1
|
Yanamadala Y, Roy R, Williams AA, Uppu N, Kim AY, DeCoster MA, Kim P, Murray TA. Intranasal Delivery of Cell-Penetrating Therapeutic Peptide Enhances Brain Delivery, Reduces Inflammation, and Improves Neurologic Function in Moderate Traumatic Brain Injury. Pharmaceutics 2024; 16:774. [PMID: 38931895 PMCID: PMC11206831 DOI: 10.3390/pharmaceutics16060774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Following traumatic brain injury (TBI), secondary brain damage due to chronic inflammation is the most predominant cause of the delayed onset of mood and memory disorders. Currently no therapeutic approach is available to effectively mitigate secondary brain injury after TBI. One reason is the blood-brain barrier (BBB), which prevents the passage of most therapeutic agents into the brain. Peptides have been among the leading candidates for CNS therapy due to their low immunogenicity and toxicity, bioavailability, and ease of modification. In this study, we demonstrated that non-invasive intranasal (IN) administration of KAFAK, a cell penetrating anti-inflammatory peptide, traversed the BBB in a murine model of diffuse, moderate TBI. Notably, KAFAK treatment reduced the production of proinflammatory cytokines that contribute to secondary injury. Furthermore, behavioral tests showed improved or restored neurological, memory, and locomotor performance after TBI in KAFAK-treated mice. This study demonstrates KAFAK's ability to cross the blood-brain barrier, to lower proinflammatory cytokines in vivo, and to restore function after a moderate TBI.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Ritika Roy
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Afrika Alake Williams
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Navya Uppu
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Audrey Yoonsun Kim
- Department of Biological Sciences, Grambling State University, Grambling, LA 71245, USA; (A.Y.K.); (P.K.)
| | - Mark A. DeCoster
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| | - Paul Kim
- Department of Biological Sciences, Grambling State University, Grambling, LA 71245, USA; (A.Y.K.); (P.K.)
| | - Teresa Ann Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (R.R.); (A.A.W.); (N.U.); (M.A.D.)
| |
Collapse
|
2
|
Kumar N, Sharma AK, Guleria M, Shelar SB, Chakraborty A, Rakshit S, Kolay S, Satpati D, Das T. Nuclear Localization Signal Enhances the Targeting and Therapeutic Efficacy of a Porphyrin-Based Molecular Cargo: A Systemic In Vitro and Ex Vivo Evaluation. Mol Pharm 2024; 21:2351-2364. [PMID: 38477252 DOI: 10.1021/acs.molpharmaceut.3c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The objective of the present work was to evaluate the potential of a nuclear localization signal (NLS) toward facilitating intracellular delivery and enhancement in the therapeutic efficacy of the molecular cargo. Toward this, an in-house synthesized porphyrin derivative, namely, 5-carboxymethyelene-oxyphenyl-10,15,20-tris(4-methoxyphenyl) porphyrin (UTriMA), was utilized for conjugation with the NLS sequence [PKKKRKV]. The three compounds synthesized during the course of the present work, namely DOTA-Lys-NLS, DOTA-UTriMA-Lys-NLS, and DOTA-Lys-UTriMA, were evaluated for cellular toxicity in cancer cell lines (HT1080), wherein all exhibited minimal dark toxicity. However, during photocytotoxicity studies with DOTA-Lys-UTriMA and DOTA-UTriMA-Lys-NLS conjugates in the same cell line, the latter exhibited significantly higher light-dependent toxicity compared to the former. Furthermore, the photocytotoxicity for DOTA-UTriMA-Lys-NLS in a healthy cell line (WI26VA4) was found to be significantly lower than that observed in the cancer cells. Fluorescence cell imaging studies carried out in HT1080 cancer cells revealed intracellular accumulation for the NLS-conjugated porphyrin (DOTA-UTriMA-Lys-NLS), whereas unconjugated porphyrin (DOTA-Lys-UTriMA) failed to do so. To evaluate the radiotherapeutic effects of the synthesized conjugates, all three compounds were radiolabeled with 177Lu, a well-known therapeutic radionuclide with high radiochemical purity (>95%). During in vitro studies, the [177Lu]Lu-DOTA-UTriMA-Lys-NLS complex exhibited the highest cell binding as well as internalization among the three radiolabeled complexes. Biological distribution studies for the radiolabeled compounds were performed in a fibrosarcoma-bearing small animal model, wherein significantly higher accumulation and prolonged retention of [177Lu]Lu-DOTA-UTriMA-Lys-NLS (9.32 ± 1.27% IA/g at 24 h p.i.) in the tumorous lesion compared to [177Lu]Lu-UTriMA-Lys-DOTA (2.3 ± 0.13% IA/g at 24 h p.i.) and [177Lu]Lu-DOTA-Lys-NLS complexes (0.26 ± 0.17% IA/g at 24 h p.i.) were observed. The results of the biodistribution studies were further corroborated by recording serial SPECT-CT images of fibrosarcoma-bearing Swiss mice administered with [177Lu]Lu-DOTA-UTriMA-Lys-NLS at different time points. Tumor regression studies performed with [177Lu]Lu-DOTA-UTriMA-Lys-NLS in the same animal model with two different doses [250 μCi (9.25 MBq) and 500 μCi (18.5 MBq)] resulted in a significant reduction in tumor mass in the treated group of animals. The above results revealed a definite enhancement in the targeting ability of molecular cargo upon conjugation with NLS and hence indicated that this strategy may be helpful for the preparation of drug-NLS conjugates as multimodal agents.
Collapse
Affiliation(s)
- Naveen Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amit K Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandeep B Shelar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Soumi Kolay
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Sasaki I, Brégier F, Chemin G, Daniel J, Couvez J, Chkair R, Vaultier M, Sol V, Blanchard-Desce M. Hydrophilic Biocompatible Fluorescent Organic Nanoparticles as Nanocarriers for Biosourced Photosensitizers for Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:216. [PMID: 38276734 PMCID: PMC10819872 DOI: 10.3390/nano14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Most photosensitizers of interest for photodynamic therapy-especially porphyrinoids and chlorins-are hydrophobic. To circumvent this difficulty, the use of nanocarriers is an attractive strategy. In this perspective, we have developed highly water-soluble and biocompatible fluorescent organic nanoparticles (FONPs) made from citric acid and diethyltriamine which are then activated by ethlynene diamine as nanoplatforms for efficient photosensitizers (PSs). Purpurin 18 (Pp18) was selected as a biosourced chlorin photosensitizer combining the efficient single oxygen generation ability and suitable absorption in the biological spectral window. The simple reaction of activated FONPs with Pp18, which contains a reactive anhydride ring, yielded nanoparticles containing both Pp18 and Cp6 derivatives. These functionalized nanoparticles combine solubility in water, high singlet oxygen generation quantum yield in aqueous media (0.72) and absorption both in the near UV region (FONPS) and in the visible region (Soret band approximately 420 nm as well as Q bands at 500 nm, 560 nm, 660 nm and 710 nm). The functionalized nanoparticles retain the blue fluorescence of FONPs when excited in the near UV region but also show deep-red or NIR fluorescence when excited in the visible absorption bands of the PSs (typically at 520 nm, 660 nm or 710 nm). Moreover, these nanoparticles behave as efficient photosensitizers inducing colorectal cancer cell (HCT116 and HT-29 cell lines) death upon illumination at 650 nm. Half maximal inhibitory concentration (IC50) values down to, respectively, 0.04 and 0.13 nmol/mL were observed showing the potential of FONPs[Cp6] for the PDT treatment of cancer. In conclusion, we have shown that these novel biocompatible nanoparticles, which can be elaborated from biosourced components, both show deep-red emission upon excitation in the red region and are able to produce singlet oxygen with high efficiency in aqueous environments. Moreover, they show high PDT efficiency on colorectal cancer cells upon excitation in the deep red region. As such, these functional organic nanoparticles hold promise both for PDT treatment and theranostics.
Collapse
Affiliation(s)
- Isabelle Sasaki
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Frédérique Brégier
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Guillaume Chemin
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Jonathan Daniel
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Justine Couvez
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Rayan Chkair
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Michel Vaultier
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| | - Vincent Sol
- Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS, UR22722), University of Limoges, 87000 Limoges, France; (F.B.); (G.C.)
| | - Mireille Blanchard-Desce
- Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France (J.C.)
| |
Collapse
|
4
|
Toubia I, Nguyen C, Diring S, Onofre M, Daurat M, Gauthier C, Gary-Bobo M, Kobeissi M, Odobel F. Development of targeted photodynamic therapy drugs by combining a zinc phthalocyanine sensitizer with TSPO or EGFR binding groups: the impact of the number of targeting agents on biological activity. Org Biomol Chem 2023; 21:6509-6523. [PMID: 37341568 DOI: 10.1039/d3ob00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Drug-targeted delivery has become a top priority in the world of medicine in order to develop more efficient therapeutic agents. This is important as a critical underlying problem in cancer therapy stems from the inability to deliver active therapeutic substances directly to tumor cells without causing collateral damage. In this work, zinc(II) phthalocyanine (ZnPc) was selected as a sensitizer and was linked to different targeting agents, which would be recognized by overexpressed proteins in cancer cells. As targeting agents, we first selected the two ligands (DAA1106, PK11195) of the translocator protein (TSPO) and then Erlotinib a binding group of the ATP domain of tyrosine kinase in epidermal growth factor (EGFR). ZnPc was connected via an ethylene glycol chain to either one (n = 1) or four (n = 4) targeting agents. The biological activity of these conjugates ZnPc(ligand)n was investigated on MDA-MB-231 breast human cancer cells and human hepatoma HepG2 cells, first in the dark (cytotoxicity) and then under irradiation (photodynamic therapy). The dark cytotoxicity was extremely low (IC50 ≥ 50 μM) for all of these compounds, which is a required criterion for further photodynamic application. After irradiation at 650 nm, only the conjugates bearing one targeting ligand such as ZnPc-[DAA1106]1, ZnPc-[PK11195]1, and ZnPc-[Erlo]1 showed photodynamic activity, while those linked to 4 targeting agents were inactive. Importantly, fluorescence imaging microscopy showed the colocalization of ZnPc-[DAA1106]1, ZnPc-[PK11195]1 and ZnPc-[erlo]1, at mitochondria, a result that justifies the observed photodynamic activity of these conjugates. This study first shows the impact of the number and the mode of organization of targeting agents on the ability of the sensitizer to cross the cell membrane. When zinc(II) phthalocyanine carries a single targeting agent, a significant photodynamic activity on MDA-MB-231 breast human cancer cells was measured and localization at the mitochondria was demonstrated by fluorescence imaging, thus proving the potential of the sensitizer linked to a targeting agent to improve selectivity. Another important conclusion from this study for the design of future effective PDT drugs using multivalence effects is to control the arrangement of the targeting agents in order to design molecules that will be able to pass the cell membrane barriers.
Collapse
Affiliation(s)
- Isabelle Toubia
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
- Laboratoire RammalRammal, Equipe de Synthèse Organique Appliquée SOA, Université Libanaise, Faculté des Sciences 5, Nabatieh, Lebanon.
| | | | - Stéphane Diring
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
| | - Mélanie Onofre
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Morgane Daurat
- NanoMedSyn, 15 avenue Charles Flahault, 34293 Montpellier Cedex 5, France
| | - Corentin Gauthier
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- NanoMedSyn, 15 avenue Charles Flahault, 34293 Montpellier Cedex 5, France
| | | | - Marwan Kobeissi
- Laboratoire RammalRammal, Equipe de Synthèse Organique Appliquée SOA, Université Libanaise, Faculté des Sciences 5, Nabatieh, Lebanon.
| | - Fabrice Odobel
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
| |
Collapse
|
5
|
Lin Y, Zhou T, Bai R, Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J Enzyme Inhib Med Chem 2020; 35:1080-1099. [PMID: 32329382 PMCID: PMC7241559 DOI: 10.1080/14756366.2020.1755669] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
With the development of photodynamic therapy (PDT), remarkable studies have been conducted to generate photosensitisers (PSs), especially porphyrin PSs. A variety of chemical modifications of the porphyrin skeleton have been introduced to improve cellular delivery, stability, and selectivity for cancerous tissues. This review aims to highlight the developments in porphyrin-based structural modifications, with a specific emphasis on the role of PDT in anticancer treatment and the design of PSs to achieve a synergistic effect on multiple targets.
Collapse
Affiliation(s)
- Yuyan Lin
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Zhang FL, Huang N, Weng HL, Xue JP. Tamoxifen-zinc(II) phthalocyanine conjugates for target-based photodynamic therapy and hormone therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s108842461950161x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although photodynamic therapy has been extensively studied in recent years and preclinical studies have shown promising results, strategies for enhancing PDT outcomes and reducing side effects still urgently need to be developed. In this study, a series of Tamoxifen-zinc(II) phthalocyanine conjugates have been designed and synthesized. In these “double-headed” conjugates, photodynamic therapy agent zinc(II) phthalocyanine and hormone therapy drug Tamoxifen were combined via oligoethylene glycol linkers. The conjugates show high specificity, and some of them show cytotoxic effects against the MCF-7 cells overexpressed Estrogen receptor, due to the targeting and cytostatic Tamoxifen moiety. Upon illumination, all these conjugates show high cytotoxicity due to the photosensitizing phthalocyanine unit. Their structure-activity relationship was also assessed. The results show that [Formula: see text]-substituted Tamoxifen-zinc(II) phthalocyanine conjugates are highly promising anticancer targeting agents which exhibit additive effects of photodynamic therapy and hormone therapy.
Collapse
Affiliation(s)
- Feng-Ling Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, P. R. China
| | - Ning Huang
- The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, 282 Wusi Road, Fuzhou 350003, Fujian, P. R. China
| | - Hui-Lan Weng
- The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, 282 Wusi Road, Fuzhou 350003, Fujian, P. R. China
| | - Jin-Ping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, and Fujian Engineering Research Center for Drug and Diagnoses and Treatment of Photodynamic Therapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| |
Collapse
|
7
|
Lin F, Bao YW, Wu FG. Improving the Phototherapeutic Efficiencies of Molecular and Nanoscale Materials by Targeting Mitochondria. Molecules 2018; 23:E3016. [PMID: 30453692 PMCID: PMC6278291 DOI: 10.3390/molecules23113016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022] Open
Abstract
Mitochondria-targeted cancer phototherapy (PT), which works by delivering photoresponsive agents specifically to mitochondria, is a powerful strategy to improve the phototherapeutic efficiency of anticancer treatments. Mitochondria play an essential role in cellular apoptosis, and are relevant to the chemoresistance of cancer cells. Furthermore, mitochondria are a major player in many cellular processes and are highly sensitive to hyperthermia and reactive oxygen species. Therefore, mitochondria serve as excellent locations for organelle-targeted phototherapy. In this review, we focus on the recent advances of mitochondria-targeting materials for mitochondria-specific PT. The combination of mitochondria-targeted PT with other anticancer strategies is also summarized. In addition, we discuss both the challenges currently faced by mitochondria-based cancer PT and the promises it holds.
Collapse
Affiliation(s)
- Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | |
Collapse
|
8
|
Fadlan A, Tanimoto H, Ito T, Aritomi Y, Ueno M, Tokuda M, Hirohara S, Obata M, Morimoto T, Kakiuchi K. Synthesis, photophysical properties, and photodynamic activity of positional isomers of TFPP-glucose conjugates. Bioorg Med Chem 2018; 26:1848-1858. [DOI: 10.1016/j.bmc.2018.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/13/2018] [Accepted: 02/18/2018] [Indexed: 01/22/2023]
|
9
|
Affiliation(s)
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaPadova35131 Italy
- Institute of Biomolecular Chemistry of CNR, Padova UnitPadova35131 Italy
| |
Collapse
|
10
|
Habermeyer B, Guilard R. Some activities of PorphyChem illustrated by the applications of porphyrinoids in PDT, PIT and PDI. Photochem Photobiol Sci 2018; 17:1675-1690. [DOI: 10.1039/c8pp00222c] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy is an innovative approach to treat diverse cancers and diseases that involves the use of photosensitizing agents along with light of an appropriate wavelength to generate cytotoxic reactive oxygen species.
Collapse
Affiliation(s)
| | - R. Guilard
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université de Bourgogne Franche-Comté
- France
| |
Collapse
|
11
|
Almeida-Marrero V, van de Winckel E, Anaya-Plaza E, Torres T, de la Escosura A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem Soc Rev 2018; 47:7369-7400. [DOI: 10.1039/c7cs00554g] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present article reviews the most important developing strategies in light-induced nanomedicine, based on the combination of porphyrinoid photosensitizers with a wide variety of biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
| | | | - Eduardo Anaya-Plaza
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
| | - Tomás Torres
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
- Institute for Advanced Research in Chemistry (IAdChem)
| | - Andrés de la Escosura
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
- Institute for Advanced Research in Chemistry (IAdChem)
| |
Collapse
|
12
|
Chen JJ, Huang YZ, Song MR, Zhang ZH, Xue JP. Silicon Phthalocyanines Axially Disubstituted with Erlotinib toward Small-Molecular-Target-Based Photodynamic Therapy. ChemMedChem 2017; 12:1504-1511. [PMID: 28776965 DOI: 10.1002/cmdc.201700384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/31/2017] [Indexed: 01/03/2023]
Abstract
Small-molecular-target-based photodynamic therapy-a promising targeted anticancer strategy-was developed by conjugating zinc(II) phthalocyanine with a small-molecular-target-based anticancer drug. To prevent self-aggregation and avoid problems of phthalocyanine isomerization, two silicon phthalocyanines di-substituted axially with erlotinib have been synthesized and fully characterized. These conjugates are present in monomeric form in various solvents as well as culture media. Cell-based experiments showed that these conjugates localize in lysosomes and mitochondria, while maintaining high photodynamic activities (IC50 values as low as 8 nm under a light dose of 1.5 J cm-2 ). With erlotinib as the targeting moiety, two conjugates were found to exhibit high specificity for EGFR-overexpressing cancer cells. Various poly(ethylene glycol) (PEG) linker lengths were shown to have an effect on the photophysical/photochemical properties and on in vitro phototoxicity.
Collapse
Affiliation(s)
- Juan-Juan Chen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, and Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Zhen Huang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, and Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Mei-Ru Song
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, and Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zhi-Hong Zhang
- Fuzhou General Hospital of Nanjing Military Command, Fuzhou, 350005, China
| | - Jin-Ping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, and Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
13
|
Zhang FL, Song MR, Yuan GK, Ye HN, Tian Y, Huang MD, Xue JP, Zhang ZH, Liu JY. A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy. J Med Chem 2017; 60:6693-6703. [PMID: 28699738 DOI: 10.1021/acs.jmedchem.7b00682] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The combination of photodynamic therapy and other cancer treatment modalities is a promising strategy to enhance therapeutic efficacy and reduce side effects. In this study, a tamoxifen-zinc(II) phthalocyanine conjugate linked by a triethylene glycol chain has been synthesized and characterized. Having tamoxifen as the targeting moiety, the conjugate shows high specific affinity to MCF-7 breast cancer cells overexpressed estrogen receptors (ERs) and tumor tissues, therefore leading to a cytotoxic effect in the dark due to the cytostatic tamoxifen moiety, and a high photocytotoxicity due to the photosensitizing phthalocyanine unit against the MCF-7 cancer cells. The high photodynamic activity of the conjugate can be attributed to its high cellular uptake and efficiency in generating intracellular reactive oxygen species. Upon addition of exogenous 17β-estradiol as an ER inhibitor, the cellular uptake and photocytotoxicity of the conjugate are reduced significantly. As shown by confocal microscopy, the conjugate is preferentially localized in the lysosomes of the MCF-7 cells.
Collapse
Affiliation(s)
- Feng-Ling Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University , 548 Binwen Road, Hangzhou, 310053, P. R. China
| | - Mei-Ru Song
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Gan-Kun Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Huan-Nian Ye
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Ye Tian
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Ming-Dong Huang
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Jin-Ping Xue
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| | - Zhi-Hong Zhang
- Fuzhou General Hospital of Nanjing Military Command , 156 West Second Ring Road, Fuzhou 350005, Fujian, P. R. China
| | - Jian-Yong Liu
- State Key Laboratory of Photocatalysis on Energy and Environment & Fujian Engineering Research Center of Functional Materials, College of Chemistry, Fuzhou University , 2 Xueyuan Road, University Town, Fuzhou 350108, Fujian, P. R. China
| |
Collapse
|
14
|
Yaghini E, Dondi R, Tewari KM, Loizidou M, Eggleston IM, MacRobert AJ. Endolysosomal targeting of a clinical chlorin photosensitiser for light-triggered delivery of nano-sized medicines. Sci Rep 2017; 7:6059. [PMID: 28729656 PMCID: PMC5519633 DOI: 10.1038/s41598-017-06109-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022] Open
Abstract
A major problem with many promising nano-sized biotherapeutics including macromolecules is that owing to their size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. Photochemical internalisation (PCI) is a technique for inducing cytosolic release of the entrapped agents that harnesses sub-lethal photodynamic therapy (PDT) using a photosensitiser that localises in endolysosomal membranes. Using light to trigger reactive oxygen species-mediated rupture of the photosensitised endolysosomal membranes, the spatio-temporal selectivity of PCI then enables cytosolic release of the agents at the selected time after administration so that they can reach their intracellular targets. However, conventional photosensitisers used clinically for PDT are ineffective for photochemical internalisation owing to their sub-optimal intracellular localisation. In this work we demonstrate that such a photosensitiser, chlorin e6, can be repurposed for PCI by conjugating the chlorin to a cell penetrating peptide, using bioorthogonal ligation chemistry. The peptide conjugation enables targeting of endosomal membranes so that light-triggered cytosolic release of an entrapped nano-sized cytotoxin can be achieved with consequent improvement in cytotoxicity. The photoproperties of the chlorin moiety are also conserved, with comparable singlet oxygen quantum yields found to the free chlorin.
Collapse
Affiliation(s)
- Elnaz Yaghini
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PE, UK.
| | - Ruggero Dondi
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Kunal M Tewari
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PE, UK
| | - Ian M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| | - Alexander J MacRobert
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PE, UK.
| |
Collapse
|
15
|
Oligo- and polypeptide conjugates of cationic porphyrins: binding, cellular uptake, and cellular localization. Amino Acids 2017; 49:1263-1276. [DOI: 10.1007/s00726-017-2428-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
16
|
Sanders A, Kale TS, Katz HE, Tovar JD. Solid-Phase Synthesis of Self-Assembling Multivalent π-Conjugated Peptides. ACS OMEGA 2017; 2:409-419. [PMID: 31457447 PMCID: PMC6640940 DOI: 10.1021/acsomega.6b00414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/24/2017] [Indexed: 05/24/2023]
Abstract
We present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, as revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.
Collapse
Affiliation(s)
- Allix
M. Sanders
- Department
of Chemistry, Krieger School of Arts and Sciences, Department of Materials
Science and Engineering, Whiting School of Engineering, Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Tejaswini S. Kale
- Department
of Chemistry, Krieger School of Arts and Sciences, Department of Materials
Science and Engineering, Whiting School of Engineering, Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Howard E. Katz
- Department
of Chemistry, Krieger School of Arts and Sciences, Department of Materials
Science and Engineering, Whiting School of Engineering, Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - John D. Tovar
- Department
of Chemistry, Krieger School of Arts and Sciences, Department of Materials
Science and Engineering, Whiting School of Engineering, Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
Dondi R, Yaghini E, Tewari KM, Wang L, Giuntini F, Loizidou M, MacRobert AJ, Eggleston IM. Flexible synthesis of cationic peptide-porphyrin derivatives for light-triggered drug delivery and photodynamic therapy. Org Biomol Chem 2016; 14:11488-11501. [PMID: 27886311 PMCID: PMC5166568 DOI: 10.1039/c6ob02135b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/14/2016] [Indexed: 01/04/2023]
Abstract
Efficient syntheses of cell-penetrating peptide-porphyrin conjugates are described using a variety of bioconjugation chemistries. This provides a flexible means to convert essentially hydrophobic tetrapyrolle photosensitisers into amphiphilic derivatives which are well-suited for use in light-triggered drug delivery by photochemical internalisation (PCI) and targeted photodynamic therapy (PDT).
Collapse
Affiliation(s)
- R Dondi
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - E Yaghini
- UCL Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - K M Tewari
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - L Wang
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK. and School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - F Giuntini
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - M Loizidou
- UCL Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - A J MacRobert
- UCL Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - I M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
18
|
Chen J, Ye H, Zhang M, Li J, Liu J, Xue J. Erlotinib Analogue-substituted Zinc(II) Phthalocyanines for Small Molecular Target-based Photodynamic Cancer Therapy. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Johnson BJ, Taitt CR, Gleaves A, North SH, Malanoski AP, Leska IA, Archibong E, Monk SM. Porphyrin-modified antimicrobial peptide indicators for detection of bacteria. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Moret F, Gobbo M, Reddi E. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells. Photochem Photobiol Sci 2016; 14:1238-50. [PMID: 26014915 DOI: 10.1039/c5pp00038f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Some antimicrobial peptides (AMPs) have the ability to penetrate and kill not only pathogenic microorganisms but also cancer cells, while they are less active toward normal eukaryotic cells. Here we have investigated the potential of three AMPs, namely apidaecin 1b (Api), magainin 2 (Mag) and buforin II (Buf), as carriers of drugs for cancer cells by using the hydrophobic photosensitiser 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (cTPP) as the drug model, conjugated to the N-terminus of the peptides. Flow cytometry measurements demonstrated that conjugation of cTPP increased its rate and efficiency of uptake in A549 human lung adenocarcinoma cells in the order Mag > Buf > Api. In vitro photodynamic therapy (PDT) experiments showed that the increased uptake of the conjugated cTPP determined 100% cell killing at concentrations in the nanomolar range while micromolar concentrations were required for the same killing effect with unconjugated cTPP. Serum proteins interacted with cTPP conjugated to Buf and Api and slightly interfered with the cellular uptake of these conjugates but not with that of Mag. The data suggest electrostatic interactions of the conjugates with sialic acid and ganglioside rich domains, as lipid rafts of the plasma membrane, followed by cell internalization via non-caveolar dynamin-dependent endocytosis as indicated by the effects of inhibitors of specific endocytic pathways. Our study demonstrated that the three AMPs investigated, Mag in particular, have the ability to carry a hydrophobic cargo inside cancer cells and may therefore represent useful carriers of anticancer drugs, especially those with a poor capacity to penetrate inside the target cells.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, 35121 Padova, Italy.
| | | | | |
Collapse
|
21
|
Fontenot KR, Ongarora BG, LeBlanc LE, Zhou Z, Jois SD, Vicente MGH. Targeting of the epidermal growth factor receptor with mesoporphyrin IX-peptide conjugates. J PORPHYR PHTHALOCYA 2016; 20:352-366. [PMID: 27738394 PMCID: PMC5058426 DOI: 10.1142/s1088424616500115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis and in vitro evaluation of four mesoporphyrin IX-peptide conjugates designed to target EGFR, over-expressed in colorectal and other cancers, are reported. Two peptides with known affinity for EGFR, LARLLT (1) and GYHWYGYTPQNVI (2), were conjugated to mesoporphyrin IX (MPIX, 3) via one or both the propionic side chains, directly (4, 5) or with a triethylene glycol spacer (7, 8). The conjugates were characterized using NMR, MS, CD, SPR, UV-vis and fluorescence spectroscopies. Energy minimization and molecular dynamics suggest different conformations for the conjugates. SPR studies show that conjugate 4, bearing two LARLLT with no PEG spacers, has the greatest affinity for binding to EGFR, followed by conjugate 7 with two PEG and two LARLLT sequences. Molecular modeling and docking studies suggest that both conjugates 4 and 7 can bind to monomer and dimer EGFR in open and closed conformations. The cytotoxicity and cellular targeting ability of the conjugates were investigated in human HEp2 cells over-expressing EGFR. All conjugates showed low dark- and photo-toxicities. The cellular uptake was highest for conjugates 4 and 8 and lowest for 7 bearing two LARLLT linked via PEG groups, likely due to decreased hydrophobicity. Among the conjugates investigated 4 is the most efficient EGFR-targeting agent, and therefore the most promising for the detection of cancers that over-express EGFR.
Collapse
Affiliation(s)
- Krystal R. Fontenot
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Benson G. Ongarora
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Logan E. LeBlanc
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Seetharama D. Jois
- University of Louisiana at Monroe, School of Pharmacy, Monroe, LA 71201, USA
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
22
|
Mandoj F, D'Urso A, Nardis S, Monti D, Stefanelli M, Gangemi CMA, Randazzo R, Fronczek FR, Smith KM, Paolesse R. The interaction of a β-fused isoindoline–porphyrin conjugate with nucleic acids. NEW J CHEM 2016. [DOI: 10.1039/c5nj03201f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The intercalation of a diiminoisoindoline–porphyrin conjugate into the poly(dG–dC) double helix occurs by inducing the fast formation of the helix with temperature.
Collapse
Affiliation(s)
- Federica Mandoj
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Roma
- Italy
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | - Sara Nardis
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Roma
- Italy
| | - Donato Monti
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Roma
- Italy
| | - Manuela Stefanelli
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Roma
- Italy
| | | | - Rosalba Randazzo
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | | | - Kevin M. Smith
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | - Roberto Paolesse
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Roma
- Italy
| |
Collapse
|
23
|
Li F, Liu Q, Liang Z, Wang J, Pang M, Huang W, Wu W, Hong Z. Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizers with highly hydrophilic modifications. Org Biomol Chem 2016; 14:3409-22. [DOI: 10.1039/c6ob00122j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Highly hydrophilic modification enhances the selectivity of targeted photosensitizer delivery.
Collapse
Affiliation(s)
- Fu Li
- College of Material Science and Chemical Engineering
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- State Key Laboratory of Medicinal Chemical Biology
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Zhenzhen Liang
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jin Wang
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Mingpei Pang
- College of Material Science and Chemical Engineering
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- State Key Laboratory of Medicinal Chemical Biology
| | | | - Wenjie Wu
- College of Material Science and Chemical Engineering
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
24
|
Lu Y, Chen Z, Yu B, Yan K, Li Z. Water-soluble porphyrin-phosphonate conjugates as potential photodynamic therapy photosensitizers. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two novel water-soluble porphyrin-phosphonate conjugates were synthesized and characterized. Although both conjugates showed significant potential in photodynamic therapy, the variety of their structure induced the obvious differences in the binding manner with calf thymus DNA, the cytotoxicity and the cellular sublocalization.
Collapse
Affiliation(s)
- Yunguo Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zhihang Chen
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Bingqiong Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Kun Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zaoying Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
25
|
Mari C, Pierroz V, Leonidova A, Ferrari S, Gasser G. Towards Selective Light-Activated RuII-Based Prodrug Candidates. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500602] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Zhang FL, Huang Q, Liu JY, Huang MD, Xue JP. Molecular-Target-Based Anticancer Photosensitizer: Synthesis and in vitro Photodynamic Activity of Erlotinib-Zinc(II) Phthalocyanine Conjugates. ChemMedChem 2014; 10:312-20. [DOI: 10.1002/cmdc.201402373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 11/09/2022]
|
27
|
Luo F, Li Y, Jia M, Cui F, Wu H, Yu F, Lin J, Yang X, Hou Z, Zhang Q. Validation of a Janus role of methotrexate-based PEGylated chitosan nanoparticles in vitro. NANOSCALE RESEARCH LETTERS 2014; 9:363. [PMID: 25114653 PMCID: PMC4118220 DOI: 10.1186/1556-276x-9-363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/18/2014] [Indexed: 05/31/2023]
Abstract
Recently, methotrexate (MTX) has been used to target to folate (FA) receptor-overexpressing cancer cells for targeted drug delivery. However, the systematic evaluation of MTX as a Janus-like agent has not been reported before. Here, we explored the validity of using MTX playing an early-phase cancer-specific targeting ligand cooperated with a late-phase therapeutic anticancer agent based on the PEGylated chitosan (CS) nanoparticles (NPs) as drug carriers. Some advantages of these nanoscaled drug delivery systems are as follows: (1) the NPs can ensure minimal premature release of MTX at off-target site to reduce the side effects to normal tissue; (2) MTX can function as a targeting ligand at target site prior to cellular uptake; and (3) once internalized by the target cell, the NPs can function as a prodrug formulation, releasing biologically active MTX inside the cells. The (MTX + PEG)-CS-NPs presented a sustained/proteases-mediated drug release. More importantly, compared with the PEG-CS-NPs and (FA + PEG)-CS-NPs, the (MTX + PEG)-CS-NPs showed a greater cellular uptake. Furthermore, the (MTX + PEG)-CS-NPs demonstrated a superior cytotoxicity compare to the free MTX. Our findings therefore validated that the MTX-loaded PEGylated CS-NPs can simultaneously target and treat FA receptor-overexpressing cancer cells.
Collapse
Affiliation(s)
- Fanghong Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361005, China
| | - Yang Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Mengmeng Jia
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Fei Cui
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hongjie Wu
- Department of Pharmacy, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361002, China
| | - Fei Yu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinyan Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiangrui Yang
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Qiqing Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
28
|
Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy. Bioanalysis 2014; 5:1099-114. [PMID: 23641699 DOI: 10.4155/bio.13.37] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT) was discovered in 1900 by Raab, and has since emerged as a promising tool for treating diseases characterized by unwanted cells or hyperproliferating tissue (e.g., cancer or infectious disease). PDT consists of the light excitation of a photosensitizer (PS) in the presence of O(2) to yield highly reactive oxygen species. In recent years, PDT has been improved by the synthesis of targeted bioconjugates between monoclonal antibodies and PS, and by investigating PS biodistribution and PD. Here, we provide a comprehensive review of major developments in PS-immunoconjugate-based PDT and the bioanalysis of these agents, with a specific emphasis on anticancer and antimicrobial PDT.
Collapse
|
29
|
Zhang FL, Huang Q, Zheng K, Li J, Liu JY, Xue JP. A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib. Chem Commun (Camb) 2013; 49:9570-2. [DOI: 10.1039/c3cc45487h] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Kumar D, Mishra BA, Chandra Shekar KP, Kumar A, Akamatsu K, Kurihara R, Ito T. Novel porphyrin–psoralen conjugates: synthesis, DNA interaction and cytotoxicity studies. Org Biomol Chem 2013; 11:6675-9. [DOI: 10.1039/c3ob41224e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Ongarora BG, Fontenot KR, Hu X, Sehgal I, Satyanarayana-Jois SD, Vicente MGH. Phthalocyanine-peptide conjugates for epidermal growth factor receptor targeting. J Med Chem 2012; 55:3725-38. [PMID: 22468711 DOI: 10.1021/jm201544y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were nontoxic (IC(50) > 100 μM) to HT-29 cells, both in the dark and upon light activation (1 J/cm(2)). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC and potentially other EGFR overexpressing cancers.
Collapse
Affiliation(s)
- Benson G Ongarora
- Louisiana State University, Department of Chemistry, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bhupathiraju NDK, Gottumukkala V, Hao E, Hu X, Fronczek FR, Baker DG, Wakamatsu N, Vicente MGH. Synthesis and toxicity of cobaltabisdicarbollide-containing porphyrins of high boron content. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424611003902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two porphyrins of high boron content (OCP and HCP–PEG) were prepared in high yields from the reaction of the corresponding tri- and tetra-(dihydroxyphenyl)porphyrins with zwitterionic cobaltabisdicarbollide [3,3′-Co(8-C4H8O2-1,2-C2B9H10)(1′,2′-C2B9H11)] . Both porphyrins were found to have low cytotoxicity toward human HEp2 cells, and to localize subcellularly mainly in the cell lysosomes. Animal toxicity investigations using male and female BALB/c mice also revealed low toxicity for both compounds. The determined maximum tolerated dose (MTD) for these boronated porphyrins administered intraperitoneally were 160 mg/kg for OCP and 320 mg/kg for HCP–PEG. Our studies warrant further development of these porphyrins of high boron content, and in particular of HCP–PEG, as boron delivery vehicles for BNCT.
Collapse
Affiliation(s)
| | - Vijay Gottumukkala
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Erhong Hao
- Anhui Key Laboratory of Functional Molecular Solids and Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Material Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaoke Hu
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David G. Baker
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nobuko Wakamatsu
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
33
|
Ke MR, Yeung SL, Fong WP, Ng DKP, Lo PC. A Phthalocyanine-Peptide Conjugate with High In Vitro Photodynamic Activity and Enhanced In Vivo Tumor-Retention Property. Chemistry 2012; 18:4225-33. [DOI: 10.1002/chem.201103516] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Indexed: 12/26/2022]
|
34
|
Wang JTW, Giuntini F, Eggleston IM, Bown SG, MacRobert AJ. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate. J Control Release 2012; 157:305-13. [PMID: 21889554 DOI: 10.1016/j.jconrel.2011.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/11/2011] [Accepted: 08/17/2011] [Indexed: 12/01/2022]
Abstract
Photochemical internalisation (PCI) is a site-specific technique for improving cellular delivery of macromolecular drugs. In this study, a cell penetrating peptide, containing the core HIV-1 Tat 48-57 sequence, conjugated with a porphyrin photosensitiser has been shown to be effective for PCI. Herein we report an investigation of the photophysical and photobiological properties of a water soluble bioconjugate of the cationic Tat peptide with a hydrophobic tetraphenylporphyrin derivative. The cellular uptake and localisation of the amphiphilic bioconjugate was examined in the HN5 human head and neck squamous cell carcinoma cell line. Efficient cellular uptake and localisation in endo/lysosomal vesicles was found using fluorescence detection, and light-induced, rupture of the vesicles resulting in a more diffuse intracellular fluorescence distribution was observed. Conjugation of the Tat sequence with a hydrophobic porphyrin thus enables cellular delivery of an amphiphilic photosensitiser which can then localise in endo/lysosomal membranes, as required for effective PCI treatment. PCI efficacy was tested in combination with a protein toxin, saporin, and a significant reduction in cell viability was measured versus saporin or photosensitiser treatment alone. This study demonstrates that the cell penetrating peptide-photosensitiser bioconjugation strategy is a promising and versatile approach for enhancing the therapeutic potential of bioactive agents through photochemical internalisation.
Collapse
Affiliation(s)
- Julie T-W Wang
- National Medical Laser Centre, Division of Surgery & Interventional Science, University College Medical School, University College London, London, UK
| | | | | | | | | |
Collapse
|
35
|
Srivatsan A, Ethirajan M, Pandey SK, Dubey S, Zheng X, Liu TH, Shibata M, Missert J, Morgan J, Pandey RK. Conjugation of cRGD peptide to chlorophyll a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy. Mol Pharm 2011; 8:1186-97. [PMID: 21702452 PMCID: PMC3148296 DOI: 10.1021/mp200018y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The α(v)β(3) integrin receptor plays an important role in human metastasis and tumor-induced angiogenesis. Cyclic Arg-Gly-Asp (cRGD) peptide represents a selective α(v)β(3) integrin ligand that has been extensively used for research, therapy, and diagnosis of neoangiogenesis. For developing photosensitizers with enhanced PDT efficacy, we here report the synthesis of a series of bifunctional agents in which the 3-(1'-hexyloxyethyl)-3-devinylpyropheophorbide a (HPPH), a chlorophyll-based photosensitizer, was conjugated to cRGD and the related analogues. The cell uptake and in vitro PDT efficacy of the conjugates were studied in α(v)β(3) integrin overexpressing U87 and 4T1 cell lines whereas the in vivo PDT efficacy and fluorescence-imaging potential of the conjugates were compared with the corresponding nonconjugated photosensitizer HPPH in 4T1 tumors. Compared to HPPH, the HPPH-cRGD conjugate in which the arginine and aspartic acid moieties were available for binding to two subunits of α(v)β(3) integrin showed faster clearance, enhanced tumor imaging and enhanced PDT efficacy at 2-4 h postinjection. Molecular modeling studies also confirmed that the presence of the HPPH moiety in HPPH-cRGD conjugate does not interfere with specific recognition of cRGD by α(v)β(3) integrin. Compared to U87 and 4T1 cells the HPPH-cRGD showed significantly low photosensitizing efficacy in A431 (α(v)β(3) negative) tumor cells, suggesting possible target specificity of the conjugate.
Collapse
Affiliation(s)
- Avinash Srivatsan
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chaleix V, Sol V, Krausz P. Pseudo porphyrinyl amino acids based on 1,3,5-triazine scaffold: new tools for the synthesis of peptidic porphyrins. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Syntheses and DNA binding of new cationic porphyrin–tetrapeptide conjugates. Biophys Chem 2011; 155:36-44. [DOI: 10.1016/j.bpc.2011.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 02/20/2011] [Accepted: 02/21/2011] [Indexed: 11/30/2022]
|
38
|
Giuntini F, Alonso CMA, Boyle RW. Synthetic approaches for the conjugation of porphyrins and related macrocycles to peptides and proteins. Photochem Photobiol Sci 2011; 10:759-91. [DOI: 10.1039/c0pp00366b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
In vitro degradation and antitumor activity of oxime bond-linked daunorubicin-GnRH-III bioconjugates and DNA-binding properties of daunorubicin-amino acid metabolites. Amino Acids 2010; 41:469-83. [PMID: 20953647 DOI: 10.1007/s00726-010-0766-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
Abstract
Bioconjugates with receptor-mediated tumor-targeting functions and carrying cytotoxic agents should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting the peripheral toxicity. In the present study, gonadotropin-releasing hormone III (GnRH-III; Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was employed as a targeting moiety to which daunorubicin was attached via oxime bond, either directly or by insertion of a GFLG or YRRL tetrapeptide spacer. The in vitro antitumor activity of the bioconjugates was determined on MCF-7 human breast and HT-29 human colon cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their degradation/stability (1) in human serum, (2) in the presence of cathepsin B and (3) in rat liver lysosomal homogenate was analyzed by liquid chromatography in combination with mass spectrometry. The results show that (1) all synthesized bioconjugates have in vitro antitumor effect, (2) they are stable in human serum at least for 24 h, except for the compound containing an YRRL spacer and (3) they are hydrolyzed by cathepsin B and in the lysosomal homogenate. To investigate the relationship between the in vitro antitumor activity and the structure of the bioconjugates, the smallest metabolites produced in the lysosomal homogenate were synthesized and their binding to DNA was assessed by fluorescence spectroscopy. Our data indicate that the incorporation of a peptide spacer in the structure of oxime bond-linked daunorubicin-GnRH-III bioconjugates is not required for their antitumor activity. Moreover, the antitumor activity is influenced by the structure of the metabolites (daunorubicin-amino acid derivatives) and their DNA-binding properties.
Collapse
|
40
|
Dmitriev RI, Ropiak HM, Yashunsky DV, Ponomarev GV, Zhdanov AV, Papkovsky DB. Bactenecin 7 peptide fragment as a tool for intracellular delivery of a phosphorescent oxygen sensor. FEBS J 2010; 277:4651-61. [DOI: 10.1111/j.1742-4658.2010.07872.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
41
|
CHEN HW, CHEN JC, CHEN NS, HUANG JL, WANG JD, HUANG MD. Applications of Peptide Conjugated Photosensitizers in Photodynamic Therapy*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Abstract
IMPORTANCE OF THE FIELD Tumor targeting with peptides is based on the discovery that receptors for many regulatory peptides are overexpressed in tumor cells, compared with their expression in normal tissues. Consequently, these peptides and their analogues can be used as carriers/targeting moieties for the preparation of diagnostic and therapeutic agents that have increased selectivity and decreased peripheral toxicity. AREAS COVERED IN THIS REVIEW Here an overview is given of the most relevant gonadotropin-releasing hormone (GnRH) and somatostatin derivatives, as well as of their applications in cancer diagnosis and therapy. For this purpose, recently published data in these areas (mostly articles published from 2000 to 2009) were reviewed. WHAT THE READER WILL GAIN In contrast to other regulatory peptides that stimulate the tumor growth, GnRH and somatostatin derivatives have inhibitory effect; therefore, they were used primarily for the preparation of various conjugates to be used in targeted chemotherapy, targeted radiotherapy, photodynamic therapy, boron neutron capture therapy and cancer diagnosis. Some of these conjugates have already found clinical applications, whereas others are now in preclinical and clinical trials. TAKE HOME MESSAGE Tumor targeting with hormone peptides provides a basis for the development of new diagnostic and therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Gábor Mezo
- Eötvös Loránd University, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | | |
Collapse
|
43
|
Wang ZW, Guo CC, Xie WZ, Liu CZ, Xiao CG, Tan Z. Novel phosphoramidates with porphine and nitrogenous drug: One-pot synthesis and orientation to cancer cells. Eur J Med Chem 2010; 45:890-5. [DOI: 10.1016/j.ejmech.2009.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 11/09/2009] [Accepted: 11/12/2009] [Indexed: 11/24/2022]
|
44
|
Sibrian-Vazquez M, Jensen TJ, Vicente MGH. Influence of the number and distribution of NLS peptides on the photosensitizing activity of multimeric porphyrin–NLS. Org Biomol Chem 2010; 8:1160-72. [DOI: 10.1039/b917280g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Bakleh ME, Sol V, Granet R, Déléris G, Estieu-Gionnet K, Krausz P. Design and efficient synthesis of a new scaffold based on unsymmetrical protoporphyrin IX derivatives for use in SPPS. Chem Commun (Camb) 2010; 46:2115-7. [DOI: 10.1039/b922012g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C, da Ros T, Prato M, Kostarelos K, Bianco A. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem Commun (Camb) 2009; 46:1494-6. [PMID: 20162159 DOI: 10.1039/b923560d] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methotrexate was tethered to multi-walled carbon nanotubes through different cleavable linkers exploiting the ammonium functionalities introduced by 1,3-dipolar cycloaddition reaction of azomethine ylides to the nanotubes. The new nanobio-hybrid conjugates were internalized into human breast cancer cells and it was shown that the cytotoxic activity was strongly dependent on the presence and type of linker.
Collapse
Affiliation(s)
- Cristian Samorì
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Szabó I, Manea M, Orbán E, Csámpai A, Bosze S, Szabó R, Tejeda M, Gaál D, Kapuvári B, Przybylski M, Hudecz F, Mezo G. Development of an oxime bond containing daunorubicin-gonadotropin-releasing hormone-III conjugate as a potential anticancer drug. Bioconjug Chem 2009; 20:656-65. [PMID: 19296605 DOI: 10.1021/bc800542u] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we report on the synthesis and biological properties of a conjugate in which daunorubicin (Dau) as chemotherapeutic agent was attached through an oxime bond to gonadotropin-releasing hormone-III (GnRH-III) as targeting moiety. In vitro toxicity and the cytostatic effect of the conjugate on MCF-7 human breast and C26 murine colon cancer cell lines were determined, and the results were compared with those obtained for the free daunorubicin, as well as with the doxorubicin containing derivative. In vivo antitumor effect of daunorubicin-GnRH-III was studied on Balb/c female mice transplanted with C26 tumor. Our data indicate that the daunorubicin-GnRH-III conjugate had a lower toxic effect than the free daunorubicin and it was essentially nontoxic up to 15 mg (Dau content)/kg body weight. The treatment of the C26 tumor bearing mice with the conjugate led to tumor growth inhibition and longer survival time in comparison with the controls and with the administration of the free drug. When mice were treated twice with the conjugate (on days 4 and 7 after tumor transplantation), 46% tumor growth inhibition was obtained. In this case, the increase of the median survival time was 38% compared to the controls.
Collapse
Affiliation(s)
- Ildikó Szabó
- Hungarian Academy of Sciences, and Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sibani SA, McCarron PA, Woolfson AD, Donnelly RF. Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms. Expert Opin Drug Deliv 2009; 5:1241-54. [PMID: 18976134 DOI: 10.1517/17425240802444673] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The treatment of solid tumours and angiogenic ocular diseases by photodynamic therapy (PDT) requires the injection of a photosensitiser (PS) to destroy target cells through a combination of visible light irradiation and molecular oxygen. There is currently great interest in the development of efficient and specific carrier delivery platforms for systemic PDT. OBJECTIVE This article aims to review recent developments in systemic carrier delivery platforms for PDT, with an emphasis on target specificity. METHODS Recent publications, spanning the last five years, concerning delivery carrier platforms for systemic PDT were reviewed, including PS conjugates, dendrimers, micelles, liposomes and nanoparticles. RESULTS/CONCLUSION PS conjugates and supramolecular delivery platforms can improve PDT selectivity by exploiting cellular and physiological specificities of the targeted tissue. Overexpression of receptors in cancer and angiogenic endothelial cells allows their targeting by affinity-based moieties for the selective uptake of PS conjugates and encapsulating delivery carriers, while the abnormal tumour neovascularisation induces a specific accumulation of heavy weighted PS carriers by enhanced permeability and retention (EPR) effect. In addition, polymeric prodrug delivery platforms triggered by the acidic nature of the tumour environment or the expression of proteases can be designed. Promising results obtained with recent systemic carrier platforms will, in due course, be translated into the clinic for highly efficient and selective PDT protocols.
Collapse
Affiliation(s)
- Stéphane A Sibani
- Queens University Belfast, Medical Biology Centre, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | |
Collapse
|
49
|
Sehgal I, Sibrian-Vazquez M. Photoinduced Cytotoxicity and Biodistribution of Prostate Cancer Cell-Targeted Porphyrins. J Med Chem 2008; 51:6014-20. [DOI: 10.1021/jm800444c] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Inder Sehgal
- Department of Comparative Biomedical Sciences and Department of Chemistry, Louisiana State University, Baton Rouge Louisiana 70803
| | - Martha Sibrian-Vazquez
- Department of Comparative Biomedical Sciences and Department of Chemistry, Louisiana State University, Baton Rouge Louisiana 70803
| |
Collapse
|