1
|
Kumari M, Jaiswal S, Shankar U, Gupta S, Pradeepkumar PI, Kumar A, Nayak D, Yadav V, Yadav P. Characterization of G-quadruplexes in the Helicobacter pylori genome and assessment of therapeutic potential of G4 ligands. Biotechnol Appl Biochem 2025; 72:29-42. [PMID: 39041320 DOI: 10.1002/bab.2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Helicobacter pylori, a leading human pathogen associated with duodenal ulcer and gastric cancer, presents a significant threat to human health due to increasing antibiotic resistance rates. This study investigates G-quadruplexes (G4s), which are non-canonical secondary structures form in G-rich regions within the H. pylori genome. Extensive research on G4s in eukaryotes has revealed their role in epigenetically regulating cellular processes like gene transcription, DNA replication, and oncogene expression. However, understanding of G4-mediated gene regulation in other organisms, especially bacterial pathogens, remains limited. Although G4 motifs have been extensively studied in a few bacterial species such as Mycobacterium, Streptococci, and Helicobacter, research on G4 motifs in other bacterial species is still sparse. Like in other organisms such as archaea, mammals, and viruses, G4s in H. pylori display a non-random distribution primarily situated within open reading frames of various protein-coding genes. The occurrence of G4s in functional regions of the genome and their conservation across different species indicates that their placement is not random, suggesting an evolutionary pressure to maintain these sequences at specific genomic sites. Moreover, G-quadruplexes show enrichment in specific gene classes, suggesting their potential involvement in regulating the expression of genes related to cell wall/membrane/envelope biogenesis, amino acid transport, and metabolism. This indicates a probable regulatory role for G4s in controlling the expression of genes essential for H. pylori survival and virulence. Biophysical techniques such as Circular Dichroism spectroscopy and Nuclear Magnetic Resonance were used to characterize G4 motifs within selected H. pylori genes. The study revealed that G-quadruplex ligand inhibited the growth of H. pylori, with minimal inhibitory concentrations in the low micromolar range. This suggests that targeting G4 structures could offer a promising approach for developing novel anti-H. pylori drugs.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Saumya Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Sharad Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | | | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
2
|
Völker J, Gindikin V, Breslauer KJ. Higher-Order DNA Secondary Structures and Their Transformations: The Hidden Complexities of Tetrad and Quadruplex DNA Structures, Complexes, and Modulatory Interactions Induced by Strand Invasion Events. Biomolecules 2024; 14:1532. [PMID: 39766239 PMCID: PMC11673204 DOI: 10.3390/biom14121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex). The resultant cascade of coupled alterations represents a potential pathway for the controlled unfolding of kinetically trapped DNA states, a feature that may be characteristic of biological regulatory mechanisms. Furthermore, the addition of selectively designed, exogenous invading oligonucleotides can enable the manipulation of noncanonical DNA conformations for biomedical applications. Secondly, our results highlight the importance of metastability, including the interplay between slower and faster kinetic processes in determining preferentially populated DNA states. Collectively, our data reveal the importance of sample history in defining state populations, which, in turn, determine preferred pathways for further folding steps, irrespective of the position of the thermodynamic equilibrium. Finally, our spectroscopic data reveal the impact of topological constraints on the differential stabilities of base-paired domains. We discuss how our collective observations yield insights into the coupled and uncoupled cascade of strand-invasion-induced transformations between noncanonical DNA forms, potentially as components of molecular wiring diagrams that regulate biological processes.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Vera Gindikin
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Pérez-Soto M, Ramos-Soriano J, Peñalver P, Belmonte-Reche E, O'Hagan MP, Cucchiarini A, Mergny JL, Galán MC, López López MC, Thomas MDC, Morales JC. DNA G-quadruplexes in the genome of Trypanosoma cruzi as potential therapeutic targets for Chagas disease: Dithienylethene ligands as effective antiparasitic agents. Eur J Med Chem 2024; 276:116641. [PMID: 38971047 DOI: 10.1016/j.ejmech.2024.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi and affects over 7 million people worldwide. The two actual treatments, Benznidazole (Bzn) and Nifurtimox, cause serious side effects due to their high toxicity leading to treatment abandonment by the patients. In this work, we propose DNA G-quadruplexes (G4) as potential therapeutic targets for this infectious disease. We have found 174 PQS per 100,000 nucleotides in the genome of T. cruzi and confirmed G4 formation of three frequent motifs. We synthesized a family of 14 quadruplex ligands based in the dithienylethene (DTE) scaffold and demonstrated their binding to these identified G4 sequences. Several DTE derivatives exhibited micromolar activity against epimastigotes of four different strains of T. cruzi, in the same concentration range as Bzn. Compounds L3 and L4 presented remarkable activity against trypomastigotes, the active form in blood, of T. cruzi SOL strain (IC50 = 1.5-3.3 μM, SI = 25-40.9), being around 40 times more active than Bzn and displaying much better selectivity indexes.
Collapse
Affiliation(s)
- Manuel Pérez-Soto
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | | | - Pablo Peñalver
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | - Efres Belmonte-Reche
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada / Andalusian Regional Government, PTS Granada, Av. de La Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Virgen de Las Nieves, Granada, Spain
| | - Michael P O'Hagan
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Anne Cucchiarini
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean-Louis Mergny
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - M Carmen Galán
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
| | - Manuel Carlos López López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - María Del Carmen Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - Juan Carlos Morales
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| |
Collapse
|
4
|
Kumar KR, Cowley MJ, Davis RL. The Next, Next-Generation of Sequencing, Promising to Boost Research and Clinical Practice. Semin Thromb Hemost 2024; 50:1039-1046. [PMID: 38733978 DOI: 10.1055/s-0044-1786756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Affiliation(s)
- Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord Clinical School, University of Sydney, Concord, NSW, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Mark J Cowley
- School of Clinical Medicine, UNSW Sydney, Randwick, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Randwick, NSW, Australia
| | - Ryan L Davis
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Neurogenetics Research Group, Kolling Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| |
Collapse
|
5
|
Lahnsteiner A, Ellmer V, Oberlercher A, Liutkeviciute Z, Schönauer E, Paulweber B, Aigner E, Risch A. G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients. Sci Rep 2024; 14:20215. [PMID: 39215018 PMCID: PMC11364803 DOI: 10.1038/s41598-024-70749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Collapse
Affiliation(s)
- Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Cancer Cluster Salzburg, Salzburg, Austria.
| | - Victoria Ellmer
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Anna Oberlercher
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Zita Liutkeviciute
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Esther Schönauer
- Division of Structural Biology, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angela Risch
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Roy SS, Bagri S, Vinayagamurthy S, Sengupta A, Then CR, Kumar R, Sridharan S, Chowdhury S. Artificially inserted strong promoter containing multiple G-quadruplexes induces long-range chromatin modification. eLife 2024; 13:RP96216. [PMID: 39158543 PMCID: PMC11333042 DOI: 10.7554/elife.96216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Although the role of G-quadruplex (G4) DNA structures has been suggested in chromosomal looping this was not tested directly. Here, to test causal function, an array of G4s, or control sequence that does not form G4s, were inserted within chromatin in cells. In vivo G4 formation of the inserted G4 sequence array, and not the control sequence, was confirmed using G4-selective antibody. Compared to the control insert, we observed a remarkable increase in the number of 3D chromatin looping interactions from the inserted G4 array. This was evident within the immediate topologically associated domain (TAD) and throughout the genome. Locally, recruitment of enhancer histone marks and the transcriptional coactivator p300/Acetylated-p300 increased in the G4-array, but not in the control insertion. Resulting promoter-enhancer interactions and gene activation were clear up to 5 Mb away from the insertion site. Together, these show the causal role of G4s in enhancer function and long-range chromatin interactions. Mechanisms of 3D topology are primarily based on DNA-bound architectural proteins that induce/stabilize long-range interactions. Involvement of the underlying intrinsic DNA sequence/structure in 3D looping shown here therefore throws new light on how long-range chromosomal interactions might be induced or maintained.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sulochana Bagri
- CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Soujanya Vinayagamurthy
- CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Avik Sengupta
- Department of Biotechnology, Indian Institute of Technology HyderabadHyderabadIndia
| | - Claudia Regina Then
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Rahul Kumar
- Department of Biotechnology, Indian Institute of Technology HyderabadHyderabadIndia
| | - Sriram Sridharan
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Shantanu Chowdhury
- CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
7
|
Ji J, Sharma A, Pokhrel P, Karna D, Pandey S, Zheng YR, Mao H. Dynamic Structures and Fast Transition Kinetics of Oxidized G-Quadruplexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400485. [PMID: 38678502 PMCID: PMC11357892 DOI: 10.1002/smll.202400485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Indexed: 05/01/2024]
Abstract
8-oxoguanines (8-oxoG) in cells form compromised G-quadruplexes (GQs), which may vary GQ mediated gene regulations. By mimicking molecularly crowded cellular environment using 40% DMSO or sucrose, here it is found that oxidized human telomeric GQs have stabilities close to the wild-type (WT) GQs. Surprisingly, while WT GQs show negative formation cooperativity between a Pt(II) binder and molecularly crowded environment, positive cooperativity is observed for oxidized GQ formation. Single-molecule mechanical unfolding reveals that 8-oxoG sequence formed more diverse and flexible structures with faster folding/unfolding transition kinetics, which facilitates the Pt(II) ligand to bind the best-fit structures with positive cooperativity. These findings offer new understanding on structures and properties of oxidized G-rich species in crowded environments. They also provide insights into the design of better ligands to target oxidized G-rich structures formed under oxidative cell stress.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Arpit Sharma
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yao-Rong Zheng
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
8
|
Inoue Y, Aoki S, Ito J, Hara S, Shirasuna K, Iwata H. Telomere length determines the mitochondrial copy number in blastocyst-stage embryos. Mitochondrion 2024; 77:101887. [PMID: 38663837 DOI: 10.1016/j.mito.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Telomere length (TL) and mitochondrial DNA copy number (mt-cn) are associated with embryonic development. Here, we investigated the correlation between TL and mt-cn in bovine embryos to determine whether TL regulates mt-cn. TL and mt-cn were closely correlated in embryos derived from six bulls. Treatment of embryos with a telomerase inhibitor (TMPyP) and siTERT shortened the TL and reduced mt-cn in blastocysts. RNA-sequencing of blastocysts developed with TMPyP revealed differentially expressed genes associated with transforming growth factor-β1 signaling and inflammation. In conclusion, TL regulates mt-cn in embryos.
Collapse
Affiliation(s)
- Yuki Inoue
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Sogo Aoki
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Shunsuke Hara
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Komei Shirasuna
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan.
| |
Collapse
|
9
|
Singh A, Jain N, Shankar U, Sharma TK, Kumar A. Characterization of G-quadruplex structures in genes involved in survival and pathogenesis of Acinetobacter baumannii as a potential drug target. Int J Biol Macromol 2024; 269:131806. [PMID: 38670179 DOI: 10.1016/j.ijbiomac.2024.131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Acinetobacter baumannii is a notorious pathogen that commonly thrives in hospital environments and is responsible for numerous nosocomial infections in humans. The burgeoning multi-drug resistance leaves relatively minimal options for treating the bacterial infection, posing a significant problem and prompting the identification of new approaches for tackling the same. This motivated us to focus on non-canonical nucleic acid structures, mainly G-quadruplexes, as drug targets. G-quadruplexes have recently been gaining attention due to their involvement in multiple bacterial and viral pathogenesis. Herein, we sought to explore conserved putative G-quadruplex motifs in A. baumannii. In silico analysis revealed the presence of eight conserved motifs in genes involved in bacterial survival and pathogenesis. The biophysical and biomolecular analysis confirmed stable G-quadruplex formation by the motifs and showed a high binding affinity with the well-reported G-quadruplex binding ligand, BRACO-19. BRACO-19 exposure also decreased the growth of bacteria and downregulated the expression of G-quadruplex-harboring genes. The biofilm-forming ability of the bacteria was also affected by BRACO-19 addition. Taking all these observations into account, we have shown here for the first time the potential of G-quadruplex structures as a promising drug target in Acinetobacter baumannii, for addressing the challenges posed by this infamous pathogen.
Collapse
Affiliation(s)
- Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Neha Jain
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar 382355, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
10
|
Majumder P, Shukla C, Arya A, Sharma S, Datta B. G-quadruplexes in MTOR and induction of autophagy. Sci Rep 2024; 14:2525. [PMID: 38291093 PMCID: PMC10827794 DOI: 10.1038/s41598-024-52561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
G-quadruplex (G4) structures have emerged as singular therapeutic targets for cancer and neurodegeneration. Autophagy, a crucial homeostatic mechanism of the cell, is often dysregulated in neurodegenerative diseases and cancers. We used QGRS mapper to identify 470 G4 sequences in MTOR, a key negative regulator of autophagy. We sought to identify a functional context by leveraging the effect of G4-targeting ligands on MTOR G4 sequences. The effect of Bis-4,3, a G4 selective dimeric carbocyanine dye, was compared with the known G4-stabilizing activity of the porphyrin, TMPyP4 in HeLa and SHSY-5Y cells. Our results show that treatment with G4-selective ligands downregulates MTOR RNA and mTOR protein expression levels. This is the first report describing G4 motifs in MTOR. This study indicates a possible role of G4 stabilizing ligands in induction of autophagy by downregulation of mTOR levels, albeit not precluding MTOR independent pathways.
Collapse
Affiliation(s)
- Piyali Majumder
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Chinmayee Shukla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Arjun Arya
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Shubham Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Bhaskar Datta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
11
|
Wang Y, Liu L, Gao Y, Zhao J, Liu C, Gong L, Yang Z. Development of a QM/MM(ABEEM) method for the deprotonation of neutral and cation radicals in the G-tetrad and GGX(8-oxo-G) tetrad. Phys Chem Chem Phys 2023; 26:504-516. [PMID: 38084041 DOI: 10.1039/d3cp04357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The rapid deprotonation of G˙+ in the DNA strand impedes positive charge (hole) transfer, whereas the slow deprotonation rate of G˙+ in the G-tetrad makes it a more suitable carrier for hole conduction. The QM/MM(ABEEM) combined method, which involves the integration of QM and the ABEEM polarizable force field (ABEEM PFF), was developed to investigate the deprotonation of neutral and cation free radicals in the G-tetrad and GGX(8-oxo-G) tetrad (xanthine and 8-oxoguanine dual substituted G-tetrad). By incorporating valence-state electronegativity piecewise functions χ*(r) and implementing charge local conservation conditions, QM/MM(ABEEM) possesses the advantage of accurately simulating charge transfer and polarization effect during deprotonation. The activation energy calculated by the QM method of X˙ is the lowest among other bases in the GGX(8-oxo-G) tetrad, which is supported by the computation of the average electronegativity calculated by ABEEM PFF. By utilizing QM/MM(ABEEM) with a two-way free energy perturbation method, the deprotonation activation energy of X˙ in the GGX(8-oxo-G) tetrad is determined to be 33.0 ± 2.1 kJ mol-1, while that of G˙+ in the G-tetrad is 20.7 ± 0.6 kJ mol-1, consistent with the experimental measurement of 20 ± 1.0 kJ mol-1. These results manifest that X˙ in the GGX(8-oxo-G) tetrad exhibits a slower deprotonation rate than G˙+ in the G-tetrad, suggesting that the GGX(8-oxo-G) tetrad may serve as a more favorable hole transport carrier. Furthermore, the unequal average electronegativities of bases in the GGX(8-oxo-G) tetrad impede the deprotonation rate. This study provides a potential foundation for investigating the microscopic mechanism of DNA electronic devices.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Linlin Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Yue Gao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Jiayue Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Lidong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Zhongzhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| |
Collapse
|
12
|
Neupane A, Chariker JH, Rouchka EC. Analysis of Nucleotide Variations in Human G-Quadruplex Forming Regions Associated with Disease States. Genes (Basel) 2023; 14:2125. [PMID: 38136947 PMCID: PMC10742762 DOI: 10.3390/genes14122125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
While the role of G quadruplex (G4) structures has been identified in cancers and metabolic disorders, single nucleotide variations (SNVs) and their effect on G4s in disease contexts have not been extensively studied. The COSMIC and CLINVAR databases were used to detect SNVs present in G4s to identify sequence level changes and their effect on the alteration of the G4 secondary structure. A total of 37,515 G4 SNVs in the COSMIC database and 2378 in CLINVAR were identified. Of those, 7236 COSMIC (19.3%) and 457 (19%) of the CLINVAR variants result in G4 loss, while 2728 (COSMIC) and 129 (CLINVAR) SNVs gain a G4 structure. The remaining variants potentially affect the folding energy without affecting the presence of a G4. Analysis of mutational patterns in the G4 structure shows a higher selective pressure (3-fold) in the coding region on the template strand compared to the reverse strand. At the same time, an equal proportion of SNVs were observed among intronic, promoter, and enhancer regions across strands.
Collapse
Affiliation(s)
- Aryan Neupane
- School of Graduate and Interdisciplinary Studies, University of Louisville, Louisville, KY 40292, USA;
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA;
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
| | - Eric C. Rouchka
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
13
|
Pathak R. G-Quadruplexes in the Viral Genome: Unlocking Targets for Therapeutic Interventions and Antiviral Strategies. Viruses 2023; 15:2216. [PMID: 38005893 PMCID: PMC10674748 DOI: 10.3390/v15112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
G-quadruplexes (G4s) are unique non-canonical four-stranded nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. Sequences with the potential to form quadruplex motifs (pG4s) are prevalent throughout the genomes of all organisms, spanning from prokaryotes to eukaryotes, and are enriched within regions of biological significance. In the past few years, the identification of pG4s within most of the Baltimore group viruses has attracted increasing attention due to their occurrence in regulatory regions of the genome and the subsequent implications for regulating critical stages of viral life cycles. In this context, the employment of specific G4 ligands has aided in comprehending the intricate G4-mediated regulatory mechanisms in the viral life cycle, showcasing the potential of targeting viral G4s as a novel antiviral strategy. This review offers a thorough update on the literature concerning G4s in viruses, including their identification and functional significance across most of the human-infecting viruses. Furthermore, it delves into potential therapeutic avenues targeting G4s, encompassing various G4-binding ligands, G4-interacting proteins, and oligonucleotide-based strategies. Finally, the article highlights both progress and challenges in the field, providing valuable insights into leveraging this unusual nucleic acid structure for therapeutic purposes.
Collapse
Affiliation(s)
- Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
14
|
Wulfridge P, Yan Q, Rell N, Doherty J, Jacobson S, Offley S, Deliard S, Feng K, Phillips-Cremins JE, Gardini A, Sarma K. G-quadruplexes associated with R-loops promote CTCF binding. Mol Cell 2023; 83:3064-3079.e5. [PMID: 37552993 PMCID: PMC10529333 DOI: 10.1016/j.molcel.2023.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/24/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
CTCF is a critical regulator of genome architecture and gene expression that binds thousands of sites on chromatin. CTCF genomic localization is controlled by the recognition of a DNA sequence motif and regulated by DNA modifications. However, CTCF does not bind to all its potential sites in all cell types, raising the question of whether the underlying chromatin structure can regulate CTCF occupancy. Here, we report that R-loops facilitate CTCF binding through the formation of associated G-quadruplex (G4) structures. R-loops and G4s co-localize with CTCF at many genomic regions in mouse embryonic stem cells and promote CTCF binding to its cognate DNA motif in vitro. R-loop attenuation reduces CTCF binding in vivo. Deletion of a specific G4-forming motif in a gene reduces CTCF binding and alters gene expression. Conversely, chemical stabilization of G4s results in CTCF gains and accompanying alterations in chromatin organization, suggesting a pivotal role for G4 structures in reinforcing long-range genome interactions through CTCF.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qingqing Yan
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel Rell
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Doherty
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Skye Jacobson
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Offley
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Deliard
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kelly Feng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer E Phillips-Cremins
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Gardini
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kavitha Sarma
- Gene expression and Regulation program, The Wistar Institute, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Lawler NB, Ou A, King JJ, Evans CW, Iyer KS, Smith NM. G4-DNA formation and chromatin remodelling are interdependent in human cells. Chem Sci 2023; 14:7681-7687. [PMID: 37476710 PMCID: PMC10355101 DOI: 10.1039/d3sc02533k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/18/2023] [Indexed: 07/22/2023] Open
Abstract
DNA G-quadruplexes (G4s) have been identified as important biological targets for transcriptional, translational, and epigenetic regulation. The stabilisation of G4s with small molecule ligands has emerged as a technique to regulate gene expression and as a potential therapeutic approach for human diseases. Here, we demonstrate that ligand stabilisation of G4s causes altered chromatin accessibility dependent on the targeting specificity of the molecule. In particular, stabilisation of a target G4 using the highly specific GTC365 ligand resulted in differential accessibility of 61 genomic regions, while the broad-targeting G4 ligand, GQC-05, stabilised many G4s and induced a global shift towards increased accessibility of gene promoter regions. Interestingly, while we observed distinct effects of each ligand on RNA expression levels and the induction of DNA double-stranded breaks, both ligands modified DNA damage response pathways. Our work represents the dual possibility of G4-stabilising ligands for specific or global chromatin modulation via unique targeting characteristics.
Collapse
Affiliation(s)
- Nicholas B Lawler
- School of Molecular Sciences, The University of Western Australia Perth WA Australia
- School of Physics, Mathematics and Computing, The University of Western Australia Perth WA Australia
| | - Arnold Ou
- School of Molecular Sciences, The University of Western Australia Perth WA Australia
| | - Jessica J King
- School of Molecular Sciences, The University of Western Australia Perth WA Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia Perth WA Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia Perth WA Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia Perth WA Australia
| |
Collapse
|
16
|
Tariq N, Xu C, Wang J, Kume T, Macgregor RB. Enhancement of the thermal stability of G-quadruplex structures by urea. Biophys Chem 2023; 299:107043. [PMID: 37285661 DOI: 10.1016/j.bpc.2023.107043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The solute urea has been used extensively as a denaturant in protein folding studies; double-stranded nucleic acid structures are also destabilized by urea, but comparatively less than proteins. In previous research, the solute has been shown to strongly destabilize folded G-quadruplex DNA structures. This contribution demonstrates the stabilizing effect of urea on the G-quadruplex formed by the oligodeoxyribonucleotide (ODN), G3T (d[5'-GGGTGGGTGGGTGGG-3']), and related sequences in the presence of sodium or potassium cations. Stabilization is observed up to 7 M urea, which was the highest concentration we investigated. The folded structure of G3T has three G-tetrads and three loops that consist of single thymine residues. ODNs related to G3T, in which the thymine residues in the loop are substituted by adenosine residues, also exhibit enhanced stability in the presence of molar concentrations of urea. The circular dichroism (CD) spectra of these ODNs in the presence of urea are consistent with that of a G-quadruplex. As the urea concentration increases, the spectral intensities of the peaks and troughs change, while their positions change very little. The heat-induced transition from the folded to unfolded state, Tm, was measured by monitoring the change in the UV absorption as a function of temperature. G-quadruplex structures with loops containing single bases exhibited large increases in Tm with increasing urea concentrations. These data imply that the loop region play a significant role in the thermal stability of tetra-helical DNA structures in the presence of the solute urea.
Collapse
Affiliation(s)
- Nabeel Tariq
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Christine Xu
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Jingtong Wang
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Takuma Kume
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
17
|
Stefos GC, Theodorou G, Politis I. Genomic distribution and polymorphism of G-quadruplex motifs occupying ovine promoters and enhancers. Mamm Genome 2023:10.1007/s00335-023-09988-x. [PMID: 36964238 PMCID: PMC10382345 DOI: 10.1007/s00335-023-09988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
G-quadruplexes are non-canonical DNA structures that are formed in regions with short runs of guanines. During the last decade they have gained considerable attention due to their involvement in basic cellular processes, linking them to several physiological processes and pathological conditions. Regulation of gene transcription is among the crucial roles that G-quadruplexes play in the cells. Several ways in which these structures affect transcription have been described, both negatively and positively. Recently, G-quadruplexes have been shown to be implicated in the three-dimensional rearrangement of the chromosomes that enables the interaction of enhancers and gene promoters during regulation of transcription. Sheep is a species for which almost no G-quadruplex-related studies have been conducted and thus research on this species is kept out from the progress that has been made in the G-quadruplex field. In this context, we investigated the DNA sequences with potential to form G-quadruplexes (G4-motifs) in the ovine enhancers and promoters. We describe the distribution of G4-motifs within the regulatory regions which is shown to be enriched in G4-motifs in a way similar to other mammals. Furthermore, our data suggest that G4-motifs promote promoter-enhancer interactions in sheep. The single nucleotide polymorphisms colocalizing with promoter- and enhancer-associated ovine G4-motifs constitute a considerable pool of polymorphism and given the crucial role of these specific G4-motifs on regulation of transcription, we suggest this polymorphism as an interesting target for ovine genetic studies.
Collapse
Affiliation(s)
- Georgios C Stefos
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece.
| | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece.
| | - Ioannis Politis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece
| |
Collapse
|
18
|
Roy SS, Sharma S, Rizvi ZA, Sinha D, Gupta D, Rophina M, Sehgal P, Sadhu S, Tripathy MR, Samal S, Maiti S, Scaria V, Sivasubbu S, Awasthi A, Harshan KH, Jain S, Chowdhury S. G4-binding drugs, chlorpromazine and prochlorperazine, repurposed against COVID-19 infection in hamsters. Front Mol Biosci 2023; 10:1133123. [PMID: 37006620 PMCID: PMC10061221 DOI: 10.3389/fmolb.2023.1133123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ or PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ and PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against viruses like SARS-CoV-2, which spread fast and accumulate mutations quickly.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Sharma
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Zaigham Abbas Rizvi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Dipanjali Sinha
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Mercy Rophina
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srikanth Sadhu
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Manas Ranjan Tripathy
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Sweety Samal
- Translational Health Science and Technology Institute, Faridabad, 411008, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-National Chemical Laboratory, Pune, 121001, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Awasthi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Krishnan H. Harshan
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Shantanu Chowdhury
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- *Correspondence: Shantanu Chowdhury,
| |
Collapse
|
19
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
20
|
Vinayagamurthy S, Bagri S, Mergny JL, Chowdhury S. Telomeres expand sphere of influence: emerging molecular impact of telomeres in non-telomeric functions. Trends Genet 2023; 39:59-73. [PMID: 36404192 PMCID: PMC7614491 DOI: 10.1016/j.tig.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
Although the impact of telomeres on physiology stands well established, a question remains: how do telomeres impact cellular functions at a molecular level? This is because current understanding limits the influence of telomeres to adjacent subtelomeric regions despite the wide-ranging impact of telomeres. Emerging work in two distinct aspects offers opportunities to bridge this gap. First, telomere-binding factors were found with non-telomeric functions. Second, locally induced DNA secondary structures called G-quadruplexes are notably abundant in telomeres, and gene regulatory regions genome wide. Many telomeric factors bind to G-quadruplexes for non-telomeric functions. Here we discuss a more general model of how telomeres impact the non-telomeric genome - through factors that associate at telomeres and genome wide - and influence cell-intrinsic functions, particularly aging, cancer, and pluripotency.
Collapse
Affiliation(s)
- Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jean-Louis Mergny
- Institute of Biophysics of the CAS, v.v.i. Královopolská 135, 612 65 Brno, Czech Republic; Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; GNR Knowledge Centre for Genome and Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India.
| |
Collapse
|
21
|
Brush GS. Anomalies in dye-terminator DNA sequencing caused by a natural G-quadruplex. PLoS One 2022; 17:e0279423. [PMID: 36574393 PMCID: PMC9794070 DOI: 10.1371/journal.pone.0279423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/24/2022] [Indexed: 12/29/2022] Open
Abstract
A G-rich DNA sequence from yeast that can form a non-canonical G-quadruplex structure was cloned into a plasmid vector and subjected to Sanger sequencing using dye-labeled dideoxynucleotides. Two different effects were observed. In one, presence of the G4 sequence on the template strand led to incorrect incorporation of an A residue at an internal position in the G4 sequence. In the other, the nascent strand caused attenuation of the readout coincident with synthesis of the G-rich DNA. The two effects are novel examples of disruption in DNA synthesis caused by a G4 sequence. These results provide a new example of a DNA structure that could influence genomic stability in human cells.
Collapse
Affiliation(s)
- George S. Brush
- Department of Oncology, Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine,Detroit, MI, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wang X, Chen S, Zhao Z, Chen F, Huang Y, Guo X, Lei L, Wang W, Luo Y, Yu H, Wang J. Genomic G-quadruplex folding triggers a cytokine-mediated inflammatory feedback loop to aggravate inflammatory diseases. iScience 2022; 25:105312. [PMID: 36304116 PMCID: PMC9593248 DOI: 10.1016/j.isci.2022.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
DNA G-quadruplex is a non-canonical secondary structure that could epigenetically regulate gene expression. To investigate the regulating role of G-quadruplex, we devised an integrating method to perform the algorithm profiling and genome-wide analysis for the dynamic change of genomic G-quadruplex and RNA profiles in rat nucleus pulposus cells by inducing G-quadruplex folding with multiple stabilizers. A group of genes potentially regulated by G-quadruplex and involved in the inflammation process has been identified. We found that G-quadruplex folding triggers inflammation response by upregulating inflammatory cytokines, which could promote G-quadruplex folding in a manner of positive feedback loop. Moreover, we confirmed that G-quadruplex is a marker indicating elevated inflammatory status and G-quadruplex folding facilitates the development of inflammatory diseases using in vivo intervertebral disc degeneration models. The crosstalk between G-quadruplex and inflammatory cytokines plays a vital role in regulating inflammation-derived diseases, which may provide new insights into the blocking target.
Collapse
Affiliation(s)
- Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shunlun Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuoyang Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Huang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xingyu Guo
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Linchuan Lei
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wantao Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yanxin Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
23
|
Interface of G-quadruplex with both stabilizing and destabilizing ligands for targeting various diseases. Int J Biol Macromol 2022; 219:414-427. [DOI: 10.1016/j.ijbiomac.2022.07.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
|
24
|
Lopina OD, Fedorov DA, Sidorenko SV, Bukach OV, Klimanova EA. Sodium Ions as Regulators of Transcription in Mammalian Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:789-799. [PMID: 36171659 DOI: 10.1134/s0006297922080107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
The maintenance of an uneven distribution of Na+ and K+ ions between the cytoplasm and extracellular medium is the basis for the functioning of any animal cell. Changes in the intracellular ratio of these cations occur in response to numerous stimuli and are important for the cell activity regulation. Numerous experimental data have shown that gene transcription in mammalian cells can be regulated by changes in the intracellular [Na+]i/[K+]i ratio. Here, we discuss possible mechanisms of such regulation in various cell types, with special attention to the [Ca2+]-independent signaling pathways that suggest the presence of an intracellular sensor of monovalent cations. As such sensor, we propose the secondary structures of nucleic acids called G-quadruplexes. They are widely represented in mammalian genomes and are often found in the promoters of genes encoding transcription factors.
Collapse
Affiliation(s)
- Olga D Lopina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.
| | - Dmitrii A Fedorov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | | | - Olesya V Bukach
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | | |
Collapse
|
25
|
Feng Y, Luo Z, Huang R, Yang X, Cheng X, Zhang W. Epigenomic Features and Potential Functions of K+ and Na+ Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2022; 23:ijms23158404. [PMID: 35955535 PMCID: PMC9368837 DOI: 10.3390/ijms23158404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
DNA G-quadruplexes (G4s) are non-canonical four-stranded DNA structures involved in various biological processes in eukaryotes. Molecularly crowded solutions and monovalent cations have been reported to stabilize in vitro and in vivo G4 formation. However, how K+ and Na+ affect G4 formation genome-wide is still unclear in plants. Here, we conducted BG4-DNA-IP-seq, DNA immunoprecipitation with anti-BG4 antibody coupled with sequencing, under K+ and Na+ + PEG conditions in vitro. We found that K+-specific IP-G4s had a longer peak size, more GC and PQS content, and distinct AT and GC skews compared to Na+-specific IP-G4s. Moreover, K+- and Na+-specific IP-G4s exhibited differential subgenomic enrichment and distinct putative functional motifs for the binding of certain trans-factors. More importantly, we found that K+-specific IP-G4s were more associated with active marks, such as active histone marks, and low DNA methylation levels, as compared to Na+-specific IP-G4s; thus, K+-specific IP-G4s in combination with active chromatin features facilitate the expression of overlapping genes. In addition, K+- and Na+-specific IP-G4 overlapping genes exhibited differential GO (gene ontology) terms, suggesting they may have distinct biological relevance in rice. Thus, our study, for the first time, explores the effects of K+ and Na+ on global G4 formation in vitro, thereby providing valuable resources for functional G4 studies in rice. It will provide certain G4 loci for the biotechnological engineering of rice in the future.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Ranran Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Xueming Yang
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
- Correspondence: ; Tel.: +86-25-84396610; Fax: +86-25-84396302
| |
Collapse
|
26
|
Castelli M, Doria F, Freccero M, Colombo G, Moroni E. Studying the Dynamics of a Complex G-Quadruplex System: Insights into the Comparison of MD and NMR Data. J Chem Theory Comput 2022; 18:4515-4528. [PMID: 35666124 PMCID: PMC9281369 DOI: 10.1021/acs.jctc.2c00291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecular dynamics
(MD) simulations are coming of age in the study
of nucleic acids, including specific tertiary structures such as G-quadruplexes.
While being precious for providing structural and dynamic information
inaccessible to experiments at the atomistic level of resolution,
MD simulations in this field may still be limited by several factors.
These include the force fields used, different models for ion parameters,
ionic strengths, and water models. We address various aspects of this
problem by analyzing and comparing microsecond-long atomistic simulations
of the G-quadruplex structure formed by the human immunodeficiency
virus long terminal repeat (HIV LTR)-III sequence for which nuclear
magnetic resonance (NMR) structures are available. The system is studied
in different conditions, systematically varying the ionic strengths,
ion numbers, and water models. We comparatively analyze the dynamic
behavior of the G-quadruplex motif in various conditions and assess
the ability of each simulation to satisfy the nuclear magnetic resonance
(NMR)-derived experimental constraints and structural parameters.
The conditions taking into account K+-ions to neutralize
the system charge, mimicking the intracellular ionic strength, and
using the four-atom water model are found to be the best in reproducing
the experimental NMR constraints and data. Our analysis also reveals
that in all of the simulated environments residues belonging to the
duplex moiety of HIV LTR-III exhibit the highest flexibility.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.,Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
27
|
Tariq N, Kume T, Feroze UN, Macgregor RB. The Pressure Dependence of the Stability of the G-quadruplex Formed by d(TGGGGT). Life (Basel) 2022; 12:life12050765. [PMID: 35629431 PMCID: PMC9144232 DOI: 10.3390/life12050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
The G-quadruplex (GQ), a tetrahelix formed by guanine-rich nucleic acid sequences, is a potential drug target for several diseases. Monomolecular GQs are stabilized by guanine tetrads and non-guanine regions that form loops. Hydrostatic pressure destabilizes the folded, monomolecular GQ structures. In this communication, we present data on the effect of pressure on the conformational stability of the tetramolecular GQ, d[5′-TGGGGT-3′]4. This molecule does not have loops linking the tetrads; thus, its physical properties presumably reflect those of the tetrads alone. Understanding the properties of the tetrads will aid in understanding the contribution of the other structural components to the stability of GQ DNA. By measuring UV light absorption, we have studied the effect of hydrostatic pressure on the thermal stability of the tetramolecular d[5′-TGGGGT-3′]4 in the presence of sodium ions. Our data show that, unlike monomolecular GQ, the temperature at which d[5′-TGGGGT-3′]4 dissociates to form the constituent monomers is nearly independent of pressure up to 200 MPa. This implies that there is no net molar volume difference (∆V) between the GQ and the unfolded random-coil states. This finding further suggests that the large negative ∆V values for the unfolding of monomolecular GQ are due to the presence of the loop regions in those structures.
Collapse
|
28
|
Ghafouri-Fard S, Abak A, Baniahmad A, Hussen BM, Taheri M, Jamali E, Dinger ME. Interaction between non-coding RNAs, mRNAs and G-quadruplexes. Cancer Cell Int 2022; 22:171. [PMID: 35488342 PMCID: PMC9052686 DOI: 10.1186/s12935-022-02601-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
G-quadruplexes are secondary helical configurations established between guanine-rich nucleic acids. The structure is seen in the promoter regions of numerous genes under certain situations. Predicted G-quadruplex-forming sequences are distributed across the genome in a non-random way. These structures are formed in telomeric regions of the human genome and oncogenic promoter G-rich regions. Identification of mechanisms of regulation of stability of G-quadruplexes has practical significance for understanding the molecular basis of genetic diseases such as cancer. A number of non-coding RNAs such as H19, XIST, FLJ39051 (GSEC), BC200 (BCYRN1), TERRA, pre-miRNA-1229, pre-miRNA-149 and miR-1587 have been found to contain G-quadraplex-forming regions or affect configuration of these structures in target genes. In the current review, we outline the recent research on the interaction between G-quadruplexes and non-coding RNAs, other RNA transcripts and DNA molecules.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Teng X, Dai Y, Li J. Methodological advances of bioanalysis and biochemical targeting of intracellular G-quadruplexes. EXPLORATION (BEIJING, CHINA) 2022; 2:20210214. [PMID: 37323879 PMCID: PMC10191030 DOI: 10.1002/exp.20210214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 06/17/2023]
Abstract
G-quadruplexes (G4s) are a kind of non-canonical nucleic acid secondary structures, which involve in various biological processes in living cells. The relationships between G4s and human diseases, such as tumors, neurodegenerative diseases, and viral infections, have attracted great attention in the last decade. G4s are considered as a promising new target for disease treatment. For instance, G4 ligands are reported to be potentially effective in SARS-COV-2 treatment. However, because of the lack of analytical methods with high performance for the identification of intracellular G4s, the detailed mechanisms of the biofunctions of G4s remain elusive. Meanwhile, through demonstrating the principles of how the G4s systematically modulate the cellular processes with advanced detection methods, biochemical targeting of G4s in living cells can be realized by chemical and biological tools and becomes useful in biomedicine. This review highlights recent methodological advances about intracellular G4s and provides an outlook on the improvement of the bioanalysis and biochemical targeting tools of G4s.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijingChina
| | - Yicong Dai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijingChina
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
30
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
31
|
Stability and context of intercalated motifs (i-motifs) for biological applications. Biochimie 2022; 198:33-47. [PMID: 35259471 DOI: 10.1016/j.biochi.2022.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
DNA is naturally dynamic and can self-assemble into alternative secondary structures including the intercalated motif (i-motif), a four-stranded structure formed in cytosine-rich DNA sequences. Until recently, i-motifs were thought to be unstable in physiological cellular environments. Studies demonstrating their existence in the human genome and role in gene regulation are now shining light on their biological relevance. Herein, we review the effects of epigenetic modifications on i-motif structure and stability, and biological factors that affect i-motif formation within cells. Furthermore, we highlight recent progress in targeting i-motifs with structure-specific ligands for biotechnology and therapeutic purposes.
Collapse
|
32
|
The Dynamic Regulation of G-Quadruplex DNA Structures by Cytosine Methylation. Int J Mol Sci 2022; 23:ijms23052407. [PMID: 35269551 PMCID: PMC8910436 DOI: 10.3390/ijms23052407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
It is well known that certain non B-DNA structures, including G-quadruplexes, are key elements that can regulate gene expression. Here, we explore the theory that DNA modifications, such as methylation of cytosine, could act as a dynamic switch by promoting or alleviating the structural formation of G-quadruplex structures in DNA or RNA. The interaction between epigenetic DNA modifications, G4 formation, and the 3D architecture of the genome is a complex and developing area of research. Although there is growing evidence for such interactions, a great deal still remains to be discovered. In vivo, the potential effect that cytosine methylation may have on the formation of DNA structures has remained largely unresearched, despite this being a potential mechanism through which epigenetic factors could regulate gene activity. Such interactions could represent novel mechanisms for important biological functions, including altering nucleosome positioning or regulation of gene expression. Furthermore, promotion of strand-specific G-quadruplex formation in differentially methylated genes could have a dynamic role in directing X-inactivation or the control of imprinting, and would be a worthwhile focus for future research.
Collapse
|
33
|
Ma X, Feng Y, Yang Y, Li X, Shi Y, Tao S, Cheng X, Huang J, Wang XE, Chen C, Monchaud D, Zhang W. Genome-wide characterization of i-motifs and their potential roles in the stability and evolution of transposable elements in rice. Nucleic Acids Res 2022; 50:3226-3238. [PMID: 35188565 PMCID: PMC8989525 DOI: 10.1093/nar/gkac121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
I-motifs (iMs) are non-canonical DNA secondary structures that fold from cytosine (C)-rich genomic DNA regions termed putative i-motif forming sequences (PiMFSs). The structure of iMs is stabilized by hemiprotonated C-C base pairs, and their functions are now suspected in key cellular processes in human cells such as genome stability and regulation of gene transcription. In plants, their biological relevance is still largely unknown. Here, we characterized PiMFSs with high potential for i-motif formation in the rice genome by developing and applying a protocol hinging on an iMab antibody-based immunoprecipitation (IP) coupled with high-throughput sequencing (seq), consequently termed iM-IP-seq. We found that PiMFSs had intrinsic subgenomic distributions, cis-regulatory functions and an intricate relationship with DNA methylation. We indeed found that the coordination of PiMFSs with DNA methylation may affect dynamics of transposable elements (TEs) among different cultivated Oryza subpopulations or during evolution of wild rice species. Collectively, our study provides first and unique insights into the biology of iMs in plants, with potential applications in plant biotechnology for improving important agronomic rice traits.
Collapse
Affiliation(s)
- Xing Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Ying Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Xin Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan410125, P.R. China
| | - Yining Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Jian Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiu-e Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Caiyan Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan410125, P.R. China
| | - David Monchaud
- Institut de Chimie Moleculaire, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
34
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
35
|
Zyner KG, Simeone A, Flynn SM, Doyle C, Marsico G, Adhikari S, Portella G, Tannahill D, Balasubramanian S. G-quadruplex DNA structures in human stem cells and differentiation. Nat Commun 2022; 13:142. [PMID: 35013231 PMCID: PMC8748810 DOI: 10.1038/s41467-021-27719-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of cell identity during embryonic development involves the activation of specific gene expression programmes and is underpinned by epigenetic factors including DNA methylation and histone post-translational modifications. G-quadruplexes are four-stranded DNA secondary structures (G4s) that have been implicated in transcriptional regulation and cancer. Here, we show that G4s are key genomic structural features linked to cellular differentiation. We find that G4s are highly abundant in human embryonic stem cells and are lost during lineage specification. G4s are prevalent in enhancers and promoters. G4s that are found in common between embryonic and downstream lineages are tightly linked to transcriptional stabilisation of genes involved in essential cellular functions as well as transitions in the histone post-translational modification landscape. Furthermore, the application of small molecules that stabilise G4s causes a delay in stem cell differentiation, keeping cells in a more pluripotent-like state. Collectively, our data highlight G4s as important epigenetic features that are coupled to stem cell pluripotency and differentiation.
Collapse
Affiliation(s)
- Katherine G Zyner
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Angela Simeone
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sean M Flynn
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Colm Doyle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Giovanni Marsico
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Santosh Adhikari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Guillem Portella
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
36
|
Hisano O, Ito T, Miura F. Short single-stranded DNAs with putative non-canonical structures comprise a new class of plasma cell-free DNA. BMC Biol 2021; 19:225. [PMID: 34649537 PMCID: PMC8518174 DOI: 10.1186/s12915-021-01160-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Background Cell-free DNA (cfDNA), which is extracellular DNA present in the circulating plasma and other body fluids, is currently investigated as a minimally invasive, highly informative biomarker. While nucleosome-sized cfDNA fragments have been investigated intensively, shorter DNA fragments in the plasma have not been studied due to several technical limitations. Results We aimed to investigate the existence of shorter cfDNA fragments in the blood. Using an improved cfDNA purification protocol and a 3′-end-labeling method, we found DNA fragments of approximately 50 nucleotides in length in the human plasma, present at a molar concentration comparable to that of nucleosome-sized fragments. Unfortunately, these short fragments cannot be recovered by widely used cfDNA isolation methods. In addition, they are composed of single-stranded DNA (ssDNA), thus escaping detection in previous studies. Therefore, we established a library-preparation protocol based on our unique ssDNA ligation technique and applied it to the isolated cfDNA. Deep sequencing of these libraries revealed that the short fragments are derived from hundreds of thousands of genomic sites in open chromatin regions and enriched with transcription factor-binding sites. Remarkably, antisense strands of putative G-quadruplex motifs occupy as much as one-third of the peaks by these short fragments. Conclusions We propose a new class of plasma cfDNA composed of short single-stranded fragments that potentially form non-canonical DNA structures. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01160-8.
Collapse
Affiliation(s)
- Osamu Hisano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
37
|
Revikumar A, Kashyap V, Palollathil A, Aravind A, Raguraman R, Kumar KMK, Vijayakumar M, Prasad TSK, Raju R. Multiple G-quadruplex binding ligand induced transcriptomic map of cancer cell lines. J Cell Commun Signal 2021; 16:129-135. [PMID: 34309794 DOI: 10.1007/s12079-021-00637-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022] Open
Abstract
The G-quadruplexes (G4s) are a class of DNA secondary structures with guanine rich DNA sequences that can fold into four stranded non-canonical structures. At the genomic level, their pivotal role is well established in DNA replication, telomerase functions, constitution of topologically associating domains, and the regulation of gene expression. Genome instability mediated by altered G4 formation and assembly has been associated with multiple disorders including cancers and neurodegenerative disorders. Multiple tools have also been developed to predict the potential G4 regions in genomes and the whole genome G4 maps are also being derived through sequencing approaches. Enrichment of G4s in the cis-regulatory elements of genes associated with tumorigenesis has accelerated the quest for identification of G4-DNA binding ligands (G4DBLs) that can selectively bind and regulate the expression of such specific genes. In this context, the analysis of G4DBL responsive transcriptome in diverse cancer cell lines is inevitable for assessment of the specificity of novel G4DBLs. Towards this, we assembled the transcripts differentially regulated by different G4DBLs and have also identified a core set of genes regulated in diverse cancer cell lines in response to 3 or more of these ligands. With the mode of action of G4DBLs towards topology shifts, folding, or disruption of G4 structure being currently visualized, we believe that this dataset will serve as a platform for assembly of G4DBL responsive transcriptome for comparative analysis of G4DBLs in multiple cancer cells based on the expression of specific cis-regulatory G4 associated genes in the future.
Collapse
Affiliation(s)
- Amjesh Revikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.
| | - Vivek Kashyap
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Rajeswari Raguraman
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.,Health Science Centre, University of Oklahoma, Oklahoma City, USA
| | | | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | | | - Rajesh Raju
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India.
| |
Collapse
|
38
|
Jara-Espejo M, Hawkins MTR, Fogalli GB, Line SRP. Folding Stability of Pax9 Intronic G-Quadruplex Correlates with Relative Molar Size in Eutherians. Mol Biol Evol 2021; 38:1860-1873. [PMID: 33355664 PMCID: PMC8097303 DOI: 10.1093/molbev/msaa331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eutherian dentition has been the focus of a great deal of studies in the areas of evolution, development, and genomics. The development of molar teeth is regulated by an antero-to-posterior cascade mechanism of activators and inhibitors molecules, where the relative sizes of the second (M2) and third (M3) molars are dependent of the inhibitory influence of the first molar (M1). Higher activator/inhibitor ratios will result in higher M2/M1 or M3/M1. Pax9 has been shown to play a key role in tooth development. We have previously shown that a G-quadruplex in the first intron of Pax9 can modulate the splicing efficiency. Using a sliding window approach with we analyzed the association of the folding energy (Mfe) of the Pax9 first intron with the relative molar sizes in 42 mammalian species, representing 9 orders. The Mfe of two regions located in the first intron of Pax9 were shown to be significantly associated with the M2/M1 and M3/M1 areas and mesiodistal lengths. The first region is located at the intron beginning and can fold into a stable G4 structure, whereas the second is downstream the G4 and 265 bp from intron start. Across species, the first intron of Pax9 varied in G-quadruplex structural stability. The correlations were further increased when the Mfe of the two sequences were added. Our results indicate that this region has a role in the evolution of the mammalian dental pattern by influencing the relative size of the molars.
Collapse
Affiliation(s)
- Manuel Jara-Espejo
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Brazil
| | - Melissa T R Hawkins
- Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | | |
Collapse
|
39
|
Guiblet WM, DeGiorgio M, Cheng X, Chiaromonte F, Eckert KA, Huang YF, Makova KD. Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res 2021; 31:1136-1149. [PMID: 34187812 PMCID: PMC8256861 DOI: 10.1101/gr.269589.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Approximately 1% of the human genome has the ability to fold into G-quadruplexes (G4s)-noncanonical strand-specific DNA structures forming at G-rich motifs. G4s regulate several key cellular processes (e.g., transcription) and have been hypothesized to participate in others (e.g., firing of replication origins). Moreover, G4s differ in their thermostability, and this may affect their function. Yet, G4s may also hinder replication, transcription, and translation and may increase genome instability and mutation rates. Therefore, depending on their genomic location, thermostability, and functionality, G4 loci might evolve under different selective pressures, which has never been investigated. Here we conducted the first genome-wide analysis of G4 distribution, thermostability, and selection. We found an overrepresentation, high thermostability, and purifying selection for G4s within genic components in which they are expected to be functional-promoters, CpG islands, and 5' and 3' UTRs. A similar pattern was observed for G4s within replication origins, enhancers, eQTLs, and TAD boundary regions, strongly suggesting their functionality. In contrast, G4s on the nontranscribed strand of exons were underrepresented, were unstable, and evolved neutrally. In general, G4s on the nontranscribed strand of genic components had lower density and were less stable than those on the transcribed strand, suggesting that the former are avoided at the RNA level. Across the genome, purifying selection was stronger at stable G4s. Our results suggest that purifying selection preserves the sequences of functional G4s, whereas nonfunctional G4s are too costly to be tolerated in the genome. Thus, G4s are emerging as fundamental, functional genomic elements.
Collapse
Affiliation(s)
- Wilfried M Guiblet
- Bioinformatics and Genomics Graduate Program, Penn State University, University Park, Pennsylvania 16802, USA
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Xiaoheng Cheng
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, Pennsylvania 16802, USA
- Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kristin A Eckert
- Center for Medical Genomics, Penn State University, University Park and Hershey, Pennsylvania 16802, USA
- Department of Pathology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Yi-Fei Huang
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, Pennsylvania 16802, USA
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, Pennsylvania 16802, USA
| |
Collapse
|
40
|
Masud T, Soong C, Xu H, Biele J, Bjornson S, McKinney S, Aparicio S. Ubiquitin-mediated DNA damage response is synthetic lethal with G-quadruplex stabilizer CX-5461. Sci Rep 2021; 11:9812. [PMID: 33963218 PMCID: PMC8105411 DOI: 10.1038/s41598-021-88988-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
CX-5461 is a G-quadruplex (G4) ligand currently in trials with initial indications of clinical activity in cancers with defects in homologous recombination repair. To identify more genetic defects that could sensitize tumors to CX-5461, we tested synthetic lethality for 480 DNA repair and genome maintenance genes to CX-5461, pyridostatin (PDS), a structurally unrelated G4-specific stabilizer, and BMH-21, which binds GC-rich DNA but not G4 structures. We identified multiple members of HRD, Fanconi Anemia pathways, and POLQ, a polymerase with a helicase domain important for G4 structure resolution. Significant synthetic lethality was observed with UBE2N and RNF168, key members of the DNA damage response associated ubiquitin signaling pathway. Loss-of-function of RNF168 and UBE2N resulted in significantly lower cell survival in the presence of CX-5461 and PDS but not BMH-21. RNF168 recruitment and histone ubiquitination increased with CX-5461 treatment, and nuclear ubiquitination response frequently co-localized with G4 structures. Pharmacological inhibition of UBE2N acted synergistically with CX-5461. In conclusion, we have uncovered novel genetic vulnerabilities to CX-5461 with potential significance for patient selection in future clinical trials.
Collapse
Affiliation(s)
- Tehmina Masud
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Charles Soong
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Hong Xu
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Justina Biele
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Saelin Bjornson
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Steven McKinney
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
41
|
Cave JW, Willis DE. G-quadruplex regulation of neural gene expression. FEBS J 2021; 289:3284-3303. [PMID: 33905176 DOI: 10.1111/febs.15900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures characterized by stacked tetrads of guanosine bases. These structures are widespread throughout mammalian genomic DNA and RNA transcriptomes, and prevalent across all tissues. The role of G-quadruplexes in cancer is well-established, but there has been a growing exploration of these structures in the development and homeostasis of normal tissue. In this review, we focus on the roles of G-quadruplexes in directing gene expression in the nervous system, including the regulation of gene transcription, mRNA processing, and trafficking, as well as protein translation. The role of G-quadruplexes and their molecular interactions in the pathology of neurological diseases is also examined. Outside of cancer, there has been only limited exploration of G-quadruplexes as potential intervention targets to treat disease or injury. We discuss studies that have used small-molecule ligands to manipulate G-quadruplex stability in order to treat disease or direct neural stem/progenitor cell proliferation and differentiation into therapeutically relevant cell types. Understanding the many roles that G-quadruplexes have in the nervous system not only provides critical insight into fundamental molecular mechanisms that control neurological function, but also provides opportunities to identify novel therapeutic targets to treat injury and disease.
Collapse
Affiliation(s)
- John W Cave
- InVitro Cell Research LLC, Englewood, NJ, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
42
|
Cagirici HB, Budak H, Sen TZ. Genome-wide discovery of G-quadruplexes in barley. Sci Rep 2021; 11:7876. [PMID: 33846409 PMCID: PMC8041835 DOI: 10.1038/s41598-021-86838-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures with closely spaced guanine bases forming square planar G-quartets. Aberrant formation of G4 structures has been associated with genomic instability. However, most plant species are lacking comprehensive studies of G4 motifs. In this study, genome-wide identification of G4 motifs in barley was performed, followed by a comparison of genomic distribution and molecular functions to other monocot species, such as wheat, maize, and rice. Similar to the reports on human and some plants like wheat, G4 motifs peaked around the 5′ untranslated region (5′ UTR), the first coding domain sequence, and the first intron start sites on antisense strands. Our comparative analyses in human, Arabidopsis, maize, rice, and sorghum demonstrated that the peak points could be erroneously merged into a single peak when large window sizes are used. We also showed that the G4 distributions around genic regions are relatively similar in the species studied, except in the case of Arabidopsis. G4 containing genes in monocots showed conserved molecular functions for transcription initiation and hydrolase activity. Additionally, we provided examples of imperfect G4 motifs.
Collapse
Affiliation(s)
- H Busra Cagirici
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture - Agricultural Research Service, 800 Buchanan St, Albany, CA, 94710, USA
| | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT, USA.,Agrogen, LLC., Omaha, NE, USA
| | - Taner Z Sen
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture - Agricultural Research Service, 800 Buchanan St, Albany, CA, 94710, USA.
| |
Collapse
|
43
|
Dey U, Sarkar S, Teronpi V, Yella VR, Kumar A. G-quadruplex motifs are functionally conserved in cis-regulatory regions of pathogenic bacteria: An in-silico evaluation. Biochimie 2021; 184:40-51. [PMID: 33548392 DOI: 10.1016/j.biochi.2021.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The role of G-quadruplexes in the cellular physiology of human pathogenesis is an intriguing area of research. Nonetheless, their functional roles and evolutionary conservation have not been compared comprehensively in pathogenic forms of various bacterial genera and species. In the current in silico study, we addressed the role of G-quadruplex-forming sequences (G4 motifs) in the context of cis-regulation, expression variation, regulatory networks, gene orthology and ontology. Genome-wide screening across seven pathogenic genomes using the G4Hunter tool revealed the significant prevalence of G4 motifs in cis-regulatory regions compared to the intragenic regions. Significant conservation of G4 motifs was observed in the regulatory region of 300 orthologous genes. Further analysis of published ChIP-Seq data (Minch et al., 2015) of 91 DNA-binding proteins of the M. tuberculosis genome revealed significant links between G4 motifs and target sites of transcriptional regulators. Interestingly, the transcription factors entangled with virulence, in specific, CsoR, Rv0081, DevR/DosR, and TetR family are found to have G4 motifs in their target regulatory regions. Overall the current study applies positional-functional relationship computation to delve into the cis-regulation of G-quadruplex structures in the context of gene orthology in pathogenic bacteria.
Collapse
Affiliation(s)
- Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Sharmilee Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Valentina Teronpi
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, 784184, Assam, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522502, Andhra Pradesh, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
44
|
Lewis BW, Bisballe N, Santella M, Summers PA, Vannier JB, Kuimova MK, Laursen BW, Vilar R. Assessing The Key Photophysical Properties of Triangulenium Dyes for DNA Binding by Alteration of the Fluorescent Core. Chemistry 2021; 27:2523-2536. [PMID: 33105523 DOI: 10.1002/chem.202003875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 11/09/2022]
Abstract
Four-stranded G-quadruplex (G4) DNA is a non-canonical DNA topology that has been proposed to form in cells and play key roles in how the genome is read and used by the cellular machinery. Previously, a fluorescent triangulenium probe (DAOTA-M2) was used to visualise G4s in cellulo, thanks to its distinct fluorescence lifetimes when bound to different DNA topologies. Herein, the library of available triangulenium probes is expanded to explore how modifications to the fluorescent core of the molecule affect its photophysical characteristics, interaction with DNA and cellular localisation. The benzo-bridged and isopropyl-bridged diazatriangulenium dyes, BDATA-M2 and CDATA-M2 respectively, featuring ethyl-morpholino substituents, were synthesised and characterised. The interactions of these molecules with different DNA topologies were studied to determine their binding affinity, fluorescence enhancement and fluorescence lifetime response. Finally, the cellular uptake and localisation of these optical probes were investigated. Whilst structural modifications to the triangulenium core only slightly alter the binding affinity to DNA, BDATA-M2 and CDATA-M2 cannot distinguish between DNA topologies through their fluorescence lifetime. It is argued theoretically and experimentally that this is due to reduced effectiveness of photoinduced electron transfer (PET) quenching. This work presents valuable new evidence into the critical role of PET quenching when using the fluorescence lifetime of triangulenium dyes to discriminate G4 DNA from duplex DNA, highlighting the importance of fine tuning redox and spectral properties when developing new triangulenium-based G4 probes.
Collapse
Affiliation(s)
- Benjamin W Lewis
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK.,Institute of Chemical Biology, White City Campus, Imperial College London, London, W12 0BZ, UK
| | - Niels Bisballe
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Marco Santella
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Peter A Summers
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability Group, Medical Research Council-London Institute of Medical Sciences, London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Marina K Kuimova
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK.,Institute of Chemical Biology, White City Campus, Imperial College London, London, W12 0BZ, UK
| | - Bo W Laursen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Ramon Vilar
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK.,Institute of Chemical Biology, White City Campus, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
45
|
Sengupta A, Roy SS, Chowdhury S. Non-duplex G-Quadruplex DNA Structure: A Developing Story from Predicted Sequences to DNA Structure-Dependent Epigenetics and Beyond. Acc Chem Res 2021; 54:46-56. [PMID: 33347280 DOI: 10.1021/acs.accounts.0c00431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The story of the non-duplex DNA form known as the G-quadruplex (G4) has traversed a winding path. From initial skepticism followed by debate to a surge in interest, the G4 story intertwines many threads. Starting with computational predictions of a gene regulatory role, which now include epigenetic functions, our group was involved in many of these advances along with many other laboratories. Following a brief background, set in the latter half of the last century when the concept of the G4 as a structure took ground, here we account the developments. This is through a lens that though focused on our groups' research presents work from many other groups that played significant roles. Together these provide a broad perspective to the G4 story. Initially we were intrigued on seeing potential G4 (pG4)-forming sequences, then known to be found primarily at the telomeres and immunoglobin switch regions, occurring throughout the genome and being particularly prevalent in promoters of bacteria. We further observed that pG4s were not only prevalent but also conserved through evolution in promoters of human, chimpanzee, mouse and rat genomes. This was between 2005 and 2007. Encouraged by these partly and partly in response to the view held by many that genome-wide presence of G4s were genomic "accidents", the focus shifted to seeking experimental evidence.In the next year, 2008, two independent findings showed promise. First, on treating human cancer cells with G4-binding ligands, we observed widespread change in gene expression. Second, our search for the missing G4-specific transcription factor, without which, importantly, G4s in promoters posed only half the story, yielded results. We determined how NM23-H2 (also known as NME2 or NDPK-B) interacts with G4s and how interaction of NM23-H2 with a G4 in the promoter of the oncogene c-myc was important for regulation of c-myc transcription. NM23-H2, and subsequently many other similar factors discovered by multiple groups, is possibly giving shape to what might be the "G4-transcriptome". Later, a close look at NM23-H2-G4 interaction in regulation of the human reverse transcriptase gene (hTERT) revealed the role of G4s in local epigenetic modifications. Meanwhile work from others showed how G4s impact histone modifications following replication. Together these show the intrinsic role of DNA sequence, through formation of DNA structure, in epigenetics.More recent work, however, was waiting to reveal aspects that tend to bring forth a completely new understanding of G4s. We observed that the telomere-repeat-binding-factor-2 (TRF2), known canonically to be telomere-associated, binds extensively outside telomeres throughout the genome. Moreover, a large fraction of the non-telomeric TRF2 sites comprise G4s. Second, the extent of non-telomeric TRF2 binding at promoters was dependent on telomere length. Thereby TRF2-induced epigenetic gene regulation was telomere-dependent. Together these implicate underlying connections that show signs of addressing an intriguing unanswered question that takes us back to the beginning: Why are G4s prevalent in two distinct regions, the telomeres and gene promoters?
Collapse
Affiliation(s)
- Antara Sengupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shuvra Shekhar Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shantanu Chowdhury
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
46
|
Tassinari M, Zuffo M, Nadai M, Pirota V, Sevilla Montalvo AC, Doria F, Freccero M, Richter SN. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model. Nucleic Acids Res 2020; 48:4627-4642. [PMID: 32282912 PMCID: PMC7229848 DOI: 10.1093/nar/gkaa186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting of G-quadruplexes, non-canonical conformations that form in G-rich regions of nucleic acids, has been proposed as a novel therapeutic strategy toward several diseases, including cancer and infections. The unavailability of highly selective molecules targeting a G-quadruplex of choice has hampered relevant applications. Herein, we describe a novel approach, based on naphthalene diimide (NDI)-peptide nucleic acid (PNA) conjugates, taking advantage of the cooperative interaction of the NDI with the G-quadruplex structure and hybridization of the PNA with the flanking region upstream or downstream the targeted G-quadruplex. By biophysical and biomolecular assays, we show that the NDI-PNA conjugates are able to specifically recognize the G-quadruplex of choice within the HIV-1 LTR region, consisting of overlapping and therefore mutually exclusive G-quadruplexes. Additionally, the conjugates can induce and stabilize the least populated G-quadruplex at the expenses of the more stable ones. The general and straightforward design and synthesis, which readily apply to any G4 target of choice, together with both the red-fluorescent emission and the possibility to introduce cellular localization signals, make the novel conjugates available to selectively control G-quadruplex folding over a wide range of applications.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Michela Zuffo
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | | | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
47
|
Lopina OD, Tverskoi AM, Klimanova EA, Sidorenko SV, Orlov SN. Ouabain-Induced Cell Death and Survival. Role of α1-Na,K-ATPase-Mediated Signaling and [Na +] i/[K +] i-Dependent Gene Expression. Front Physiol 2020; 11:1060. [PMID: 33013454 PMCID: PMC7498651 DOI: 10.3389/fphys.2020.01060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Ouabain is of cardiotonic steroids (CTS) family that is plant-derived compounds and is known for many years as therapeutic and cytotoxic agents. They are specific inhibitors of Na,K-ATPase, the enzyme, which pumps Na+ and K+ across plasma membrane of animal cells. Treatment of cells by CTS affects various cellular functions connected with the maintenance of the transmembrane gradient of Na+ and K+. Numerous studies demonstrated that binding of CTS to Na,K-ATPase not only suppresses its activity but also induces some signal pathways. This review is focused on different mechanisms of two ouabain effects: their ability (1) to protect rodent cells from apoptosis through the expression of [Na+]i-sensitive genes and (2) to trigger death of non-rodents cells (so-called «oncosis»), possessing combined markers of «classic» necrosis and «classic» apoptosis. Detailed study of oncosis demonstrated that the elevation of the [Na+]i/[K+]i ratio is not a sufficient for its triggering. Non-rodent cell death is determined by the characteristic property of "sensitive" to ouabain α1-subunit of Na,K-ATPase. In this case, ouabain binding leads to enzyme conformational changes triggering the activation of p38 mitogen-activated protein kinases (MAPK) signaling. The survival of rodent cells with ouabain-«resistant» α1-subunit is connected with another conformational transition induced by ouabain binding that results in the activation of ERK 1/2 signaling pathway.
Collapse
Affiliation(s)
- Olga Dmitrievna Lopina
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem Mikhaylovich Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences (RAS), Moscow, Russia
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Sergei Nikolaevich Orlov
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
48
|
Abstract
Several decades elapsed between the first descriptions of G-quadruplex nucleic acid structures (G4s) assembled in vitro and the emergence of experimental findings indicating that such structures can form and function in living systems. A large body of evidence now supports roles for G4s in many aspects of nucleic acid biology, spanning processes from transcription and chromatin structure, mRNA processing, protein translation, DNA replication and genome stability, and telomere and mitochondrial function. Nonetheless, it must be acknowledged that some of this evidence is tentative, which is not surprising given the technical challenges associated with demonstrating G4s in biology. Here I provide an overview of evidence for G4 biology, focusing particularly on the many potential pitfalls that can be encountered in its investigation, and briefly discuss some of broader biological processes that may be impacted by G4s including cancer.
Collapse
Affiliation(s)
- F. Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
49
|
Vinayagamurthy S, Ganguly A, Chowdhury S. Extra-telomeric impact of telomeres: Emerging molecular connections in pluripotency or stemness. J Biol Chem 2020; 295:10245-10254. [PMID: 32444498 PMCID: PMC7383370 DOI: 10.1074/jbc.rev119.009710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Telomeres comprise specialized nucleic acid-protein complexes that help protect chromosome ends from DNA damage. Moreover, telomeres associate with subtelomeric regions through looping. This results in altered expression of subtelomeric genes. Recent observations further reveal telomere length-dependent gene regulation and epigenetic modifications at sites spread across the genome and distant from telomeres. This regulation is mediated through the telomere-binding protein telomeric repeat-binding factor 2 (TRF2). These observations suggest a role of telomeres in extra-telomeric functions. Most notably, telomeres have a broad impact on pluripotency and differentiation. For example, cardiomyocytes differentiate with higher efficacy from induced pluripotent stem cells having long telomeres, and differentiated cells obtained from human embryonic stem cells with relatively long telomeres have a longer lifespan. Here, we first highlight reports on these two seemingly distinct research areas: the extra-telomeric role of telomere-binding factors and the role of telomeres in pluripotency/stemness. On the basis of the observations reported in these studies, we draw attention to potential molecular connections between extra-telomeric biology and pluripotency. Finally, in the context of the nonlocal influence of telomeres on pluripotency and stemness, we discuss major opportunities for progress in molecular understanding of aging-related disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- G.N.R. Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
50
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|