1
|
Wang Y, Xu H, Yu S, Zheng J, Meng D, Zhang Y, Li W, Chen H. Design, synthesis and biological evaluation of novel 4,6-dimorpholino-1,3,5-triazin-2-amine ferrocenecarboxylate derivatives as potent PI3K inhibitors. Bioorg Chem 2025; 161:108571. [PMID: 40349530 DOI: 10.1016/j.bioorg.2025.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Inhibitors of Phosphatidylinositol-3-kinase (PI3K) represent a classical tumor-specific therapeutic strategy that exerts anti-tumor effects by blocking the PI3K/AKT/mTOR signaling pathway involved in cancer cell proliferation and survival. However, their clinical efficacy is restricted by resistance mechanisms that are both inherent and acquired, including PI3K self-activation, activation of parallel signaling pathways, and the impact of the tumor microenvironment. Inspired by chemodynamic therapy, a series of ferrocene-modified PI3K inhibitors were synthesized for the first time in this study. These inhibitors were designed by combining the targeting properties of PI3K inhibitors with the chemokinetic effects of ferrocene and demonstrated to exhibit both PI3K-dependent inhibitory effects and PI3K-independent cytotoxicity in the evaluation. In vitro experiments showed that compound 3d possessed excellent antiproliferative activity against breast cancer 4T1 cells (IC50 = 3.70 ± 1.21 μM) and colon cancer CT26 cells (IC50 = 1.98 ± 1.33 μM). Further in vivo assays also proved that compound 3d exhibited good antitumor activity, which is worth further studies.
Collapse
Affiliation(s)
- Yujue Wang
- China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department Document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China
| | - Haifeng Xu
- China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department Document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China
| | - Shiwen Yu
- China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department Document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China
| | - Jinling Zheng
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dandan Meng
- Tsinghua University, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yan Zhang
- China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department Document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China.
| | - Wenjun Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hongfei Chen
- China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department Document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China.
| |
Collapse
|
2
|
Ochiai K, Yonezawa R, Fujii S. Structural Development of Androgen Receptor Antagonists Using Phenylferrocene Framework as a Hydrophobic Pharmacophore. ChemMedChem 2024; 19:e202400040. [PMID: 38291942 DOI: 10.1002/cmdc.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
We previously identified nitrophenylferrocenes and cyanophenylferrocenes as promising lead structures of novel androgen receptor (AR) antagonists, based on the structural similarity between ferrocene and the steroidal skeleton. In the present research, we explored the structure-activity relationship (SAR) of phenylferrocene derivatives. Introduction of a hydrophobic substituent such as a chlorine atom at the 2-position or 3-position of phenylferrocene derivatives significantly increased the antagonistic activity toward wild-type AR, and among the synthesized compounds, 3-chloro-4-cyanophenylferrocene (29) exhibited the most potent anti-proliferative activity toward the androgen-dependent growth of SC-3 cells expressing wild-type AR (IC50 14 nM). Like conventional antiandrogens such as hydroxyflutamide, the major active metabolite of flutamide, compound 29 exhibited agonistic activity toward T877A-AR, a mutant AR expressed in human prostate cancer cell line LNCaP. Notably, however, the 2-chloro isomer 27 showed potent antagonistic activity toward wild-type AR (IC50 49 nM) and also exhibited antagonistic activity toward T877A-AR. Our SAR data should prove helpful for the development of new-generation AR antagonists based on phenylferrocene as candidate agents to treat drug-resistant prostate cancer.
Collapse
Affiliation(s)
- Kotaro Ochiai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Ryo Yonezawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
3
|
Adhikari S, Nath P, Das A, Datta A, Baildya N, Duttaroy AK, Pathak S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed Pharmacother 2024; 171:116211. [PMID: 38290253 DOI: 10.1016/j.biopha.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree Collage, Dharmanagar, Tripura (N) 799253, India.
| | - Priyatosh Nath
- Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura 799022, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290, Tripura, India
| | - Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda 732209, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
4
|
Hwa KY, Santhan A, Ganguly A, Kanna Sharma TS. Two dimensional architectures of graphitic carbon nitride with the substitution of heteroatoms for bifunctional electrochemical detection of nilutamide. CHEMOSPHERE 2023; 320:138068. [PMID: 36754308 DOI: 10.1016/j.chemosphere.2023.138068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/18/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The exploration of graphitic carbon nitride (g-C3N4), a two-dimensional (2D) metal-free polymer semiconducting material, is largely discussed due to its large specific surface area, high electrical conductivity, thermal stability, and adaptable electronic structure. The adaption of sulfur (S) and phosphorous (P) atoms into the layers of g-C3N4 increases the electrochemical performance of detecting nilutamide (NT). The aggregation severity can be decreased by integrating S/P into g-C3N4, thereby improving surface area and electrical conductance. The g-C3N4, S/gC3N4, P/g-C3N4, and S/P/g-C3N4 were studied with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), Ultraviolet visible spectroscopy (UV), Thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET). The well-assigned S/P/g-C3N4 exhibited a good crystalline structure with more active sites for improved electron transfer toward NT detection. Both differential pulse voltammetry (DPV) and amperometry (IT) was studied for NT detection. The electrochemical studies were done with a linear range of 0.019-1.17 μM to 5.36-1891.98 μM in DPV and 0.01 μM-158.3 μM in IT technique. The attained limit of detection in DPV analysis was 3.2 nM and with IT analysis 2.4 nM. The nanocomposite S/P/g-C3N4 shows good selectivity towards NT. The fabricated electrode showed excellent repeatability, reproducibility, and stability, with a significant recovery range in real sample analysis.
Collapse
Affiliation(s)
- Kuo-Yuan Hwa
- Graduate Institute of Energy and Optoelectronic Materials, National Taipei University of Technology, Taipei, Taiwan, ROC; Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC.
| | - Aravindan Santhan
- Graduate Institute of Energy and Optoelectronic Materials, National Taipei University of Technology, Taipei, Taiwan, ROC; Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Anindita Ganguly
- Graduate Institute of Energy and Optoelectronic Materials, National Taipei University of Technology, Taipei, Taiwan, ROC; Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Tata Sanjay Kanna Sharma
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Jia X, Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomed Pharmacother 2023; 158:114112. [PMID: 36508999 DOI: 10.1016/j.biopha.2022.114112] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Inhibition of androgen receptor (AR) has been extensively investigated to treat prostate cancer. Resistance mechanisms such as increased levels of androgen production, increased AR gene, enhancer expression and AR point mutations always reduce the clinical efficacy. Design and discovery of small-molecule PROTAC AR degraders have been pursued as a new therapeutic strategy to overcome common resistance mechanisms developed during prostate cancer treatment. In the last two decades, potent and efficacious PROTAC AR degraders have been gotten rapid development and several such compounds have been advanced into preclinical phase and phase I/II trials for the treatment of human prostate cancers. Especially, the first PROTAC to enter the clinic, ARV-110, has shown good clinical effects in patients with mCRPC. This fully demonstrates the high clinical value of PROTAC strategy in treatment of human diseases. Here, we summarized the recent advances in the development of these potential clinical-stage PROTAC AR degraders.
Collapse
Affiliation(s)
- Xiaojuan Jia
- The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xin Han
- The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China..
| |
Collapse
|
6
|
Belyaeva ER, Myasoedova YV, Ishmuratova NM, Ishmuratov GY. Synthesis and Biological Activity of N-Acylhydrazones. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Abid M, Singh S, Egan TJ, Joshi MC. Structural activity relationship of metallo-aminoquines as a next generation antimalarials. Curr Top Med Chem 2022; 22:436-472. [PMID: 34986771 DOI: 10.2174/1568026622666220105103751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Apicomplexian parasite of the genus Plasmodium is the causative agent of malaria, one of the most devastating, furious and common infectious disease throughout the world. According to the latest World malaria report, there were 229 million cases of malaria in 2019 majorly consisting of children under 5 years of age. Some of known analogues viz. quinine, quinoline-containing compounds have been used for last century in the clinical treatment of malaria. Past few decades have witnessed the emergence of multi-drug resistance (MDR) strains of Plasmodium species to existing antimalarials pressing the need for new drug candidates. For the past few decades bioorganometallic approach to malaria therapy has been introduced which led to the discovery of noval metalcontaining aminoquinolines analogues viz. ferroquine (FQ or 1), Ruthenoquine (RQ or 2) and other related potent metal-analogues. It observed that some metal containing analogues (Fe-, Rh-, Ru-, Re-, Au-, Zn-, Cr-, Pd-, Sn-, Cd-, Ir-, Co-, Cu-, and Mn-aminoquines) were more potent; however, some were equally potent as Chloroquine (CQ) and 1. This is probably due to the intertion of metals in the CQ via various approaches, which might be a very attractive strategy to develop a SAR of novel metal containing antimalarials. Thus, this review aims to summarize the SAR of metal containing aminoquines towards the discovery of potent antimalarial hybrids to provide an insight for rational designs of more effective and less toxic metal containing amoniquines.
Collapse
Affiliation(s)
- Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi-110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Mehroli Road, New Delhi-110067, India
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town-7700, South Africa
| | - Mukesh C Joshi
- Dept. of Chemistry, Motilal Nehru College, University of Delhi, Benito Juarez marg, South Campus, New Delhi-110021. India
| |
Collapse
|
8
|
Zhang HY, Tao XW, Yi LN, Zhao ZG, Yang Q. Transamidation and Decarbonylation of N-Phthaloyl-Amino Acid Amides Enabled by Palladium-Catalyzed Selective C-N Bond Cleavage. J Org Chem 2021; 87:231-242. [PMID: 34941259 DOI: 10.1021/acs.joc.1c02245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amides are important functional synthons that have been widely used in the construction of peptides, natural products, and drugs. The C-N bond cleavage provides the direct method for amide conversion. However, amides, especially secondary amides, tend to be chemically inert due to the resonance of the amide bond. Here, we describe an efficient Pd-catalyzed transamidation and decarbonylation of multiamide structure molecules through C-N bond cleavage with excellent chemoselectivity. The transamidation of secondary amides and the decarbonylation of phthalimide provide meaningful tools for the modification of amino acid derivatives. Moreover, further transformations of azidation and C(sp3)-H monoarylation emphasized the potential utility of this selective C-N bond cleavage method.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xuan-Wen Tao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Li-Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zhi-Gang Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
9
|
Sharma B, Kumar V. Has Ferrocene Really Delivered Its Role in Accentuating the Bioactivity of Organic Scaffolds? J Med Chem 2021; 64:16865-16921. [PMID: 34792350 DOI: 10.1021/acs.jmedchem.1c00390] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ferrocene is an important structural core in bioorganometallic chemistry because of its inherent stability, excellent redox properties, and low toxicity. Ferroquine and ferrocifen are two of the most notable contributions of ferrocene to medicinal chemistry with remarkable antimalarial and anticancer properties. The improved medicinal properties of these drug candidates highlight the impact that ferrocene can have on the molecular and biological properties of the bioactive compounds. In this Perspective, we investigate the scope and limitations of ferrocene incorporation into organic compounds/natural products on their mode of action and biological activities. We have also discussed the detailed role of ferrocene modifications in influencing the anticancer, antimalarial, and antimicrobial properties of various bioactive moieties to design safer and promising ferrocene-based drugs.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
10
|
Structure-property and structure-activity relationships of phenylferrocene derivatives as androgen receptor antagonists. Bioorg Med Chem Lett 2021; 46:128141. [PMID: 34048883 DOI: 10.1016/j.bmcl.2021.128141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022]
Abstract
Ferrocene is a representative organometallic compound having a sandwich structure with high stability and hydrophobicity. In this study, we determined the physicochemical properties of a series of nitro- and cyanophenylferrocenes, and evaluated their biological activity as androgen receptor (AR) antagonists. Ferrocene derivatives exhibited hydrophobicity parameter π values in the range between 2.54 and 3.23, depending on the substituents, indicating that the hydrophobicity of ferrocene is suitable for its application as a hydrophobic core structure of nuclear receptor ligands. The synthesized ferrocene derivatives showed AR-antagonistic activity, and among them, 3-nitrophenylferrocene 14 exhibited the most potent activity with an IC50 value of 0.28 μM. The developed compounds may be candidates for further structural development as AR antagonists. These findings also support the utility of organometallic species as structural options for drug discovery.
Collapse
|
11
|
Lengacher R, Alberto R. Bioorganometallics: 99mTc cytectrenes, syntheses and applications in nuclear medicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Sharma TSK, Hwa KY. Rational design and preparation of copper vanadate anchored on sulfur doped reduced graphene oxide nanocomposite for electrochemical sensing of antiandrogen drug nilutamide using flexible electrodes. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124659. [PMID: 33279323 DOI: 10.1016/j.jhazmat.2020.124659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Copper vanadate nanoparticles (Cu2V2O7) are synthesized by using a simple hydrothermal method and later anchored with sulfur-doped reduced graphene oxide (S-rGO) by using ultrasonication to form a hybrid nanocomposite. The synthesized composite underwent characterizations like X-ray diffraction analysis (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Dynamic ray scattering-Ultra violet-visible spectroscopy (DRS-UV-visible) and X-ray photoelectron spectroscopically revealed the triclinic pattern of the P 1̅ space group of α-Cu2V2O7 and the reduced oxygen deficiency state of metal centers (Cu+ or V4+) resulting with oxides of mixed-valence oxidative states and forming of Cu-O bond. Morphological analysis was carried out by using transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM) with elemental mapping and EDX analysis. Furthermore, a novel electrochemical sensor is prepared by using the hybrid sCu2V2O7/S-rGO nanocomposite on to a disposable screen-printed carbon paste electrode (SPCE) for electrochemical sensing of antiandrogen drug nilutamide (NLT). This report reveals excellent activity in determining NLT with a low detection limit of 0.00459 nM for the linear range of 0.001-15 μM with high sensitivity of 26.2605 µA µM-1 cm-2. Further, electrode performance showed appreciable performance in real-time monitoring of biological samples like human blood serum, urine samples.
Collapse
Affiliation(s)
- Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan, ROC; Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan, ROC; Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC; Center for Biomedical Industry, National Taipei University of Technology, Taipei, Taiwan, ROC.
| |
Collapse
|
13
|
Fesenko AA, Shutalev AD. Different pathways in the reaction of N-(tosylmethyl)-substituted ureas, thioureas, and N′-cyanoguanidines with sodium cyanide. Synthesis of α-ureido nitriles, α-ureido amides, and hydantoin imino derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Basu U, Roy M, Chakravarty AR. Recent advances in the chemistry of iron-based chemotherapeutic agents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213339] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Lawrence ML, Shell SM, Beckford FA. Binuclear manganese-iron complexes containing ferrocenyl thiosemicarbazones: Biological activity and carbon monoxide-releasing properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Neerbye Berntsen L, Nova A, Wragg DS, Sandtorv AH. Cu-catalyzed N-3-Arylation of Hydantoins Using Diaryliodonium Salts. Org Lett 2020; 22:2687-2691. [PMID: 32202123 PMCID: PMC7309330 DOI: 10.1021/acs.orglett.0c00642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A general Cu-catalyzed,
regioselective method for the N-3-arylation of hydantoins
is described. The protocol utilizes aryl(trimethoxyphenyl)iodonium
tosylate as the arylating agent in the presence of triethylamine and
a catalytic amount of a simple Cu-salt. The method is compatible with
structurally diverse hydantoins and operates well with neutral aryl
groups or aryl groups bearing weakly donating/withdrawing elements.
It is also applicable for the rapid diversification of pharmaceutically
relevant hydantoins.
Collapse
Affiliation(s)
- Linn Neerbye Berntsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - David S Wragg
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Alexander H Sandtorv
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
17
|
Hussain RA, Badshah A, Ahmed N, Pezzuto JM, Kondratyuk TP, Park EJ, Hussain I. Synthesis, characterization and biological applications of selenoureas having ferrocene and substituted benzoyl functionalities. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Dewangan S, Mishra S, Mawatwal S, Dhiman R, Parida R, Giri S, Wölper C, Chatterjee S. Synthesis of Ferrocene Tethered Heteroaromatic Compounds Using Solid Supported Reaction Method, their Cytotoxic Evaluation and Fluorescence Behavior. ChemistrySelect 2019. [DOI: 10.1002/slct.201901088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Smriti Dewangan
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Sasmita Mishra
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Shradha Mawatwal
- Department of Life ScienceNational Institute of Technology Rourkela Orissa-769008 India
| | - Rohan Dhiman
- Department of Life ScienceNational Institute of Technology Rourkela Orissa-769008 India
| | - Rakesh Parida
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Santanab Giri
- Department of Applied SciencesHaldia Institute of Technology, ICARE Complex Haldia-721657, W.B India
| | - Christoph Wölper
- Department for X-Ray DiffractionInstitut für Anorganische Chemie, Universität Duisburg-Essen D-45117 Essen Germany
| | - Saurav Chatterjee
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| |
Collapse
|
19
|
Synthesis, structural characterization, DFT calculations and antiproliferative evaluation of novel spirohydantoin derivatives containing a substituted benzyl moiety. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
21
|
Basu S, Sandtorv AH, Stuart DR. Imide arylation with aryl(TMP)iodonium tosylates. Beilstein J Org Chem 2018; 14:1034-1038. [PMID: 29977376 PMCID: PMC6009222 DOI: 10.3762/bjoc.14.90] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/27/2018] [Indexed: 02/01/2023] Open
Abstract
Herein, we describe the synthesis of N-aryl phthalimides by metal-free coupling of potassium phthalimide with unsymmetrical aryl(TMP)iodonium tosylate salts. The aryl transfer from the iodonium moiety occurs under electronic control with the electron-rich trimethoxyphenyl group acting as a competent dummy ligand. The yields of N-aryl phthalimides are moderate to high and the coupling reaction is compatible with electron-deficient and sterically encumbered aryl groups.
Collapse
Affiliation(s)
- Souradeep Basu
- Department of Chemistry, Portland State University, Portland OR 97201, United States
| | - Alexander H Sandtorv
- Department of Chemistry, Portland State University, Portland OR 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland OR 97201, United States
| |
Collapse
|
22
|
Singh A, Saha ST, Perumal S, Kaur M, Kumar V. Azide-Alkyne Cycloaddition En Route to 1 H-1,2,3-Triazole-Tethered Isatin-Ferrocene, Ferrocenylmethoxy-Isatin, and Isatin-Ferrocenylchalcone Conjugates: Synthesis and Antiproliferative Evaluation. ACS OMEGA 2018; 3:1263-1268. [PMID: 30023800 PMCID: PMC6044575 DOI: 10.1021/acsomega.7b01755] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/10/2018] [Indexed: 05/21/2023]
Abstract
Diverse series of isatin-ferrocene conjugates were synthesized via Cu-promoted azide-alkyne cycloaddition reaction with an aim of probing their antiproliferative structure-activity relationship against MCF-7 (estrogen receptor positive) and MDA-MB-231 (triple negative) cell lines. Among the synthesized conjugates, isatin-ferrocenes proved to be more potent against MCF-7, whereas ferrocenylmethoxy-isatins exhibited activity against MDA-MB-231 cell lines. However, the introduction of chalcone moiety among these hybrids resulted in the complete loss of activity against the tested cell lines, as evident by isatin-ferrocenylchalcones. The conjugates 5a and 9c proved to be the most potent among the series against MCF-7 and MDA-MB-213 cell lines, exhibiting IC50 values of 31.62 and 20.26 μM, respectively.
Collapse
Affiliation(s)
- Amandeep Singh
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Sourav Taru Saha
- School
of Molecular and Cell Biology, University
of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg, South Africa
| | - Shanen Perumal
- School
of Molecular and Cell Biology, University
of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School
of Molecular and Cell Biology, University
of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg, South Africa
- E-mail: (M.K.)
| | - Vipan Kumar
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
- E-mail: (V.K.)
| |
Collapse
|
23
|
Parveen H, Alsharif MA, Alahmdi MI, Mukhtar S, Azam A. Novel Pyrimidine-based Ferrocenyl substituted Organometallic Compounds: Synthesis, Characterization and Biological Evaluation. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Humaira Parveen
- Department of Chemistry, Faculty of Science; University of Tabuk; Tabuk 71491 Kingdom of Saudi Arabia
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Science; University of Tabuk; Tabuk 71491 Kingdom of Saudi Arabia
| | - Mohammed I. Alahmdi
- Department of Chemistry, Faculty of Science; University of Tabuk; Tabuk 71491 Kingdom of Saudi Arabia
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science; University of Tabuk; Tabuk 71491 Kingdom of Saudi Arabia
| | - Amir Azam
- Department of Chemistry; Jamia Millia Islamia; Jamia Nagar New Delhi 110025 India
| |
Collapse
|
24
|
Parveen H, Alatawi RAS, Alsharif MA, Alahmdi MI, Mukhtar S, Khan SA, Hasan S, Khan AU. Novel Pyrazoline-based Organometallic Compounds Containing Ferrocenyl and Quinoline units: Synthesis, Characterization and Microbial susceptibilities. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Humaira Parveen
- Department of Chemistry, Faculty of Science; University of Tabuk; Tabuk-71491 Kingdom of Saudi Arabia
| | | | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Science; University of Tabuk; Tabuk-71491 Kingdom of Saudi Arabia
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science; University of Tabuk; Tabuk-71491 Kingdom of Saudi Arabia
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science; University of Tabuk; Tabuk-71491 Kingdom of Saudi Arabia
| | - Salman Ahmad Khan
- Department of Chemistry, Faculty of Science; King Abdul Aziz University; Jeddah Kingdom of Saudi Arabia
| | - Sadaf Hasan
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh 202002 India
| | - Asad U. Khan
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh 202002 India
| |
Collapse
|
25
|
Wang Y, Dansette PM, Pigeon P, Top S, McGlinchey MJ, Mansuy D, Jaouen G. A new generation of ferrociphenols leads to a great diversity of reactive metabolites, and exhibits remarkable antiproliferative properties. Chem Sci 2018; 9:70-78. [PMID: 29629075 PMCID: PMC5870192 DOI: 10.1039/c7sc04213b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022] Open
Abstract
Organometallic compounds bearing the redox motif [ferrocenyl-ene-phenol] have very promising antiproliferative properties which have been further improved by incorporating pertinent substituents able to engender new mechanisms. Here we show that novel ferrociphenols bearing a hydroxypropyl chain exhibit strong antiproliferative effects, in most cases much better than those of cisplatin, tamoxifen, or of previously described ferrociphenols devoid of this terminal OH. This is illustrated, in the case of one of these compounds, by its IC50 values of 110 nM for MDA-MB-231 triple negative breast cancer cells and of 300 nM for cisplatin-resistant A2780cisR human ovarian cancer cells, and by its GI50 values lower than 100 nM towards a series of melanoma and renal cancer cell lines of the NCI-60 panel. Interestingly, oxidative metabolism of these hydroxypropyl-ferrociphenols yields two kinds of quinone methides (QMs) that readily react with various nucleophiles, such as glutathione, to give 1,6- and 1,8-adducts. Protonation of these quinone methides generates numerous reactive metabolites leading eventually to many rearrangement and cleavage products. This unprecedented and fully characterized metabolic profile involving a wide range of electrophilic metabolites that should react with cell macromolecules may be linked to the remarkable profile of antiproliferative activities of this new series. Indeed, the great diversity of unexpected reactive metabolites found upon oxidation will allow them to adapt to various situations present in the cancer cell. These data initiate a novel strategy for the rational design of anticancer molecules, thus opening the way to new organometallic potent anticancer drug candidates for the treatment of chemoresistant cancers.
Collapse
Affiliation(s)
- Yong Wang
- PSL , Chimie ParisTech , 11 rue Pierre et Marie Curie , F-75005 Paris , France
- Sorbonne Universités , UPMC Univ Paris 6 , UMR 8232 CNRS , IPCM , Place Jussieu , F-75005 Paris , France . ;
| | - Patrick M Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques , UMR 8601 CNRS , Université Paris Descartes , PRES Paris Cité Sorbonne , 45 rue des Saints Pères , 75270 Paris Cedex 06 , France .
| | - Pascal Pigeon
- PSL , Chimie ParisTech , 11 rue Pierre et Marie Curie , F-75005 Paris , France
- Sorbonne Universités , UPMC Univ Paris 6 , UMR 8232 CNRS , IPCM , Place Jussieu , F-75005 Paris , France . ;
| | - Siden Top
- Sorbonne Universités , UPMC Univ Paris 6 , UMR 8232 CNRS , IPCM , Place Jussieu , F-75005 Paris , France . ;
| | - Michael J McGlinchey
- UCD School of Chemistry and Chemical Biology , University College Dublin , Belfield , Dublin 4 , Ireland
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques , UMR 8601 CNRS , Université Paris Descartes , PRES Paris Cité Sorbonne , 45 rue des Saints Pères , 75270 Paris Cedex 06 , France .
| | - Gérard Jaouen
- PSL , Chimie ParisTech , 11 rue Pierre et Marie Curie , F-75005 Paris , France
- Sorbonne Universités , UPMC Univ Paris 6 , UMR 8232 CNRS , IPCM , Place Jussieu , F-75005 Paris , France . ;
| |
Collapse
|
26
|
Konnert L, Lamaty F, Martinez J, Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem Rev 2017. [PMID: 28644621 DOI: 10.1021/acs.chemrev.7b00067] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights the hydantoin syntheses presented from the point of view of the preparation methods. Novel synthetic routes to various hydantoin structures, the advances brought to the classical methods in the aim of producing more sustainable and environmentally friendly procedures for the preparation of these biomolecules, and a critical comparison of the different synthetic approaches developed in the last twelve years are also described. The review is composed of 95 schemes, 8 figures and 528 references for the last 12 years and includes the description of the hydantoin-based marketed drugs and clinical candidates.
Collapse
Affiliation(s)
- Laure Konnert
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Frédéric Lamaty
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Jean Martinez
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Evelina Colacino
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| |
Collapse
|
27
|
Bisello A, Cardena R, Rossi S, Crisma M, Formaggio F, Santi S. Hydrogen-Bond-Assisted, Concentration-Dependent Molecular Dimerization of Ferrocenyl Hydantoins. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Annalisa Bisello
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Roberta Cardena
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Serena Rossi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Crisma
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131 Padova, Italy
| | - Fernando Formaggio
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Saverio Santi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
28
|
Singh A, Rani A, Gut J, Rosenthal PJ, Kumar V. Piperazine-linked 4-aminoquinoline-chalcone/ferrocenyl-chalcone conjugates: Synthesis and antiplasmodial evaluation. Chem Biol Drug Des 2017; 90:590-595. [DOI: 10.1111/cbdd.12982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Amandeep Singh
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
| | - Anu Rani
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
| | - Jiri Gut
- Department of Medicine; University of California; San Francisco CA USA
| | | | - Vipan Kumar
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
| |
Collapse
|
29
|
|
30
|
Saravanan V, Kannan A, Rajakumar P. Synthesis, characterization, optical and electrochemical properties and antifungal and anticancer activities of ferrocenyl conjugated novel dendrimers. NEW J CHEM 2017. [DOI: 10.1039/c6nj01120a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A new class of triazoloferrocenyl conjugates was prepared by copper(i) catalyzed click chemistry, which shows good antifungal activity against fungal pathogens, and also shows excellent anticancer activity against MCF-7 cells.
Collapse
Affiliation(s)
| | - Ayyavoo Kannan
- Department of Organic Chemistry
- University of Madras
- Chennai
- India
- Department of Chemistry
| | | |
Collapse
|
31
|
Singh A, Biot C, Viljoen A, Dupont C, Kremer L, Kumar K, Kumar V. 1H
-1,2,3-triazole-tethered uracil-ferrocene and uracil-ferrocenylchalcone conjugates: Synthesis and antitubercular evaluation. Chem Biol Drug Des 2016; 89:856-861. [DOI: 10.1111/cbdd.12908] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Amandeep Singh
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
| | - Christophe Biot
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle; University of Lille; Lille France
- CNRS; UMR 8576; Lille France
| | - Albertus Viljoen
- CNRS; Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; Montpellier France
| | - Christian Dupont
- CNRS; Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; Montpellier France
| | - Laurent Kremer
- CNRS; Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; Montpellier France
- INSERM; CPBS; Montpellier France
| | - Kewal Kumar
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
- Department of Applied Chemistry; Giani Zail Singh Campus College of Engineering and Technology; MRSPTU; Bathinda Punjab India
| | - Vipan Kumar
- Department of Chemistry; Guru Nanak Dev University; Amritsar Punjab India
| |
Collapse
|
32
|
Realista S, Quintal S, Martinho PN, Melato AI, Gil A, Esteves T, Carvalho MDD, Ferreira LP, Vaz PD, Calhorda MJ. Electrochemical studies and potential anticancer activity in ferrocene derivatives. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1257125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sara Realista
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Quintal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Niterói, Brazil
| | - Paulo N. Martinho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana I. Melato
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Adrià Gil
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Esteves
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria de Deus Carvalho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Liliana P. Ferreira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Physics Department, University of Coimbra, Coimbra, Portugal
| | - Pedro D. Vaz
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria José Calhorda
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
33
|
Leitch JA, Cook HP, Bhonoah Y, Frost CG. Use of the Hydantoin Directing Group in Ruthenium(II)-Catalyzed C–H Functionalization. J Org Chem 2016; 81:10081-10087. [DOI: 10.1021/acs.joc.6b02073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jamie A. Leitch
- Department
of Chemistry, University of Bath, Claverton Down, Bath, Somerset BA2 7AY, United Kingdom
| | - Hans P. Cook
- Department
of Chemistry, University of Bath, Claverton Down, Bath, Somerset BA2 7AY, United Kingdom
| | - Yunas Bhonoah
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Christopher G. Frost
- Department
of Chemistry, University of Bath, Claverton Down, Bath, Somerset BA2 7AY, United Kingdom
| |
Collapse
|
34
|
Zhou HY, Li M, Qu J, Jing S, Xu H, Zhao JZ, Zhang J, He MF. Effective Antitumor Candidates Based upon Ferrocenylseleno-Dopamine Derivatives: Growth Inhibition by Induction Cell Apoptosis and Antivascular Effects. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Jian Qu
- Institute
of Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | | | | | - Juan-Zhi Zhao
- Laboratory
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, People’s Republic of China
| | - Jian Zhang
- Laboratory
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, People’s Republic of China
| | | |
Collapse
|
35
|
Moore A, Ostermann J, Ortin Y, McGlinchey MJ. Organometallic derivatives of natural products: dicobalt hexacarbonyl complexes of geranyl-alkynes. NEW J CHEM 2016. [DOI: 10.1039/c6nj00622a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Di- and tri-cobalt carbonyl clusters bearing geranyl or neryl substituents offer potential routes to novel terpenoid systems.
Collapse
Affiliation(s)
- Angela Moore
- School of Chemistry
- University College Dublin
- Ireland
| | | | | | | |
Collapse
|
36
|
Fujii S. Expanding the chemical space of hydrophobic pharmacophores: the role of hydrophobic substructures in the development of novel transcription modulators. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00012f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions between biologically active compounds and their targets often involve hydrophobic interactions, and hydrophobicity also influences the pharmacokinetic profile.
Collapse
Affiliation(s)
- Shinya Fujii
- Institute of Molecular and Cellular Biosciences
- The University of Tokyo
- Tokyo 113-0032
- Japan
| |
Collapse
|
37
|
Wani WA, Baig U, Shreaz S, Shiekh RA, Iqbal PF, Jameel E, Ahmad A, Mohd-Setapar SH, Mushtaque M, Ting Hun L. Recent advances in iron complexes as potential anticancer agents. NEW J CHEM 2016. [DOI: 10.1039/c5nj01449b] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The iron complexes discussed in this review highlight their promising future as anticancer agents.
Collapse
Affiliation(s)
- Waseem A. Wani
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Umair Baig
- Center of Excellence for Scientific Research Collaboration with MIT
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Sheikh Shreaz
- Oral Microbiology Laboratory
- Department of Bioclinical Sciences
- Faculty of Dentistry
- Health Sciences Center
- Kuwait University
| | - Rayees Ahmad Shiekh
- Department of Chemistry
- Faculty of Science
- Taibah University
- Al Madinah Al Munawarrah
- Saudi Arabia
| | | | - Ehtesham Jameel
- Department of Chemistry
- B. R. Ambedkar Bihar University
- Muzaffarpur
- India
| | - Akil Ahmad
- Center of Lipids Engineering and Applied Research
- Ibnu Sina Institute for Industrial and Scientific Research
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Siti Hamidah Mohd-Setapar
- Center of Lipids Engineering and Applied Research
- Ibnu Sina Institute for Industrial and Scientific Research
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Md. Mushtaque
- Department of Physical and Molecular Sciences (Chemistry)
- Al-Falah University
- Faridabad
- India
| | - Lee Ting Hun
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| |
Collapse
|
38
|
Hussain RA, Badshah A, Pezzuto JM, Ahmed N, Kondratyuk TP, Park EJ. Ferrocene incorporated selenoureas as anticancer agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:197-208. [PMID: 25966308 DOI: 10.1016/j.jphotobiol.2015.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 11/25/2022]
Abstract
For a compound to be a best chemopreventive agent it should be a descent DNA binder and at the same time should be active against any of the three stages of carcinogenesis i.e. cancer initiation, cancer propagation and tumor growth. Most of the problems associated with chemotherapy can be overcome if the chemopreventive agent is active against all the three stages of cancer development. Cancer may be initiated by higher concentration of free radicals, inflammating agents and phase I enzymes (Cytochrome P450) in the body. Cancer propagation can be very efficiently controlled by inducing the phase II enzymes (glutathione S-transferases (GSTs), UDP-glucuronosyl transferases, and quinone reductases) in the body and cancer termination depends on the killing of the faulty cells i.e. cytotoxic actions. This article reports comprehensively the comparative DNA binding studies (with, cyclic voltammetry, UV-vis spectroscopy and viscometry), antioxidant activities (DPPH scavenging), anti-inflammatory activities (nitrite inhibition), phase I enzyme inhibition activities (aromatase inhibition), phase II enzyme induction studies (quinone reductase induction) and cytotoxic studies against neuroblastoma (MYCN2 and SK-N-SH), liver cancer (Hepa 1c1c7) and breast cancer (MCF-7) of seventeen ferrocene incorporated selenoureas.
Collapse
Affiliation(s)
- Raja Azadar Hussain
- Co-ordination Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Amin Badshah
- Co-ordination Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | | | - Nadeem Ahmed
- University of Hawaii at Hilo, United States; Phytoharmone Laboratory, Department of Plant Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | | | | |
Collapse
|
39
|
Ferrocenyl substituted oxo-derivatives of carboranes: Synthesis and some chemical transformations. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Abstract
The mechanisms of action of ferrocifens depend on several features: chemical structures, used concentrations, nature of cancer cells.
Collapse
Affiliation(s)
- Gérard Jaouen
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| | - Anne Vessières
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| | - Siden Top
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| |
Collapse
|
41
|
Kumar K, Pradines B, Madamet M, Amalvict R, Benoit N, Kumar V. 1H-1,2,3-triazole tethered isatin-ferrocene conjugates: Synthesis and in vitro antimalarial evaluation. Eur J Med Chem 2014; 87:801-4. [PMID: 25440881 PMCID: PMC7126053 DOI: 10.1016/j.ejmech.2014.10.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
1H-1,2,3-triazole tethered isatin-ferrocene conjugates were synthesized and evaluated for their antiplasmodial activities against chloroquine-susceptible (3D7) and chloroquine-resistant (W2) strains of Plasmodium falciparum. The conjugates 5f and 5h with an optimum combination of electron-withdrawing halogen substituent at C-5 position of isatin ring and a propyl chain, introduced as linker, proved to be most potent and non-cytotoxic among the series with IC50 values of 3.76 and 4.58 μM against 3D7 and W2 strains, respectively.
Collapse
Affiliation(s)
- Kewal Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Bruno Pradines
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France; Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Marilyn Madamet
- Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France; Centre National de Référence du Paludisme, Marseille, France; Equipe Résidente de Recherche en Infectiologie Tropicale, Institut de Recherche Biomédicale des Armées, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - Rémy Amalvict
- Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France; Centre National de Référence du Paludisme, Marseille, France; Equipe Résidente de Recherche en Infectiologie Tropicale, Institut de Recherche Biomédicale des Armées, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - Nicolas Benoit
- Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France; Centre National de Référence du Paludisme, Marseille, France; Equipe Résidente de Recherche en Infectiologie Tropicale, Institut de Recherche Biomédicale des Armées, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
42
|
Kumar K, Pradines B, Madamet M, Amalvict R, Kumar V. 1H-1,2,3-triazole tethered mono- and bis-ferrocenylchalcone-β-lactam conjugates: Synthesis and antimalarial evaluation. Eur J Med Chem 2014; 86:113-21. [DOI: 10.1016/j.ejmech.2014.08.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
43
|
Hanif M, Babak MV, Hartinger CG. Development of anticancer agents: wizardry with osmium. Drug Discov Today 2014; 19:1640-8. [PMID: 24955838 DOI: 10.1016/j.drudis.2014.06.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/22/2014] [Accepted: 06/16/2014] [Indexed: 12/20/2022]
Abstract
Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action.
Collapse
Affiliation(s)
- Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Maria V Babak
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
44
|
New examples of template catalysis based processes: glycerol-like units as efficient promoters for dehydrative nucleophilic substitutions of ferrocenylmethanol. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Kumar K, Biot C, Carrère-Kremer S, Kremer L, Guérardel Y, Roussel P, Kumar V. Base-Promoted Expedient Access to Spiroisatins: Synthesis and Antitubercular Evaluation of 1H-1,2,3-Triazole-Tethered Spiroisatin–Ferrocene and Isatin–Ferrocene Conjugates. Organometallics 2013. [DOI: 10.1021/om4009229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kewal Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Christophe Biot
- Unité de Glycobiologie Structurale et
Fonctionnelle, Université Lille 1, F-59650 Villeneuve
d’Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d’Ascq, France
| | - Séverine Carrère-Kremer
- Laboratoire de Dynamique des Interactions Membranaires
Normales et Pathologiques, UMR 5235 CNRS, Université Montpellier 2I, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires
Normales et Pathologiques, UMR 5235 CNRS, Université Montpellier 2I, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
- DIMNP, INSERM, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Yann Guérardel
- Unité de Glycobiologie Structurale et
Fonctionnelle, Université Lille 1, F-59650 Villeneuve
d’Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d’Ascq, France
| | - Pascal Roussel
- UMR CNRS 8181, Unitéde
Catalyse et de Chimie du
Solide (UCCS), ENSCL, University Lille Nord de France, F-59000 Lille, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
46
|
Affiliation(s)
- Susana S. Braga
- QOPNA, Department
of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- QOPNA, Department
of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
47
|
Vessières A. Metal carbonyl tracers and the ferrocifen family: Two facets of bioorganometallic chemistry. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2012.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem Rev 2013; 113:2958-3043. [DOI: 10.1021/cr300176g] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bagher Eftekhari-Sis
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran,
Iran
| | - Ali Akbari
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| |
Collapse
|
49
|
Kumar K, Carrère-Kremer S, Kremer L, Guérardel Y, Biot C, Kumar V. Azide–alkynecycloadditionen route towards 1H-1,2,3-triazole-tethered β-lactam–ferrocene and β-lactam–ferrocenylchalcone conjugates: synthesis and in vitro anti-tubercular evaluation. Dalton Trans 2013; 42:1492-500. [DOI: 10.1039/c2dt32148c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Grealis JP, Müller-Bunz H, Ortin Y, Casey M, McGlinchey MJ. Synthesis of Isobavachalcone and Some Organometallic Derivatives. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|