehydes, chromones, chromanones and coumarins) and respective biological activity, when reported. This review highlights the potential of the reported synthetic strategies for preparing chromenopyridine derivatives with promising biological activity, paving the way for further developments in drug discovery.
Collapse
Affiliation(s)
- Fábio Pedroso de Lima
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, Azurém Campus, 4800-058 Guimarães, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana Sousa
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Maria Fernanda Proença
- Chemistry Centre, School of Sciences, University of Minho, Gualtar Campus, 4715-303 Braga, Portugal
| |
Collapse
|
3
|
Li X, Wang P, Wang C, Jin T, Xu R, Tong L, Hu X, Shen L, Li J, Zhou Y, Liu T. Discovery of 2-Aminopyrimidine Derivatives as Potent Dual FLT3/CHK1 Inhibitors with Significantly Reduced hERG Inhibitory Activities. J Med Chem 2023; 66:11792-11814. [PMID: 37584545 DOI: 10.1021/acs.jmedchem.3c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
FLT3 inhibitors as single agents have limited effects because of acquired and adaptive resistance and the cardiotoxicity related to human ether-a-go-go-related gene (hERG) channel blockade further impedes safe drugs to the market. Inhibitors having potential to overcome resistance and reduce hERG affinity are highly demanded. Here, we reported a dual FLT3/CHK1 inhibitor 18, which displayed potencies to overcome varying acquired resistance in BaF3 cells with FLT3-TKD and FLT3-ITD-TKD mutations. Moreover, 18 displayed high selectivity over c-KIT more than 1700-fold and greatly reduced hERG affinity, with an IC50 value of 58.4 μM. Further mechanistic studies demonstrated 18 can upregulate p53 and abolish the outgrowth of adaptive resistant cells. In the in vivo studies, 18 demonstrated favorable PK profiles and good safety, suppressed the tumor growth in the MV-4-11 cell inoculated mouse xenograft model, and prolonged the survival in the Molm-13 transplantation model, supporting its further development.
Collapse
Affiliation(s)
- Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Peipei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Chang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Tingting Jin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310006, P.R. China
| | - Ran Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lexian Tong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Xiaobei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District,Guangdong 528400, P. R. China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, P.R. China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District,Guangdong 528400, P. R. China
| | - Yubo Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District,Guangdong 528400, P. R. China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, P.R. China
| |
Collapse
|
4
|
Lou Y, Wei J, Li M, Zhu Y. Distal Ionic Substrate-Catalyst Interactions Enable Long-Range Stereocontrol: Access to Remote Quaternary Stereocenters through a Desymmetrizing Suzuki-Miyaura Reaction. J Am Chem Soc 2022; 144:123-129. [PMID: 34979078 PMCID: PMC9549467 DOI: 10.1021/jacs.1c12345] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spatial distancing of a substrate's reactive group and nonreactive catalyst-binding group from its pro-stereogenic element presents substantial hurdles in asymmetric catalysis. In this context, we report a desymmetrizing Suzuki-Miyaura reaction that establishes chirality at a remote quaternary carbon. The anionic, chiral catalyst exerts stereocontrol through electrostatic steering of substrates, even as the substrate's reactive group and charged catalyst-binding group become increasingly distanced. This study demonstrates that precise long-range stereocontrol is achievable by engaging ionic substrate-ligand interactions at a distal position.
Collapse
Affiliation(s)
- Yazhou Lou
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Mingfeng Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
5
|
Pan L, He Q, Wu Y, Zhang N, Cai H, Yang B, Wang Y, Li Y, Wu X. Synthesis, radiolabeling, and evaluation of a potent β-site APP cleaving enzyme (BACE1) inhibitor for PET imaging of BACE1 in vivo. Bioorg Med Chem Lett 2022; 59:128543. [PMID: 35031452 DOI: 10.1016/j.bmcl.2022.128543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023]
Abstract
The β-site APP-cleaving enzyme 1 (BACE1) plays important roles in the proteolytic processing of amyloid precursor protein, and can be regarded as an important target for the diagnosis and treatment of AD. This study aimed to report the synthesis and evaluation of an 18F-labeled 2-amino-3,4-dihydroquinazoline analog as a potential BACE1 radioligand. A fluoropropyl side chain was introduced to the phenyl of this 3,4-dihydroquinazoline scaffold to generate the radioligand. Our preliminary data indicated that although the 2-amino-3,4-dihydroquinazoline scaffold possessed favorable in-vitro properties as a PET ligand, its poor brain uptake hindered the in-vivo imaging of BACE1. Further investigation would be required to optimize the scaffold for the development of a blood-brain-barrier-permeable BACE1-targeted PET ligand.
Collapse
Affiliation(s)
- Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian He
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yunchun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Nuclear Medicine, The Second People's Hospital of Yibin, Yibin 644000, Sichuan, China.
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Attarroshan M, Firuzi O, Iraji A, Sharifi S, Tavakkoli M, Vesal M, Khoshneviszadeh M, Pirhadi S, Edraki N. Imino-2H-Chromene Based Derivatives as Potential Anti-Alzheimer's Agents: Design, Synthesis, Biological Evaluation and in Silico Study. Chem Biodivers 2021; 19:e202100599. [PMID: 34786830 DOI: 10.1002/cbdv.202100599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
A new series of imino-2H-chromene derivatives were rationally designed and synthesized as novel multifunctional agents against Alzheimer's disease. A set of phenylimino-2H-chromenes as well as the newly synthesized iminochromene derivatives were evaluated as BACE1, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) inhibitors. The results indicated that among the iminochromene set, 10c bearing fluorobenzyl moiety was the most potent BACE1 inhibitor with an IC50 value 6.31 μM. In vitro anti-cholinergic activities demonstrated that compound 10a bearing benzyl pendant was the best inhibitor of AChE (% inhibition at 30 μM=24.4) and BuChE (IC50 =3.3 μM). Kinetic analysis of compound 10a against BuChE was also performed and showed a mixed-type inhibition pattern. The neuroprotective assessment revealed that compound 11b, a phenylimino-2H-chromene derivative with hydroxyethyl moiety, provided 32.3 % protection at 25 μM against Aβ-induced PC12 neuronal cell damage. In addition, docking and simulation studies of the most potent compounds against BACE1 and BuChE confirmed the experimental results.
Collapse
Affiliation(s)
- Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrzad Sharifi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmmod Vesal
- Department of Biochemistry, Islamic Azad University, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
9
|
Rombouts F, Kusakabe KI, Hsiao CC, Gijsen HJM. Small-molecule BACE1 inhibitors: a patent literature review (2011 to 2020). Expert Opin Ther Pat 2020; 31:25-52. [PMID: 33006491 DOI: 10.1080/13543776.2021.1832463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been extensively pursued as potential disease-modifying treatment for Alzheimer's disease (AD). Clinical failures with BACE inhibitors have progressively raised the bar forever cleaner candidates with reduced cardiovascular liability, toxicity risk, and increased selectivity over cathepsin D (CatD) and BACE2. AREAS COVERED This review provides an overview of patented BACE1 inhibitors between 2011 and 2020 per pharmaceutical company or research group and highlights the progress that was made in dialing out toxicity liabilities. EXPERT OPINION Despite an increasingly crowded IP situation, significant progress was made using highly complex chemistry in avoiding toxicity liabilities, with BACE1/BACE2 selectivity being the most remarkable achievement. However, clinical trial data suggest on-target toxicity is likely a contributing factor, which implies the only potential future of BACE1 inhibitors lies in careful titration of highly selective compounds in early populations where the amyloid burden is still minimal as prophylactic therapy, or as an affordable oral maintenance therapy following amyloid-clearing therapies.
Collapse
Affiliation(s)
- Frederik Rombouts
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd ., Toyonaka, Osaka, Japan
| | - Chien-Chi Hsiao
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Harrie J M Gijsen
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| |
Collapse
|
10
|
Maia M, Resende DISP, Durães F, Pinto MMM, Sousa E. Xanthenes in Medicinal Chemistry - Synthetic strategies and biological activities. Eur J Med Chem 2020; 210:113085. [PMID: 33310284 DOI: 10.1016/j.ejmech.2020.113085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Xanthenes are a special class of oxygen-incorporating tricyclic compounds. Structurally related to xanthones, the presence of different substituents in position 9 strongly influences their physical and chemical properties, as well as their biological applications. This review explores the synthetic methodologies developed to obtain 9H-xanthene, 9-hydroxyxanthene and xanthene-9-carboxylic acid, as well as respective derivatives, from simple starting materials or through modification of related structures. Azaxanthenes, bioisosteres of xanthenes, are also explored. Efficiency, safety, ecological impact and applicability of the described synthetic methodologies are discussed. Synthesis of multi-functionalized derivatives with drug-likeness properties are also reported and their activities explored. Synthetic methodologies for obtaining (aza)xanthenes from simple building blocks are available, and electrochemical and/or metal free procedures recently developed arise as greener and efficient methodologies. Nonetheless, the synthesis of xanthenes through the modification of the carbonyl in position 9 of xanthones represents the most straightforward procedure to easily obtain a variety of (aza)xanthenes. (Aza)xanthene derivatives displayed biological activity as neuroprotector, antitumor, antimicrobial, among others, proving the versatility of this nucleus for different biological applications. However, in some cases their chemical structures suggest a lack of pharmacokinetic properties being associated with safety concerns, which should be overcome if intended for clinical evaluation.
Collapse
Affiliation(s)
- Miguel Maia
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Diana I S P Resende
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fernando Durães
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena M M Pinto
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
11
|
Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation. Int J Biol Macromol 2020; 165:1323-1330. [PMID: 33010267 DOI: 10.1016/j.ijbiomac.2020.09.232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is marked by the presence of amyloid plaques, neurofibrillary tangles, oxidatively damaged neuronal macromolecules and redox sensitive ions. Reduction of amyloid plaques and oxidative stress emerge as a convincing treatment strategy. Plaque reduction is achieved by inhibition of BACE1, the rate limiting enzyme generating the prime constituent of plaques, Aβ, through proteolysis of the amyloid precursor protein. Here, we report a QSAR model with five descriptors, developed to screen natural compounds as potent BACE1 inhibitors. Seven compounds out of which five flavonols namely isorhamnetin, syringetin, galangin, tamarixetin, rhamnetin and two flavanonols namely dihydromyricetin, taxifolin were screened. The ability of these compounds were validated using the BACE1 activity assay. The antioxidant property were estimated by the DPPH and ABTS assay. Although inhibition assay implied syringetin to be a promising BACE1 inhibitor, its poor antioxidant activity leaves it less effective as a multitarget ligand. Exhibiting moderate dual ability, isorhamnetin and taxifolin qualified as multi-target scaffolds for AD therapeutics. Our study reveals the importance of 4'-OH in the B ring of flavonols and the lack of any effect of 5'-OH in flavanonols for BACE1 inhibition. In case of antioxidant activity favourable association of 3'-O-methylation derivatives was observed in flavonols.
Collapse
|
12
|
Frohn M, Liu L, Siegmund AC, Qian W, Amegadzie A, Chen N, Tan H, Hickman D, Wood S, Wen PH, Bartberger MD, Whittington DA, Allen JR, Bourbeau MP. The development of a structurally distinct series of BACE1 inhibitors via the (Z)-fluoro-olefin amide bioisosteric replacement. Bioorg Med Chem Lett 2020; 30:127240. [DOI: 10.1016/j.bmcl.2020.127240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 01/02/2023]
|
13
|
Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C. hERG toxicity assessment: Useful guidelines for drug design. Eur J Med Chem 2020; 195:112290. [PMID: 32283295 DOI: 10.1016/j.ejmech.2020.112290] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
All along the drug development process, one of the most frequent adverse side effects, leading to the failure of drugs, is the cardiac arrhythmias. Such failure is mostly related to the capacity of the drug to inhibit the human ether-à-go-go-related gene (hERG) cardiac potassium channel. The early identification of hERG inhibition properties of biological active compounds has focused most of attention over the years. In order to prevent the cardiac side effects, a great number of in silico, in vitro and in vivo assays have been performed. The main goal of these studies is to understand the reasons of these effects, and then to give information or instructions to scientists involved in drug development to avoid the cardiac side effects. To evaluate anticipated cardiovascular effects, early evaluation of hERG toxicity has been strongly recommended for instance by the regulatory agencies such as U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Thus, following an initial screening of a collection of compounds to find hits, a great number of pharmacomodulation studies on the novel identified chemical series need to be performed including activity evaluation towards hERG. We provide in this concise review clear guidelines, based on described examples, illustrating successful optimization process to avoid hERG interactions as cases studies and to spur scientists to develop safe drugs.
Collapse
Affiliation(s)
- Amanda Garrido
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Alban Lepailleur
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Serge M Mignani
- UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS, 45 rue des Saints Pères, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France.
| |
Collapse
|
14
|
Computational screening of promising beta-secretase 1 inhibitors through multi-step molecular docking and molecular dynamics simulations - Pharmacoinformatics approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Ghahsare AG, Nazifi ZS, Nazifi SMR. Structure-Bioactivity Relationship Study of Xanthene Derivatives: A Brief Review. Curr Org Synth 2020; 16:1071-1077. [PMID: 31984917 DOI: 10.2174/1570179416666191017094908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Over the last decades, several heterocyclic derivatives compounds have been synthesized or extracted from natural resources and have been tested for their pharmaceutical activities. Xanthene is one of these heterocyclic derivatives. These compounds consist of an oxygen-containing central heterocyclic structure with two more cyclic structures fused to the central cyclic compound. It has been shown that xanthane derivatives are bioactive compounds with diverse activities such as anti-bacterial, anti-fungal, anti-cancer, and anti-inflammatory as well as therapeutic effects on diabetes and Alzheimer. The anti-cancer activity of such compounds has been one of the main research fields in pharmaceutical chemistry. Due to this diverse biological activity, xanthene core derivatives are still an attractive research field for both academia and industry. This review addresses the current finding on the biological activities of xanthene derivatives and discussed in detail some aspects of their structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Aref G Ghahsare
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan 86145-311, Iran
| | - Zahra S Nazifi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan 86145-311, Iran
| | - Seyed M R Nazifi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
16
|
Resende DISP, Durães F, Maia M, Sousa E, Pinto MMM. Recent advances in the synthesis of xanthones and azaxanthones. Org Chem Front 2020. [DOI: 10.1039/d0qo00659a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A useful chemical toolbox for (aza)xanthones from 2012 to 2020 that covers the optimization of known procedures and novel methodologies.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Fernando Durães
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Miguel Maia
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Emília Sousa
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| | - Madalena M. M. Pinto
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental
- Terminal de Cruzeiros do Porto de Leixões
- 4450-208 Matosinhos
- Portugal
- Laboratório de Química Orgânica e Farmacêutica
| |
Collapse
|
17
|
Wu F, Alom N, Ariyarathna JP, Naß J, Li W. Regioselective Formal [3+2] Cycloadditions of Urea Substrates with Activated and Unactivated Olefins for Intermolecular Olefin Aminooxygenation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fan Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Nur‐E Alom
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Jeewani P. Ariyarathna
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Johannes Naß
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Wei Li
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| |
Collapse
|
18
|
Wu F, Alom N, Ariyarathna JP, Naß J, Li W. Regioselective Formal [3+2] Cycloadditions of Urea Substrates with Activated and Unactivated Olefins for Intermolecular Olefin Aminooxygenation. Angew Chem Int Ed Engl 2019; 58:11676-11680. [DOI: 10.1002/anie.201904662] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/21/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Fan Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Nur‐E Alom
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Jeewani P. Ariyarathna
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Johannes Naß
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Wei Li
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| |
Collapse
|
19
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
20
|
Maia MA, Sousa E. BACE-1 and γ-Secretase as Therapeutic Targets for Alzheimer's Disease. Pharmaceuticals (Basel) 2019; 12:ph12010041. [PMID: 30893882 PMCID: PMC6469197 DOI: 10.3390/ph12010041] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing global health concern with a massive impact on affected individuals and society. Despite the considerable advances achieved in the understanding of AD pathogenesis, researchers have not been successful in fully identifying the mechanisms involved in disease progression. The amyloid hypothesis, currently the prevalent theory for AD, defends the deposition of β-amyloid protein (Aβ) aggregates as the trigger of a series of events leading to neuronal dysfunction and dementia. Hence, several research and development (R&D) programs have been led by the pharmaceutical industry in an effort to discover effective and safety anti-amyloid agents as disease modifying agents for AD. Among 19 drug candidates identified in the AD pipeline, nine have their mechanism of action centered in the activity of β or γ-secretase proteases, covering almost 50% of the identified agents. These drug candidates must fulfill the general rigid prerequisites for a drug aimed for central nervous system (CNS) penetration and selectivity toward different aspartyl proteases. This review presents the classes of γ-secretase and beta-site APP cleaving enzyme 1 (BACE-1) inhibitors under development, highlighting their structure-activity relationship, among other physical-chemistry aspects important for the successful development of new anti-AD pharmacological agents.
Collapse
Affiliation(s)
- Miguel A Maia
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
21
|
Coimbra JRM, Marques DFF, Baptista SJ, Pereira CMF, Moreira PI, Dinis TCP, Santos AE, Salvador JAR. Highlights in BACE1 Inhibitors for Alzheimer's Disease Treatment. Front Chem 2018; 6:178. [PMID: 29881722 PMCID: PMC5977085 DOI: 10.3389/fchem.2018.00178] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common type of dementia in the elderly. The clinical symptoms of AD include a progressive loss of memory and impairment of cognitive functions interfering with daily life activities. The main neuropathological features consist in extracellular amyloid-β (Aβ) plaque deposition and intracellular Neurofibrillary tangles (NFTs) of hyperphosphorylated Tau. Understanding the pathophysiological mechanisms that underlie neurodegeneration in AD is essential for rational design of neuroprotective agents able to prevent disease progression. According to the "Amyloid Cascade Hypothesis" the critical molecular event in the pathogenesis of AD is the accumulation of Aβ neurotoxic oligomers. Since the proteolytic processing of Amyloid Precursor Protein (APP) by β-secretase (beta-site APP cleaving enzyme 1, BACE1) is the rate-limiting step in the production of Aβ, this enzyme is considered a major therapeutic target and BACE1 inhibitors have the potential to be disease-modifying drugs for AD treatment. Therefore, intensive efforts to discover and develop inhibitors that can reach the brain and effectively inhibit BACE1 have been pursued by several groups worldwide. The aim of this review is to highlight the progress in the discovery of potent and selective small molecule BACE1 inhibitors over the past decade.
Collapse
Affiliation(s)
- Judite R. M. Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Daniela F. F. Marques
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Salete J. Baptista
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Chem4Pharma, Edifício IPN IncubadoraCoimbra, Portugal
| | - Cláudia M. F. Pereira
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Paula I. Moreira
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Teresa C. P. Dinis
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Biochemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Armanda E. Santos
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Biochemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| |
Collapse
|
22
|
Diastereoselective synthesis of fused cyclopropyl-3-amino-2,4-oxazine β-amyloid cleaving enzyme (BACE) inhibitors and their biological evaluation. Bioorg Med Chem Lett 2018; 28:1111-1115. [DOI: 10.1016/j.bmcl.2018.01.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/19/2022]
|
23
|
Prati F, Bottegoni G, Bolognesi ML, Cavalli A. BACE-1 Inhibitors: From Recent Single-Target Molecules to Multitarget Compounds for Alzheimer’s Disease. J Med Chem 2017; 61:619-637. [DOI: 10.1021/acs.jmedchem.7b00393] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Prati
- Drug Discovery Unit,
Division of Biological Chemistry and Drug Discovery, College of Life
Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, U.K
| | - Giovanni Bottegoni
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Heptares Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
24
|
Low JD, Bartberger MD, Chen K, Cheng Y, Fielden MR, Gore V, Hickman D, Liu Q, Allen Sickmier E, Vargas HM, Werner J, White RD, Whittington DA, Wood S, Minatti AE. Development of 2-aminooxazoline 3-azaxanthene β-amyloid cleaving enzyme (BACE) inhibitors with improved selectivity against Cathepsin D. MEDCHEMCOMM 2017; 8:1196-1206. [PMID: 30108829 PMCID: PMC6072065 DOI: 10.1039/c7md00106a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
As part of an ongoing effort at Amgen to develop a disease-modifying therapy for Alzheimer's disease, we have previously used the aminooxazoline xanthene (AOX) scaffold to generate potent and orally efficacious BACE1 inhibitors. While AOX-BACE1 inhibitors demonstrated acceptable cardiovascular safety margins, a retinal pathological finding in rat toxicological studies demanded further investigation. It has been widely postulated that such retinal toxicity might be related to off-target inhibition of Cathepsin D (CatD), a closely related aspartyl protease. We report the development of AOX-BACE1 inhibitors with improved selectivity against CatD by following a structure- and property-based approach. Our efforts culminated in the discovery of a picolinamide-substituted 3-aza-AOX-BACE1 inhibitor absent of retinal effects in an early screening rat toxicology study.
Collapse
Affiliation(s)
- Jonathan D Low
- Department of Medicinal Chemistry , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA . ; Tel: +1 805 447 4721
| | - Michael D Bartberger
- Department of Molecular Engineering , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - Kui Chen
- Department Discovery Technologies , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - Yuan Cheng
- Department of Medicinal Chemistry , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA . ; Tel: +1 805 447 4721
| | - Mark R Fielden
- Comparative Biology and Safety Sciences , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - Vijay Gore
- Department of Medicinal Chemistry , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA . ; Tel: +1 805 447 4721
| | - Dean Hickman
- Department of Pharmacokinetics and Drug Metabolism , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - Qingyian Liu
- Department of Medicinal Chemistry , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA . ; Tel: +1 805 447 4721
| | - E Allen Sickmier
- Department of Molecular Engineering , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - Hugo M Vargas
- Comparative Biology and Safety Sciences , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - Jonathan Werner
- Comparative Biology and Safety Sciences , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - Ryan D White
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - Douglas A Whittington
- Department of Molecular Engineering , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - Stephen Wood
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - Ana E Minatti
- Department of Medicinal Chemistry , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA . ; Tel: +1 805 447 4721
| |
Collapse
|
25
|
Vidadala RSR, Rivas KL, Ojo KK, Hulverson MA, Zambriski JA, Bruzual I, Schultz TL, Huang W, Zhang Z, Scheele S, DeRocher AE, Choi R, Barrett LK, Siddaramaiah LK, Hol WGJ, Fan E, Merritt EA, Parsons M, Freiberg G, Marsh K, Kempf DJ, Carruthers VB, Isoherranen N, Doggett JS, Van Voorhis WC, Maly DJ. Development of an Orally Available and Central Nervous System (CNS) Penetrant Toxoplasma gondii Calcium-Dependent Protein Kinase 1 (TgCDPK1) Inhibitor with Minimal Human Ether-a-go-go-Related Gene (hERG) Activity for the Treatment of Toxoplasmosis. J Med Chem 2016; 59:6531-46. [PMID: 27309760 DOI: 10.1021/acs.jmedchem.6b00760] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New therapies are needed for the treatment of toxoplasmosis, which is a disease caused by the protozoan parasite Toxoplasma gondii. To this end, we previously developed a potent and selective inhibitor (compound 1) of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) that possesses antitoxoplasmosis activity in vitro and in vivo. Unfortunately, 1 has potent human ether-a-go-go-related gene (hERG) inhibitory activity, associated with long Q-T syndrome, and consequently presents a cardiotoxicity risk. Here, we describe the identification of an optimized TgCDPK1 inhibitor 32, which does not have a hERG liability and possesses a favorable pharmacokinetic profile in small and large animals. 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing the amount of parasite in the brain, spleen, and peritoneal fluid and reducing brain cysts by >85%. These properties make 32 a promising lead for the development of a new antitoxoplasmosis therapy.
Collapse
Affiliation(s)
- Rama Subba Rao Vidadala
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Kasey L Rivas
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | - Kayode K Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | - Matthew A Hulverson
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | - Jennifer A Zambriski
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University , Pullman, Washington 99164, United States
| | - Igor Bruzual
- Portland VA Medical Center , Portland, Oregon 97239, United States
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, Michigan 48109, United States
| | - Wenlin Huang
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Suzanne Scheele
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington 98109, United States
| | - Amy E DeRocher
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington 98109, United States
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States
| | | | - Wim G J Hol
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Erkang Fan
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Ethan A Merritt
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | - Marilyn Parsons
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington 98109, United States.,Department of Global Health, University of Washington , Seattle, Washington 98195, United States
| | - Gail Freiberg
- AbbVie , North Chicago, Illinois 60064, United States
| | - Kennan Marsh
- AbbVie , North Chicago, Illinois 60064, United States
| | - Dale J Kempf
- AbbVie , North Chicago, Illinois 60064, United States
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, Michigan 48109, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington , Seattle, Washington 98195, United States
| | - J Stone Doggett
- Portland VA Medical Center , Portland, Oregon 97239, United States
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, and the Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington , Seattle, Washington 98109, United States.,Department of Global Health, University of Washington , Seattle, Washington 98195, United States
| | - Dustin J Maly
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
26
|
Ghosh AK, Cárdenas EL, Osswald HL. The Design, Development, and Evaluation of BACE1 Inhibitors for the Treatment of Alzheimer’s Disease. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Chambers RK, Khan TA, Olsen DB, Sleebs BE. Synthesis of amino heterocycle aspartyl protease inhibitors. Org Biomol Chem 2016; 14:4970-85. [DOI: 10.1039/c5ob01842k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic strategies to access 2-amino heterocycle head groups that inhibit aspartyl proteases, are reviewed.
Collapse
Affiliation(s)
- Rachel K. Chambers
- The Walter and Eliza Hall Institute for Medical Research
- Parkville
- Australia
| | | | | | - Brad E. Sleebs
- The Walter and Eliza Hall Institute for Medical Research
- Parkville
- Australia
- The University of Melbourne
- Parkville
| |
Collapse
|
28
|
Marson CM, Matthews CJ, Atkinson SJ, Lamadema N, Thomas NSB. Potent and Selective Inhibitors of Histone Deacetylase-3 Containing Chiral Oxazoline Capping Groups and a N-(2-Aminophenyl)-benzamide Binding Unit. J Med Chem 2015; 58:6803-18. [PMID: 26287310 DOI: 10.1021/acs.jmedchem.5b00545] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel series of potent chiral inhibitors of histone deacetylase (HDAC) is described that contains an oxazoline capping group and a N-(2-aminophenyl)-benzamide unit. Among several new inhibitors of this type exhibiting Class I selectivity and potent inhibition of HDAC3-NCoR2, in vitro assays for the inhibition of HDAC1, HDAC2, and HDAC3-NCoR2 by N-(2-aminophenyl)-benzamide 15k gave respective IC50 values of 80, 110, and 6 nM. Weak inhibition of all other HDAC isoforms (HDAC4, 5, 6, 7, and 9: IC50 > 100 000 nM; HDAC8: IC50 = 25 000 nM; HDAC10: IC50 > 4000 nM; HDAC11: IC50 > 2000 nM) confirmed the Class I selectivity of 15k. 2-Aminoimidazolinyl, 2-thioimidazolinyl, and 2-aminooxazolinyl units were shown to be effective replacements for the pyrimidine ring present in many other 2-(aminophenyl)-benzamides previously reported, but the 2-aminooxazolinyl unit was the most potent in inhibiting HDAC3-NCoR2. Many of the new HDAC inhibitors showed higher solubilities and lower binding to human serum albumin than that of Mocetinostat. Increases in histone H3K9 acetylation in the human cell lines U937 and PC-3 was observed for all three oxazolinyl inhibitors evaluated; those HDAC inhibitors also lowered cyclin E expression in U937 cells but not in PC-3 cells, indicating underlying differences in the mechanisms of action of the inhibitors on those two cell lines.
Collapse
Affiliation(s)
- Charles M Marson
- Department of Chemistry, University College London , Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, U.K
| | - Christopher J Matthews
- Department of Chemistry, University College London , Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, U.K
| | - Stephen J Atkinson
- Epinova DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline , Gunnels Wood Road, Stevenage, Herts SG1 2NY, U.K
| | - Nermina Lamadema
- Department of Haematological Medicine, Leukaemia Sciences Laboratories, Rayne Institute, King's College London , 123 Coldharbour Lane, London SE5 9NU, U.K
| | - N Shaun B Thomas
- Department of Haematological Medicine, Leukaemia Sciences Laboratories, Rayne Institute, King's College London , 123 Coldharbour Lane, London SE5 9NU, U.K
| |
Collapse
|
29
|
Cheng Y, Brown J, Judd TC, Lopez P, Qian W, Powers TS, Chen JJ, Bartberger MD, Chen K, Dunn RT, Epstein O, Fremeau RT, Harried S, Hickman D, Hitchcock SA, Luo Y, Minatti AE, Patel VF, Vargas HM, Wahl RC, Weiss MM, Wen PH, White RD, Whittington DA, Zheng XM, Wood S. An Orally Available BACE1 Inhibitor That Affords Robust CNS Aβ Reduction without Cardiovascular Liabilities. ACS Med Chem Lett 2015; 6:210-5. [PMID: 25699151 DOI: 10.1021/ml500458t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/29/2014] [Indexed: 11/28/2022] Open
Abstract
BACE1 inhibition to prevent Aβ peptide formation is considered to be a potential route to a disease-modifying treatment for Alzheimer's disease. Previous efforts in our laboratory using a combined structure- and property-based approach have resulted in the identification of aminooxazoline xanthenes as potent BACE1 inhibitors. Herein, we report further optimization leading to the discovery of inhibitor 15 as an orally available and highly efficacious BACE1 inhibitor that robustly reduces CSF and brain Aβ levels in both rats and nonhuman primates. In addition, compound 15 exhibited low activity on the hERG ion channel and was well tolerated in an integrated cardiovascular safety model.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - James Brown
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ted C. Judd
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Patricia Lopez
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Wenyuan Qian
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Timothy S. Powers
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jian Jeffrey Chen
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael D. Bartberger
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kui Chen
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Robert T. Dunn
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Oleg Epstein
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Robert T. Fremeau
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Scott Harried
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dean Hickman
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Stephen A. Hitchcock
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yi Luo
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ana Elena Minatti
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Vinod F. Patel
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Hugo M. Vargas
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Robert C. Wahl
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Matthew M. Weiss
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paul H. Wen
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ryan D. White
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas A. Whittington
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiao Mei Zheng
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Stephen Wood
- Department of Medicinal Chemistry, ‡Department of Molecular
Structure, §Department of Neuroscience, ∥Department of HTS
and Molecular Pharmacology, and ⊥Department of Pharmacokinetics and Drug Metabolism, #Comparative Biology and
Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Medicinal Chemistry and ○Department of Molecular Structure, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
30
|
Chen JJ, Liu Q, Yuan C, Gore V, Lopez P, Ma V, Amegadzie A, Qian W, Judd TC, Minatti AE, Brown J, Cheng Y, Xue M, Zhong W, Dineen TA, Epstein O, Human J, Kreiman C, Marx I, Weiss MM, Hitchcock SA, Powers TS, Chen K, Wen PH, Whittington DA, Cheng AC, Bartberger MD, Hickman D, Werner JA, Vargas HM, Everds NE, Vonderfecht SL, Dunn RT, Wood S, Fremeau RT, White RD, Patel VF. Development of 2-aminooxazoline 3-azaxanthenes as orally efficacious β-secretase inhibitors for the potential treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25:767-74. [DOI: 10.1016/j.bmcl.2014.12.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 01/25/2023]
|
31
|
Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chem Commun (Camb) 2015; 51:13434-50. [DOI: 10.1039/c5cc05264e] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our Feature Article details the physiological role of amyloid beta (Aβ), elaborates its toxic effects and outlines therapeutic molecules designed in the last two years targeting different aspects of Aβ for preventing AD.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Malabika Chakrabarti
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
32
|
Qian W, Brown J, Chen JJ, Cheng Y. Regioselective synthesis of multiply halogenated azaxanthones. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Dineen TA, Chen K, Cheng AC, Derakhchan K, Epstein O, Esmay J, Hickman D, Kreiman CE, Marx IE, Wahl RC, Wen PH, Weiss MM, Whittington DA, Wood S, Fremeau RT, White RD, Patel VF. Inhibitors of β-Site Amyloid Precursor Protein Cleaving Enzyme (BACE1): Identification of (S)-7-(2-Fluoropyridin-3-yl)-3-((3-methyloxetan-3-yl)ethynyl)-5′H-spiro[chromeno[2,3-b]pyridine-5,4′-oxazol]-2′-amine (AMG-8718). J Med Chem 2014; 57:9811-31. [DOI: 10.1021/jm5012676] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Thomas A. Dineen
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kui Chen
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Alan C. Cheng
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Katayoun Derakhchan
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Oleg Epstein
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Joel Esmay
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Dean Hickman
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Chuck E. Kreiman
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Isaac E. Marx
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Robert C. Wahl
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paul H. Wen
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Matthew M. Weiss
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Douglas A. Whittington
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Stephen Wood
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Robert T. Fremeau
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ryan D. White
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Vinod F. Patel
- Departments of Therapeutic
Discovery, ‡Neuroscience, §Molecular Structure and Characterization, ∥Pharmacokinetics
and Drug Metabolism, and ⊥Comparative Biology and Safety Sciences, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, and One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|