1
|
Kim M, Hyun YE, Kang SY, Kim SW, Park JH, Joung M, Jeong LS. Synthesis and biological evaluation of sugar-modified truncated carbanucleosides as A 2A and A 3 adenosine receptor ligands to explore conformational effect to the receptors. Bioorg Med Chem 2024; 115:117986. [PMID: 39504593 DOI: 10.1016/j.bmc.2024.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
This study investigated the impact of conformation on the binding affinity of carbanucleosides to A2A and A3 adenosine receptors (ARs). A series of nucleosides, including saturated, unsaturated, North (N)-methano, and South (S)-methanocarbanucleosides was prepared, and their binding affinities to A2AAR and A3AR were assessed. Biological evaluations revealed that all synthesized (S)-methanocarbanucleosides had negligible binding to both receptors, and most (N)-methanocarbanucleosides exhibited high binding affinities. Molecular docking analysis showed that the (N)-methanocarbanucleoside 6a exhibited favorable interactions and minimal steric clashes in both A2AAR and A3AR. Conversely, the (S)-methanocarbanucleoside 7a appears to encounter significant steric clashes, which impeded its binding to A2AAR. Furthermore, when adopting the South conformation 7a was unable to bind to A3AR. Expanding upon the (N)-methanocarba moiety, various C8-aromatic groups were introduced to convert A2AAR agonists into antagonists and these modified compounds also exhibited strong binding affinity. These results suggest that the North conformation is favored by both A2AAR and A3AR, and that (N)-methanocarbanucleosides can serve as versatile structural moieties for dual targeting of A2AAR and A3AR. These findings offer promising avenues for the development of dual ligands for therapeutic applications in obesity and immunotherapy.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Yeon Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Woo Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Hoon Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Misuk Joung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
2
|
Tosh D, Pavan M, Cronin C, Pottie E, Wan TC, Chen E, Lewicki SA, Campbell RG, Gao ZG, Auchampach JA, Stove CP, Liang BT, Jacobson KA. 2-Substituted (N)-Methanocarba A 3 Adenosine Receptor Agonists: In Silico, In Vitro, and In Vivo Characterization. ACS Pharmacol Transl Sci 2024; 7:2154-2173. [PMID: 39022354 PMCID: PMC11249627 DOI: 10.1021/acsptsci.4c00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
2-Arylethynyl (N)-methanocarba adenosine 5'-methylamides are selective A3 adenosine receptor (AR) agonists containing a preestablished receptor-preferred pseudoribose conformation. Here, we compare analogues having bulky 2-substitution, either containing or lacking an ethynyl spacer between adenine and a cyclic group. 2-Aryl compounds 9-11, 13, 14, 19, 22, 23, 27, 29, 31, and 34, lacking a spacer, had human (h) A3AR K i values of 2-30 nM, and others displayed lower affinity. Mouse (m) A3AR affinity varied, with 2-arylethynyl having a higher affinity than 2-aryl analogues (7, 8 > 3c, 3d > 3b). However, 2-aryl-4'-truncated derivatives had greatly reduced hA3AR affinity, even containing affinity-enhancing N 6-dopamine-derived substituents. Molecular modeling, including molecular dynamics simulation, predicted stable poses in the canonical A3AR agonist binding site, but 2-aryl (ECL2 interactions) and 2-arylethynyl (TM2 interactions) substituents have different conformations and environments. In a hA3AR miniGαi recruitment assay, 31 (MRS8062) was (slightly) more potent compared to a β-arrestin2 recruitment assay, both in engineered HEK293T cells, and its maximal efficacy (E max) was much higher (165%) than reference agonist NECA's. Thus, in the 2-aryl series, A3AR affinity and selectivity were variable and generally reduced compared to the 2-arylethynyl series, with a greater dependence on the specific aryl group present. Selected compounds were studied in vivo in an ischemic model of peripheral artery disease (PAD). Rigidified 2-arylethynyl analogues 3a-3c were protective in this model of skeletal muscle ischemia-reperfusion injury/claudication, as previously shown only for moderately A3AR-selective ribosides or (N)-methanocarba derivatives. Thus, we have expanded the A3AR agonist SAR for (N)-methanocarba adenosines.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Matteo Pavan
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Chunxia Cronin
- Pat
and Jim Calhoun Cardiology Center, University
of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Tina C. Wan
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Eric Chen
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Sarah A. Lewicki
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Ryan G. Campbell
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - John A. Auchampach
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Bruce T. Liang
- Pat
and Jim Calhoun Cardiology Center, University
of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Tosh D, Fisher CL, Salmaso V, Wan TC, Campbell RG, Chen E, Gao ZG, Auchampach JA, Jacobson KA. First Potent Macrocyclic A 3 Adenosine Receptor Agonists Reveal G-Protein and β-Arrestin2 Signaling Preferences. ACS Pharmacol Transl Sci 2023; 6:1288-1305. [PMID: 37705595 PMCID: PMC10496144 DOI: 10.1021/acsptsci.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 09/15/2023]
Abstract
(N)-Methanocarba adenosine derivatives (A3 adenosine receptor (AR) agonists containing bicyclo[3.1.0]hexane replacing furanose) were chain-extended at N6 and C2 positions with terminal alkenes for ring closure. The resulting macrocycles of 17-20 atoms retained affinity, indicating a spatially proximal orientation of these receptor-bound chains, consistent with molecular modeling of 12. C2-Arylethynyl-linked macrocycle 19 was more A3AR-selective than 2-ether-linked macrocycle 12 (both 5'-methylamides, human (h) A3AR affinities (Ki): 22.1 and 25.8 nM, respectively), with lower mouse A3AR affinities. Functional hA3AR comparison of two sets of open/closed analogues in β-arrestin2 and Gi/o protein assays showed certain signaling preferences divergent from reference agonist Cl-IB-MECA 1. The potencies of 1 at all three Gαi isoforms were slightly less than its hA3AR binding affinity (Ki: 1.4 nM), while the Gαi1 and Gαi2 potencies of macrocycle 12 were roughly an order of magnitude higher than its radioligand binding affinity. Gαi2-coupling was enhanced in macrocycle 12 (EC50 2.56 nM, ∼40% greater maximal efficacy than 1). Di-O-allyl precursor 18 cyclized to form 19, increasing the Gαi1 potency by 7.5-fold. The macrocycles 12 and 19 and their open precursors 11 and 18 potently stimulated β-arrestin2 recruitment, with EC50 values (nM) of 5.17, 4.36, 1.30, and 4.35, respectively, and with nearly 50% greater efficacy compared to 1. This example of macrocyclization altering the coupling pathways of small-molecule (nonpeptide) GPCR agonists is the first for potent and selective macrocyclic AR agonists. These initial macrocyclic derivatives can serve as a guide for the future design of macrocyclic AR agonists displaying unanticipated pharmacology.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Courtney L. Fisher
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Veronica Salmaso
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
- Molecular
Modeling Section, Department of Pharmaceutical and Pharmacological
Sciences, University of Padua, Padua 35131, Italy
| | - Tina C. Wan
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Ryan G. Campbell
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Eric Chen
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - John A. Auchampach
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
The chronological evolution of fluorescent GPCR probes for bioimaging. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Tosh DK, Salmaso V, Campbell RG, Rao H, Bitant A, Pottie E, Stove CP, Liu N, Gavrilova O, Gao ZG, Auchampach JA, Jacobson KA. A 3 adenosine receptor agonists containing dopamine moieties for enhanced interspecies affinity. Eur J Med Chem 2022; 228:113983. [PMID: 34844790 PMCID: PMC8865922 DOI: 10.1016/j.ejmech.2021.113983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/17/2023]
Abstract
Following our study of 4'-truncated (N)-methanocarba-adenosine derivatives that displayed unusually high mouse (m) A3AR affinity, we incorporated dopamine-related N6 substituents in the full agonist 5'-methylamide series. N6-(2-(4-Hydroxy-3-methoxy-phenyl)ethyl) derivative MRS7618 11 displayed Ki (nM) 0.563 at hA3AR (∼20,000-fold selective) and 1.54 at mA3AR. 2-Alkyl ethers maintained A3 affinity, but with less selectivity than 2-alkynes. Parallel functional assays of G protein-dependent and β-arrestin 2 (βarr2)-dependent pathways indicate these are full agonists but not biased. Through use of computational modeling, we hypothesized that phenyl OH/OMe groups interact with polar residues, particularly Gln261, on the mA3AR extracellular loops as the basis for the affinity enhancement. Although the pharmacokinetics indicated facile clearance of parent O-methyl catechol nucleosides 21 and 31, prolonged mA3AR activation in vivo was observed in a hypothermia model, suggested potential formation of active metabolites through demethylation. Selected analogues induced mouse hypothermia following i.p. injection, indicative of peripheral A3AR agonism in vivo.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Veronica Salmaso
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Ryan G. Campbell
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Harsha Rao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Amelia Bitant
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - John A. Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA,Corresponding author. Address correspondence to: Dr. Kenneth A. Jacobson, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0810 USA; Molecular Recognition Section, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD, USA. Phone: 301-496-9024. Fax: 301-496-8422. (K.A. Jacobson)
| |
Collapse
|
6
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
7
|
Tosh DK, Salmaso V, Rao H, Bitant A, Fisher CL, Lieberman DI, Vorbrüggen H, Reitman ML, Gavrilova O, Gao ZG, Auchampach JA, Jacobson KA. Truncated (N)-Methanocarba Nucleosides as Partial Agonists at Mouse and Human A 3 Adenosine Receptors: Affinity Enhancement by N6-(2-Phenylethyl) Substitution. J Med Chem 2020; 63:4334-4348. [PMID: 32271569 PMCID: PMC7443318 DOI: 10.1021/acs.jmedchem.0c00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dopamine-derived N6-substituents, compared to N6-(2-phenylethyl), in truncated (N)-methanocarba (bicyclo[3.1.0]hexyl) adenosines favored high A3 adenosine receptor (AR) affinity/selectivity, e.g., C2-phenylethynyl analogue 15 (MRS7591, Ki = 10.9/17.8 nM, at human/mouse A3AR). 15 was a partial agonist in vitro (hA3AR, cAMP inhibition, 31% Emax; mA3AR, [35S]GTP-γ-S binding, 16% Emax) and in vivo and also antagonized hA3AR in vitro. Distal H-bonding substitutions of the N6-(2-phenylethyl) moiety particularly enhanced mA3AR affinity by polar interactions with the extracellular loops, predicted using docking and molecular dynamics simulation with newly constructed mA3AR and hA3AR homology models. These hybrid models were based on an inactive antagonist-bound hA1AR structure for the upper part of TM2 and an agonist-bound hA2AAR structure for the remaining TM portions. These species-independent A3AR-selective nucleosides are low efficacy partial agonists and novel, nuanced modulators of the A3AR, a drug target of growing interest.
Collapse
Affiliation(s)
| | | | | | - Amelia Bitant
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | - Courtney L. Fisher
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | | | - Helmut Vorbrüggen
- Institut für Chemie und Biochemie, Freie Universität, Takustr. 3, D-14195 Berlin, Germany
| | | | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | | | - John A. Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | | |
Collapse
|
8
|
Chemical Probes for the Adenosine Receptors. Pharmaceuticals (Basel) 2019; 12:ph12040168. [PMID: 31726680 PMCID: PMC6958474 DOI: 10.3390/ph12040168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Research on the adenosine receptors has been supported by the continuous discovery of new chemical probes characterized by more and more affinity and selectivity for the single adenosine receptor subtypes (A1, A2A, A2B and A3 adenosine receptors). Furthermore, the development of new techniques for the detection of G protein-coupled receptors (GPCR) requires new specific probes. In fact, if in the past radioligands were the most important GPCR probes for detection, compound screening and diagnostic purposes, nowadays, increasing importance is given to fluorescent and covalent ligands. In fact, advances in techniques such as fluorescence resonance energy transfer (FRET) and fluorescent polarization, as well as new applications in flow cytometry and different fluorescence-based microscopic techniques, are at the origin of the extensive research of new fluorescent ligands for these receptors. The resurgence of covalent ligands is due in part to a change in the common thinking in the medicinal chemistry community that a covalent drug is necessarily more toxic than a reversible one, and in part to the useful application of covalent ligands in GPCR structural biology. In this review, an updated collection of available chemical probes targeting adenosine receptors is reported.
Collapse
|
9
|
Tosh D, Ciancetta A, Mannes P, Warnick E, Janowsky A, Eshleman AJ, Gizewski E, Brust TF, Bohn LM, Auchampach JA, Gao ZG, Jacobson KA. Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists. ACS OMEGA 2018; 3:12658-12678. [PMID: 30411015 PMCID: PMC6210068 DOI: 10.1021/acsomega.8b01237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
While screening off-target effects of rigid (N)-methanocarba-adenosine 5'-methylamides as A3 adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). In an effort to increase OR and decrease AR affinity by structure activity analysis of this series, antagonist activity at κ-(K)OR appeared in 5'-esters (ethyl 24 and propyl 30), which retained TSPO interaction (μM). 7-Deaza modification of C2-(arylethynyl)-5'-esters but not 4'-truncation enhanced KOR affinity (MRS7299 28 and 29, K i ≈ 40 nM), revealed μ-OR and DOR binding, and reduced AR affinity. Molecular docking and dynamics simulations located a putative KOR binding mode consistent with the observed affinities, placing C7 in a hydrophobic region. 3-Deaza modification permitted TSPO but not OR binding, and 1-deaza was permissive to both; ribose-restored analogues were inactive at both. Thus, we have repurposed a known AR nucleoside scaffold for OR antagonism, with a detailed hypothesis for KOR recognition.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Antonella Ciancetta
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Philip Mannes
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Eugene Warnick
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Aaron Janowsky
- VA
Portland Health Care System, Research Service (R&D-22), and Departments
of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, 3710 S.W. U.S. Veterans Hospital Blvd., Portland, Oregon 97239, United States
| | - Amy J. Eshleman
- VA
Portland Health Care System, Research Service (R&D-22), and Departments
of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, 3710 S.W. U.S. Veterans Hospital Blvd., Portland, Oregon 97239, United States
| | - Elizabeth Gizewski
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Tarsis F. Brust
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United
States
| | - Laura M. Bohn
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United
States
| | - John A. Auchampach
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
10
|
Probing structure-activity relationship in β-arrestin2 recruitment of diversely substituted adenosine derivatives. Biochem Pharmacol 2018; 158:103-113. [PMID: 30292756 DOI: 10.1016/j.bcp.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Abstract
In the adenosine receptor (AR) subfamily of G protein-coupled receptors (GPCRs), biased agonism has been described for the human A1AR, A2BAR and A3AR. While diverse A3AR agonists have been evaluated for receptor binding and Gi-mediated cAMP signalling, the β-arrestin2 (βarr2) pathway has been left largely unexplored. We screened nineteen diverse adenosine derivatives for βarr2 recruitment using a stable hA3AR-NanoBit®-βarr2 HEK293T cell line. Their activity profiles were compared with a cAMP accumulation assay in stable hA3AR CHO cells. Structural features linked to βarr2 activation were further investigated by the evaluation of an additional ten A3AR ligands. The A3AR-selective reference agonist 2-Cl-IB-MECA, which is a full agonist in terms of cAMP inhibition, only showed partial agonist behaviour in βarr2 recruitment. Highly A3AR-selective (N)-methanocarba 5'-uronamide adenosine derivatives displayed higher potency in both cAMP signalling and βarr2 recruitment than reference agonists NECA and 2-Cl-IB-MECA. Their A3AR-preferred conformation tolerates C2-position substitutions, for increased βarr2 efficacy, better than the flexible scaffolds of ribose derivatives. The different amino functionalities in the adenosine scaffold of these derivatives each seem to be important for signalling as well. In conclusion, we have provided insights into ligand features that can help to guide the future therapeutic development of biased A3AR ligands with respect to G-protein and βarr2 signalling.
Collapse
|
11
|
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S. A 3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38:1031-1072. [PMID: 28682469 PMCID: PMC5756520 DOI: 10.1002/med.21456] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Köse M, Gollos S, Karcz T, Fiene A, Heisig F, Behrenswerth A, Kieć-Kononowicz K, Namasivayam V, Müller CE. Fluorescent-Labeled Selective Adenosine A 2B Receptor Antagonist Enables Competition Binding Assay by Flow Cytometry. J Med Chem 2018; 61:4301-4316. [PMID: 29681156 DOI: 10.1021/acs.jmedchem.7b01627] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescent ligands represent powerful tools for biological studies and are considered attractive alternatives to radioligands. In this study, we developed fluorescent antagonists for A2B adenosine receptors (A2BARs), which are targeted by antiasthmatic xanthines and were proposed as novel targets in immuno-oncology. Our approach was to merge a small borondipyrromethene (BODIPY) derivative with the pharmacophore of 8-substituted xanthine derivatives. On the basis of the design, synthesis, and evaluation of model compounds, several fluorescent ligands were synthesized. Compound 29 (PSB-12105), which displayed high affinity for human, rat, and mouse A2BARs ( Ki = 0.2-2 nM) and high selectivity for this AR subtype, was selected for further studies. A homology model of the human A2BAR was generated, and docking studies were performed. Moreover, 29 allowed us to establish a homogeneous receptor-ligand binding assay using flow cytometry. These compounds constitute the first potent, selective fluorescent A2BAR ligands and are anticipated to be useful for a variety of applications.
Collapse
Affiliation(s)
- Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Sabrina Gollos
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Fabian Heisig
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Andrea Behrenswerth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| |
Collapse
|
13
|
Malthum S, Polkam N, Allaka TR, Chepuri K, Anireddy JS. Synthesis, characterization and biological evaluation of purine nucleoside analogues. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Tosh DK, Ciancetta A, Warnick E, O'Connor R, Chen Z, Gizewski E, Crane S, Gao ZG, Auchampach JA, Salvemini D, Jacobson KA. Purine (N)-Methanocarba Nucleoside Derivatives Lacking an Exocyclic Amine as Selective A3 Adenosine Receptor Agonists. J Med Chem 2016; 59:3249-63. [PMID: 26890707 PMCID: PMC4970510 DOI: 10.1021/acs.jmedchem.5b01998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Purine
(N)-methanocarba-5′-N-alkyluronamidoriboside
A3 adenosine receptor (A3AR) agonists lacking
an exocyclic amine resulted from an unexpected
reaction during a Sonogashira coupling and subsequent aminolysis.
Because the initial C6-Me and C6-styryl derivatives had unexpectedly
high A3AR affinity, other rigid nucleoside analogues lacking
an exocyclic amine were prepared. Of these, the C6-Me-(2-phenylethynyl)
and C2-(5-chlorothienylethynyl) analogues were particularly potent,
with human A3AR Ki values of
6 and 42 nM, respectively. Additionally, the C2-(5-chlorothienyl)-6-H
analogue was potent and selective at A3AR (MRS7220, Ki 60 nM) and also completely reversed mouse
sciatic nerve mechanoallodynia (in vivo, 3 μmol/kg, po). The
lack of a C6 H-bond donor while maintaining A3AR affinity
and efficacy could be rationalized by homology modeling and docking
of these hypermodified nucleosides. The modeling suggests that a suitable
combination of stabilizing features can partially compensate for the
lack of an exocyclic amine, an otherwise important contributor to
recognition in the A3AR binding site.
Collapse
Affiliation(s)
- Dilip K Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Antonella Ciancetta
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Eugene Warnick
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Robert O'Connor
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Zhoumou Chen
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Elizabeth Gizewski
- Department of Pharmacology, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Steven Crane
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | - John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
15
|
Allu S, Kumara Swamy KC. Ruthenium-Catalyzed Oxidative Annulation of 6-Anilinopurines with AlkynesviaCH Activation: Synthesis of Indole-Substituted Purines/Purine Nucleosides. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Stoddart LA, Vernall AJ, Briddon SJ, Kellam B, Hill SJ. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. Neuropharmacology 2015; 98:68-77. [PMID: 25937210 DOI: 10.1016/j.neuropharm.2015.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/19/2015] [Accepted: 04/14/2015] [Indexed: 11/25/2022]
Abstract
Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK
| | - Andrea J Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephen J Briddon
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, UK.
| |
Collapse
|
17
|
Ciruela F, Fernández-Dueñas V, Jacobson KA. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology 2015; 98:58-67. [PMID: 25890205 DOI: 10.1016/j.neuropharm.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
The use of G protein-coupled receptors fluorescent ligands is undergoing continuous expansion. In line with this, fluorescent agonists and antagonists of high affinity for G protein-coupled adenosine and P2Y receptors have been shown to be useful pharmacological probe compounds. Fluorescent ligands for A1R, A2AR, and A3R (adenosine receptors) and P2Y2R, P2Y4R, P2Y6R, and P2Y14R (nucleotide receptors) have been reported. Such ligands have been successfully applied to drug discovery and to GPCR characterization by flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer and scanning confocal microscopy. Here we summarize recently reported and readily available representative fluorescent ligands of purinergic receptors. In addition, we pay special attention on the use of this family of fluorescent ligands revealing two main aspects of purinergic receptor biology, namely ligand binding and receptor oligomerization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Department of Physiology, Faculty of Sciences, University of Ghent, 9000 Gent, Belgium.
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 20892 Bethesda, USA.
| |
Collapse
|
18
|
Vernall AJ, Hill SJ, Kellam B. The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. Br J Pharmacol 2014; 171:1073-84. [PMID: 23734587 DOI: 10.1111/bph.12265] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 01/15/2023] Open
Abstract
The past decade has witnessed fluorescently tagged drug molecules gaining significant attraction in their use as pharmacological tools with which to visualize and interrogate receptor targets at the single-cell level. Additionally, one can generate detailed pharmacological information, such as affinity measurements, down to almost single-molecule detection limits. The now accepted utilization of fluorescence-based readouts in high-throughput/high-content screening provides further evidence that fluorescent molecules offer a safer and more adaptable substitute to radioligands in molecular pharmacology and drug discovery. One such drug-target family that has received considerable attention are the GPCRs; this review therefore summarizes the most recent developments in the area of fluorescent ligand design for this important drug target. We assess recently reported fluorescent conjugates by adopting a receptor-family-based approach, highlighting some of the strengths and weaknesses of the individual molecules and their subsequent use. This review adds further strength to the arguments that fluorescent ligand design and synthesis requires careful planning and execution; providing examples illustrating that selection of the correct fluorescent dye, linker length/composition and geographic attachment point to the drug scaffold can all influence the ultimate selectivity and potency of the final conjugate when compared with its unlabelled precursor. When optimized appropriately, the resultant fluorescent conjugates have been successfully employed in an array of assay formats, including flow cytometry, fluorescence microscopy, FRET and scanning confocal microscopy. It is clear that fluorescently labelled GPCR ligands remain a developing and dynamic research arena.
Collapse
Affiliation(s)
- Andrea J Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
19
|
Mulamoottil VA, Nayak A, Jeong LS. Recent Advances in the Synthesis of Carbocyclic Nucleosides via Ring-Closing Metathesis. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Nayak A, Chandra G, Hwang I, Kim K, Hou X, Kim HO, Sahu PK, Roy KK, Yoo J, Lee Y, Cui M, Choi S, Moss SM, Phan K, Gao ZG, Ha H, Jacobson KA, Jeong LS. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists. J Med Chem 2014; 57:1344-54. [PMID: 24456490 PMCID: PMC3954500 DOI: 10.1021/jm4015313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Truncated N6-substituted-(N)-methanocarba-adenosine derivatives
with 2-hexynyl substitution
were synthesized to examine parallels with corresponding 4′-thioadenosines.
Hydrophobic N6 and/or C2 substituents were tolerated in
A3AR binding, but only an unsubstituted 6-amino group with
a C2-hexynyl group promoted high hA2AAR affinity. A small
hydrophobic alkyl (4b and 4c) or N6-cycloalkyl group (4d) showed
excellent binding affinity at the hA3AR and was better
than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f–4i did not differ significantly, with Ki values of 7.8–16.0 nM. N6-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects
in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis
model. Most compounds strongly inhibited TGF-β1-induced collagen
I upregulation, and their A3AR binding affinities were
proportional to antifibrotic effects; 4b was most potent
(IC50 = 0.83 μM), indicating its potential as a good
therapeutic candidate for treating renal fibrosis.
Collapse
Affiliation(s)
- Akshata Nayak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kozma E, Gizewski ET, Tosh DK, Squarcialupi L, Auchampach JA, Jacobson KA. Characterization by flow cytometry of fluorescent, selective agonist probes of the A(3) adenosine receptor. Biochem Pharmacol 2013; 85:1171-81. [PMID: 23376019 DOI: 10.1016/j.bcp.2013.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 01/02/2023]
Abstract
Various fluorescent nucleoside agonists of the A3 adenosine receptor (AR) were compared as high affinity probes using radioligands and flow cytometry (FCM). They contained a fluorophore linked through the C2 or N(6) position and rigid A3AR-enhancing (N)-methanocarba modification. A hydrophobic C2-(1-pyrenyl) derivative MRS5704 bound nonselectively. C2-Tethered cyanine5-dye labeled MRS5218 bound selectively to hA3AR expressed in whole CHO cells and membranes. By FCM, binding was A3AR-mediated (blocked by A3AR antagonist, at least half through internalization), with t1/2 for association 38min in mA3AR-HEK293 cells; 26.4min in sucrose-treated hA3AR-CHO cells (Kd 31nM). Membrane binding indicated moderate mA3AR affinity, but not selectivity. Specific accumulation of fluorescence (50nM MRS5218) occurred in cells expressing mA3AR, but not other mouse ARs. Evidence was provided suggesting that MRS5218 detects endogenous expression of the A3AR in the human promyelocytic leukemic HL-60 cell line. Therefore, MRS5218 promises to be a useful tool for characterizing the A3AR.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kozma E, Jayasekara PS, Squarcialupi L, Paoletta S, Moro S, Federico S, Spalluto G, Jacobson KA. Fluorescent ligands for adenosine receptors. Bioorg Med Chem Lett 2013; 23:26-36. [PMID: 23200243 PMCID: PMC3557833 DOI: 10.1016/j.bmcl.2012.10.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/05/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Lucia Squarcialupi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
23
|
Tosh DK, Paoletta S, Deflorian F, Phan K, Moss SM, Gao ZG, Jiang X, Jacobson KA. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 2012; 55:8075-90. [PMID: 22921089 PMCID: PMC3463139 DOI: 10.1021/jm300965a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A(1) adenosine receptor (AR) agonists display antiischemic and antiepileptic neuroprotective activity, but peripheral cardiovascular side effects impeded their development. SAR study of N(6)-cycloalkylmethyl 4'-truncated (N)-methanocarba-adenosines identified 10 (MRS5474, N(6)-dicyclopropylmethyl, K(i) = 47.9 nM) as a moderately A(1)AR-selective full agonist. Two stereochemically defined N(6)-methynyl group substituents displayed narrow SAR; groups larger than cyclobutyl greatly reduced AR affinity, and those larger or smaller than cyclopropyl reduced A(1)AR selectivity. Nucleoside docking to A(1)AR homology model characterized distinct hydrophobic cyclopropyl subpockets, the larger "A" forming contacts with Thr270 (7.35), Tyr271 (7.36), Ile274 (7.39), and carbon chains of glutamates (EL2) and the smaller subpocket "B" forming contacts between TM6 and TM7. 10 suppressed minimal clonic seizures (6 Hz mouse model) without typical rotarod impairment of A(1)AR agonists. Truncated nucleosides, an appealing preclinical approach, have more druglike physicochemical properties than other A(1)AR agonists. Thus, we identified highly restricted regions for substitution around N(6) suitable for an A(1)AR agonist with anticonvulsant activity.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Steven M. Moss
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaohui Jiang
- Anticonvulsant Screening Program, Office of Translational Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
24
|
Tosh DK, Paoletta S, Phan K, Gao ZG, Jacobson KA. Truncated Nucleosides as A(3) Adenosine Receptor Ligands: Combined 2-Arylethynyl and Bicyclohexane Substitutions. ACS Med Chem Lett 2012; 3:596-601. [PMID: 23145215 DOI: 10.1021/ml300107e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
C2-Arylethynyladenosine-5'-N-methyluronamides containing a bicyclo[3.1.0]hexane ((N)-methanocarba) ring are selective A(3) adenosine receptor (AR) agonists. Similar 4'-truncated C2-arylethynyl-(N)-methanocarba nucleosides containing alkyl or alkylaryl groups at the N(6) position were low-efficacy agonists or antagonists of the human A(3)AR with high selectivity. Higher hA(3)AR affinity was associated with N(6)-methyl and ethyl (K(i) 3-6 nM), than with N(6)-arylalkyl groups. However, combined C2-phenylethynyl and N(6)-2-phenylethyl substitutions in selective antagonist 15 provided a K(i) of 20 nM. Differences between 4'-truncated and nontruncated analogues of extended C2-p-biphenylethynyl substitution suggested a ligand reorientation in AR binding, dominated by bulky N(6) groups in analogues lacking a stabilizing 5'-uronamide moiety. Thus, 4'-truncation of C2-arylethynyl-(N)-methanocarba adenosine derivatives is compatible with general preservation of A(3)AR selectivity, especially with small N(6) groups, but reduced efficacy in A(3)AR-induced inhibition of adenylate cyclase.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Silvia Paoletta
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Khai Phan
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
25
|
Tosh DK, Deflorian F, Phan K, Gao ZG, Wan TC, Gizewski E, Auchampach JA, Jacobson KA. Structure-guided design of A(3) adenosine receptor-selective nucleosides: combination of 2-arylethynyl and bicyclo[3.1.0]hexane substitutions. J Med Chem 2012; 55:4847-60. [PMID: 22559880 PMCID: PMC3371665 DOI: 10.1021/jm300396n] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(N)-Methanocarba adenosine 5'-methyluronamides containing known A(3) AR (adenosine receptor)-enhancing modifications, i.e., 2-(arylethynyl)adenine and N(6)-methyl or N(6)-(3-substituted-benzyl), were nanomolar full agonists of human (h) A(3)AR and highly selective (K(i) ∼0.6 nM, N(6)-methyl 2-(halophenylethynyl) analogues 13 and 14). Combined 2-arylethynyl-N(6)-3-chlorobenzyl substitutions preserved A(3)AR affinity/selectivity in the (N)-methanocarba series (e.g., 3,4-difluoro full agonist MRS5698 31, K(i) 3 nM, human and mouse A(3)) better than that for ribosides. Polyaromatic 2-ethynyl N(6)-3-chlorobenzyl analogues, such as potent linearly extended 2-p-biphenylethynyl MRS5679 34 (K(i) hA(3) 3.1 nM; A(1), A(2A), inactive) and fluorescent 1-pyrene adduct MRS5704 35 (K(i) hA(3) 68.3 nM), were conformationally rigid; receptor docking identified a large, mainly hydrophobic binding region. The vicinity of receptor-bound C2 groups was probed by homology modeling based on recent X-ray structure of an agonist-bound A(2A)AR, with a predicted helical rearrangement requiring an agonist-specific outward displacement of TM2 resembling opsin. Thus, the X-ray structure of related A(2A)AR is useful in guiding the design of new A(3)AR agonists.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Tina C. Wan
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Elizabeth Gizewski
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
26
|
Baraldi PG, Preti D, Borea PA, Varani K. Medicinal Chemistry of A3 Adenosine Receptor Modulators: Pharmacological Activities and Therapeutic Implications. J Med Chem 2012; 55:5676-703. [DOI: 10.1021/jm300087j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Delia Preti
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
27
|
Tosh DK, Phan K, Deflorian F, Wei Q, Yoo LS, Gao ZG, Jacobson KA. Click modification in the N6 region of A3 adenosine receptor-selective carbocyclic nucleosides for dendrimeric tethering that preserves pharmacophore recognition. Bioconjug Chem 2012; 23:232-47. [PMID: 22175234 PMCID: PMC3291892 DOI: 10.1021/bc200526c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adenosine derivatives were modified with alkynyl groups on N(6) substituents for linkage to carriers using Cu(I)-catalyzed click chemistry. Two parallel series, both containing a rigid North-methanocarba (bicyclo[3.1.0]hexane) ring system in place of ribose, behaved as A(3) adenosine receptor (AR) agonists: (5'-methyluronamides) or partial agonists (4'-truncated). Terminal alkynyl groups on a chain at the 3 position of a N(6)-benzyl group or simply through a N(6)-propargyl group were coupled to azido derivatives, which included both small molecules and G4 (fourth-generation) multivalent poly(amidoamine) (PAMAM) dendrimers, to form 1,2,3-triazolyl linkers. The small molecular triazoles probed the tolerance in A(3)AR binding of distal, sterically bulky groups such as 1-adamantyl. Terminal 4-fluoro-3-nitrophenyl groups anticipated nucleophilic substitution for chain extension and (18)F radiolabeling. N(6)-(4-Fluoro-3-nitrophenyl)-triazolylmethyl derivative 32 displayed a K(i) of 9.1 nM at A(3)AR with ∼1000-fold subtype selectivity. Multivalent conjugates additionally containing click-linked water-solubilizing polyethylene glycol groups potently activated A(3)AR in the 5'-methyluronamide, but not 4' truncated series. N(6)-Benzyl nucleoside conjugate 43 (apparent K(i) 24 nM) maintained binding affinity of the monomer better than a N(6)-triazolylmethyl derivative. Thus, the N(6) region of 5'-methyluronamide derivatives, as modeled in receptor docking, is suitable for functionalization and tethering by click chemistry to achieve high A(3)AR agonist affinity and enhanced selectivity.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Vernall AJ, Stoddart LA, Briddon SJ, Hill SJ, Kellam B. Highly potent and selective fluorescent antagonists of the human adenosine A₃ receptor based on the 1,2,4-triazolo[4,3-a]quinoxalin-1-one scaffold. J Med Chem 2012; 55:1771-82. [PMID: 22277057 DOI: 10.1021/jm201722y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The adenosine-A(3) receptor (A(3)AR) is a G protein-coupled receptor that shows promise as a therapeutic target for cancer, glaucoma, and various autoimmune inflammatory disorders, and as such, there is a need for molecular probes to study this receptor. Here, we report a series of fluorescent ligands containing different linkers and fluorophores based around a 1,2,4-triazolo[4,3-a]quinoxalin-1-one antagonist. One of these conjugates (19) displayed high affinity for the A(3)AR (pK(D) = 9.36 ± 0.12) and is >650-fold selective over other adenosine receptor subtypes. Confocal microscopy revealed clear, displaceable membrane labeling of CHO-A(3) cells with 19, with no detectable labeling of CHO-A(1) cells under identical conditions. This fluorescent ligand was also able to specifically label the A(3)AR in HEK293T cells containing a mixed adenosine receptor population. The subtype specificity, along with its excellent imaging properties, make 19 an ideal tool for studying A(3)AR distribution and organization, particularly in the presence of other adenosine receptor subtypes.
Collapse
Affiliation(s)
- Andrea J Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Taliani S, Pugliesi I, Barresi E, Simorini F, Salerno S, La Motta C, Marini AM, Cosimelli B, Cosconati S, Di Maro S, Marinelli L, Daniele S, Trincavelli ML, Greco G, Novellino E, Martini C, Da Settimo F. 3-aryl-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one: a novel template for the design of highly selective A₂B adenosine receptor antagonists. J Med Chem 2012; 55:1490-9. [PMID: 22257095 DOI: 10.1021/jm201177b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In an effort to identify novel ligands possessing high affinity and selectivity for the A(2B) AR subtype, we further investigated the class of 3-aryl[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones V, previously disclosed by us as selective A(1) AR antagonists. Preliminary assays on a number of triazinobenzimidazoles derived from our "in-house" collection revealed that all the derivatives selected showed significant affinity at A(2B) AR, no affinity at A(3) AR, and various degrees of selectivity toward A(1) and A(2A) ARs. Investigation of a new series featuring modified substituents at the 10-position (4'-chlorophenyl or phenylethyl groups), and a chlorine atom at the 7-position (X) of the triazinobenzimidazole nucleus, yielded highly potent and selective A(2B) AR antagonists. The presence of a pendant 3-phenyl ring appears to hamper the interaction with A(2A) AR, conferring high A(2B)/A(2A) AR selectivity. Derivative 13 (X = Cl, R = C(6)H(5)) is the most potent and selective compound, with an IC(50) of 3.10 nM at A(2B) AR and no affinity at A(1), A(2A), and A(3) ARs.
Collapse
Affiliation(s)
- Sabrina Taliani
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
31
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wan TC, Tosh DK, Du L, Gizewski ET, Jacobson KA, Auchampach JA. Polyamidoamine (PAMAM) dendrimer conjugate specifically activates the A3 adenosine receptor to improve post-ischemic/reperfusion function in isolated mouse hearts. BMC Pharmacol 2011; 11:11. [PMID: 22039965 PMCID: PMC3247180 DOI: 10.1186/1471-2210-11-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/31/2011] [Indexed: 02/07/2023] Open
Abstract
Background When stimulated by small molecular agonists, the A3 adenosine receptor (AR) mediates cardioprotective effects without inducing detrimental hemodynamic side effects. We have examined pharmacologically the protective properties of a multivalent dendrimeric conjugate of a nucleoside as a selective multivalent agonist for the mouse A3AR. Results A PAMAM dendrimer fully substituted by click chemistry on its peripheral groups with 64 moieties of a nucleoside agonist was shown to be potent and selective in binding to the mouse A3AR and effective in cardioprotection in an isolated mouse heart model of ischemia/reperfusion (I/R) injury. This conjugate MRS5246 and a structurally related model compound MRS5233 displayed binding Ki values of 0.04 and 3.94 nM, respectively, and were potent in in vitro functional assays to inhibit cAMP production. A methanocarba (bicyclo[3.1.0]hexane) ring system in place of ribose maintained a North conformation that is preferred at the A3AR. These analogues also contained a triazole linker along with 5'-N-methyl-carboxamido and 2-alkynyl substitution, previously shown to be associated with species-independent A3AR selectivity. Both MRS5233 and MRS5246 (1 and 10 nM) were effective at increasing functional recovery of isolated mouse hearts after 20 min ischemia followed by 45 min reperfusion. A statistically significant greater improvement in the left ventricular developed pressure (LVDP) by MRS5246 compared to MRS5233 occurred when the hearts were observed throughout reperfusion. Unliganded PAMAM dendrimer alone did not have any effect on functional recovery of isolated perfused mouse hearts. 10 nM MRS5246 did not improve functional recovery after I/R in hearts from A3AR gene "knock-out" (A3KO) mice compared to control, indicating the effects of MRS5246 were A3AR-specific. Conclusions Covalent conjugation to a versatile drug carrier enhanced the functional potency and selectivity at the mouse A3AR and maintained the cardioprotective properties. Thus, this large molecular weight conjugate is not prevented from extravasation through the coronary microvasculature.
Collapse
Affiliation(s)
- Tina C Wan
- Department of Pharmacology/Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
33
|
Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA. Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 2011; 17:359-66. [PMID: 22033198 DOI: 10.1016/j.drudis.2011.10.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/27/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
The A(3) adenosine receptor (A(3)AR) coupled to G(i) (inhibitory regulative guanine nucleotide-binding protein) mediates anti-inflammatory, anticancer and anti-ischemic protective effects. The receptor is overexpressed in inflammatory and cancer cells, while low expression is found in normal cells, rendering the A(3)AR as a potential therapeutic target. Highly selective A(3)AR agonists have been synthesized and molecular recognition in the binding site has been characterized. In this article, we summarize preclinical and clinical human studies that demonstrate that A(3)AR agonists induce specific anti-inflammatory and anticancer effects through a molecular mechanism that entails modulation of the Wnt and the NF-κB signal transduction pathways. At present, A(3)AR agonists are being developed for the treatment of inflammatory diseases, including rheumatoid arthritis (RA) and psoriasis; ophthalmic diseases such as dry eye syndrome and glaucoma; liver diseases such as hepatocellular carcinoma and hepatitis.
Collapse
Affiliation(s)
- Pnina Fishman
- Can-Fite BioPharma Ltd, Kiryat-Matalon, 10 Bareket St, PO Box 7537, Petah-Tikva 49170, Israel
| | | | | | | |
Collapse
|
34
|
Nicolaou KC, Ellery SP, Rivas F, Saye K, Rogers E, Workinger TJ, Schallenberger M, Tawatao R, Montero A, Hessell A, Romesberg F, Carson D, Burton D. Synthesis and biological evaluation of 2',4'- and 3',4'-bridged nucleoside analogues. Bioorg Med Chem 2011; 19:5648-69. [PMID: 21840722 PMCID: PMC3348725 DOI: 10.1016/j.bmc.2011.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
Most nucleosides in solution typically exist in equilibrium between two major sugar pucker forms, N-type and S-type, but bridged nucleosides can be locked into one of these conformations depending on their specific structure. While many groups have researched these bridged nucleosides for the purpose of determining their binding affinity for antisense applications, we opted to look into the potential for biological activity within these conformationally-locked structures. A small library of 2',4'- and 3',4'-bridged nucleoside analogues was synthesized, including a novel 3',4'-carbocyclic bridged system. The synthesized compounds were tested for antibacterial, antitumor, and antiviral activities, leading to the identification of nucleosides possessing such biological activities. To the best of our knowledge, these biologically active compounds represent the first example of 2',4'-bridged nucleosides to demonstrate such properties. The most potent compound, nucleoside 33, exhibited significant antiviral activity against pseudoviruses SF162 (IC(50)=7.0 μM) and HxB2 (IC(50)=2.4 μM). These findings render bridged nucleosides as credible leads for drug discovery in the anti-HIV area of research.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tosh DK, Phan K, Deflorian F, Wei Q, Gao ZG, Jacobson KA. Truncated (N)-Methanocarba Nucleosides as A(1) Adenosine Receptor Agonists and Partial Agonists: Overcoming Lack of a Recognition Element. ACS Med Chem Lett 2011; 2:626-631. [PMID: 21858244 DOI: 10.1021/ml200114q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A(1) adenosine receptor (AR) agonists are neuroprotective, cardioprotective, and anxiolytic. (N)-Methanocarba adenine nucleosides designed to bind to human A(1)AR were truncated to eliminate 5'-CH(2)OH. This modification previously converted A(3)AR agonists into antagonists, but the comparable effect at A(1)AR is unknown. In comparison to ribosides, affinity at the A(1)AR was less well preserved than at the A(3)AR, although a few derivatives were moderately A(1)AR selective, notably full agonist 21 (N(6)-dicyclopropylmethyl, K(i) 47.9 nM). Thus, at the A(1)AR recognition elements for nucleoside binding depend more on 5'region interactions, and in their absence A(3)AR selectivity predominates. Based on the recently reported agonist-bound AR structure, this difference between subtypes likely correlates with an essential His residue in transmembrane domain 6 of A(1) but not A(3)AR. The derivatives ranged from partial to full agonists in A(1)AR-mediated adenylate cyclase inhibition. Truncated derivatives have more drug-like physical properties than other A(1)AR agonists; this approach is appealing for preclinical development.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
36
|
Baraldi PG, Preti D, Zaid AN, Saponaro G, Tabrizi MA, Baraldi S, Romagnoli R, Moorman AR, Varani K, Cosconati S, Di Maro S, Marinelli L, Novellino E, Borea PA. New 2-heterocyclyl-imidazo[2,1-i]purin-5-one derivatives as potent and selective human A3 adenosine receptor antagonists. J Med Chem 2011; 54:5205-20. [PMID: 21675777 DOI: 10.1021/jm2004738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 4-allyl/benzyl-7,8-dihydro-8-methyl/ethyl-2-[(substituted)isoxazol/pyrazol-3/5-yl]-1H-imidazo[2,1-i]purin-5(4H)-ones has been synthesized and evaluated in radioligand binding assays to determine their affinities at the human A(1), A(2A), and A(3) adenosine receptors. Efficacy at the hA(2B) AR and antagonism of selected ligands at the hA(3) AR were also assessed through cAMP experiments. All of the synthesized molecules exhibited high affinity at the hA(3) AR (K(i) values ranging from 1.46 to 44.8 nM), as well as remarkable selectivity versus A(1), A(2A), and A(2B) AR subtypes. Compound (R)-4-allyl-8-ethyl-7,8-dihydro-2-(3-methoxy-1-methyl-1H-pyrazol-5-yl)-1H-imidazo[2,1-i]purin-5(4H)-one (R-33) was found to be the most potent and selective ligand of the series (K(i) hA(3) = 1.46 nM, K(i) hA(2A)/K(i) hA(3) > 3425; IC(50) hA(2B)/K(i) hA(3) > 3425; K(i) hA(1)/K(i) hA(3) = 1729). Molecular modeling studies were helpful in rationalizing the available structure-activity relationships along with the selectivity profiles of the new series of ligands.
Collapse
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento di Scienze Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim SK, Riley L, Abrol R, Jacobson KA, Goddard WA. Predicted structures of agonist and antagonist bound complexes of adenosine A3 receptor. Proteins 2011; 79:1878-97. [PMID: 21488099 DOI: 10.1002/prot.23012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/20/2011] [Accepted: 02/01/2011] [Indexed: 12/11/2022]
Abstract
We used the GEnSeMBLE Monte Carlo method to predict ensemble of the 20 best packings (helix rotations and tilts) based on the neutral total energy (E) from a vast number (10 trillion) of potential packings for each of the four subtypes of the adenosine G protein-coupled receptors (GPCRs), which are involved in many cytoprotective functions. We then used the DarwinDock Monte Carlo methods to predict the binding pose for the human A(3) adenosine receptor (hAA(3)R) for subtype selective agonists and antagonists. We found that all four A(3) agonists stabilize the 15th lowest conformation of apo-hAA(3)R while also binding strongly to the 1st and 3rd. In contrast the four A(3) antagonists stabilize the 2nd or 3rd lowest conformation. These results show that different ligands can stabilize different GPCR conformations, which will likely affect function, complicating the design of functionally unique ligands. Interestingly all agonists lead to a trans χ1 angle for W6.48 that experiments on other GPCRs associate with G-protein activation while all 20 apo-AA(3)R conformations have a W6.48 gauche+ χ1 angle associated experimentally with inactive GPCRs for other systems. Thus docking calculations have identified critical ligand-GPCR structures involved with activation. We found that the predicted binding site for selective agonist Cl-IB-MECA to the predicted structure of hAA(3)R shows favorable interactions to three subtype variable residues, I253(6.58), V169(EL2), and Q167(EL2), while the predicted structure for hAA(2A)R shows weakened to the corresponding amino acids: T256(6.58), E169(EL2), and L167(EL2), explaining the observed subtype selectivity.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Division of Chemistry and Chemical Engineering, Materials and Process Simulation Center MC139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
38
|
Kecskés M, Kumar TS, Yoo L, Gao ZG, Jacobson KA. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay. Biochem Pharmacol 2010; 80:506-11. [PMID: 20438717 PMCID: PMC2900413 DOI: 10.1016/j.bcp.2010.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 11/23/2022]
Abstract
Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.
Collapse
Affiliation(s)
- Miklós Kecskés
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - T. Santhosh Kumar
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Lena Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
39
|
Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, Barrett MO, Fricks IP, Harden TK, Gao ZG, Jacobson KA. Polyamidoamine (PAMAM) dendrimer conjugates of "clickable" agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 2010; 21:372-84. [PMID: 20121074 PMCID: PMC2845915 DOI: 10.1021/bc900473v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We previously synthesized a series of potent and selective A(3) adenosine receptor (AR) agonists (North-methanocarba nucleoside 5'-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed "click" chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A(3)AR activation was preserved in these multivalent conjugates, which bound with apparent K(i) of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A(3)AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A(3) and P2Y(14) receptors (via amide-linked uridine-5'-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - S. Michael Kilbey
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Matthew O. Barrett
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Ingrid P. Fricks
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - T. Kendall Harden
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
40
|
Tosh DK, Chinn M, Yoo LS, Kang DW, Luecke H, Gao ZG, Jacobson KA. 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: 'Clickable' A(3) adenosine receptor-selective agonists. Bioorg Med Chem 2010; 18:508-17. [PMID: 20036562 PMCID: PMC2818678 DOI: 10.1016/j.bmc.2009.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/02/2009] [Accepted: 12/05/2009] [Indexed: 11/17/2022]
Abstract
We modified a series of (N)-methanocarba nucleoside 5'-uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A(3) adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A(3)AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A(3)AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (K(i) 6.5nM), although some of the click products had K(i) values in the range of 200-400nM. Other potent, selective derivatives (K(i) at A(3)AR innM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), alpha-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A(3)AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A(3)AR agonists to reporter groups of diverse structure and to carrier moieties.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Dong Wook Kang
- Gene Regulation Group, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Hans Luecke
- Gene Regulation Group, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Auchampach JA, Gizewski ET, Wan TC, de Castro S, Brown GG, Jacobson KA. Synthesis and pharmacological characterization of [(125)I]MRS5127, a high affinity, selective agonist radioligand for the A3 adenosine receptor. Biochem Pharmacol 2009; 79:967-73. [PMID: 19917269 DOI: 10.1016/j.bcp.2009.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
A recently reported selective agonist of the human A(3) adenosine receptor (hA(3)AR), MRS5127 (1'R,2'R,3'S,4'R,5'S)-4'-[2-chloro-6-(3-iodobenzylamino)-purine]-2',3'-O-dihydroxy-bicyclo-[3.1.0]hexane, was radioiodinated and characterized pharmacologically. It contains a rigid bicyclic ring system in place of a 5'-truncated ribose moiety, and was selected for radiolabeling due to its nanomolar binding affinity at both human and rat A(3)ARs. The radioiodination of the N(6)-3-iodobenzyl substituent by iododestannylation of a 3-(trimethylstannyl)benzyl precursor was achieved in 73% yield, measured after purification by HPLC. [(125)I]MRS5127 bound to the human A(3)AR expressed in membranes of stably transfected HEK 293 cells. Specific binding was saturable, competitive, and followed a one-site binding model, with a K(d) value of 5.74+/-0.97nM. At a concentration equivalent to its K(d), non-specific binding comprised 27+/-2% of total binding. In kinetic studies, [(125)I]MRS5127 rapidly associated with the hA(3)AR (t(1/2)=0.514+/-0.014min), and the affinity calculated from association and dissociation rate constants was 3.50+/-1.46nM. The pharmacological profile of ligands in competition experiments with [(125)I]MRS5127 was consistent with the known structure-activity-relationship profile of the hA(3)AR. [(125)I]MRS5127 bound with similar high affinity (K(d), nM) to recombinant A(3)ARs from mouse (4.90+/-0.77), rabbit (2.53+/-0.11), and dog (3.35+/-0.54). For all of the species tested, MRS5127 exhibited A(3)AR agonist activity based on negative coupling to cAMP production. Thus, [(125)I]MRS5127 represents a new species-independent agonist radioligand for the A(3)AR. The major advantage of [(125)I]MRS5127 compared with previously used A(3)AR radioligands is its high affinity, low degree of non-specific binding, and improved A(3)AR selectivity.
Collapse
Affiliation(s)
- John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | | | | | | | | | | |
Collapse
|