1
|
The Use of Zidovudine Pharmacophore in Multi-Target-Directed Ligands for AIDS Therapy. Molecules 2022; 27:molecules27238502. [PMID: 36500608 PMCID: PMC9738661 DOI: 10.3390/molecules27238502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
The concept of polypharmacology embraces multiple drugs combined in a therapeutic regimen (drug combination or cocktail), fixed dose combinations (FDCs), and a single drug that binds to different targets (multi-target drug). A polypharmacology approach is widely applied in the treatment of acquired immunodeficiency syndrome (AIDS), providing life-saving therapies for millions of people living with HIV. Despite the success in viral load suppression and patient survival of combined antiretroviral therapy (cART), the development of new drugs has become imperative, owing to the emergence of resistant strains and poor adherence to cART. 3'-azido-2',3'-dideoxythymidine, also known as azidothymidine or zidovudine (AZT), is a widely applied starting scaffold in the search for new compounds, due to its good antiretroviral activity. Through the medicinal chemistry tool of molecular hybridization, AZT has been included in the structure of several compounds allowing for the development of multi-target-directed ligands (MTDLs) as antiretrovirals. This review aims to systematically explore and critically discuss AZT-based compounds as potential MTDLs for the treatment of AIDS. The review findings allowed us to conclude that: (i) AZT hybrids are still worth exploring, as they may provide highly active compounds targeting different steps of the HIV-1 replication cycle; (ii) AZT is a good starting point for the preparation of co-drugs with enhanced cell permeability.
Collapse
|
2
|
Meleddu R, Corona A, Distinto S, Cottiglia F, Deplano S, Sequeira L, Secci D, Onali A, Sanna E, Esposito F, Cirone I, Ortuso F, Alcaro S, Tramontano E, Mátyus P, Maccioni E. Exploring New Scaffolds for the Dual Inhibition of HIV-1 RT Polymerase and Ribonuclease Associated Functions. Molecules 2021; 26:molecules26133821. [PMID: 34201561 PMCID: PMC8270338 DOI: 10.3390/molecules26133821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Current therapeutic protocols for the treatment of HIV infection consist of the combination of diverse anti-retroviral drugs in order to reduce the selection of resistant mutants and to allow for the use of lower doses of each single agent to reduce toxicity. However, avoiding drugs interactions and patient compliance are issues not fully accomplished so far. Pursuing on our investigation on potential anti HIV multi-target agents we have designed and synthesized a small library of biphenylhydrazo 4-arylthiazoles derivatives and evaluated to investigate the ability of the new derivatives to simultaneously inhibit both associated functions of HIV reverse transcriptase. All compounds were active towards the two functions, although at different concentrations. The substitution pattern on the biphenyl moiety appears relevant to determine the activity. In particular, compound 2-{3-[(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl} hydrazin-1-ylidene) methyl]-4-methoxyphenyl} benzamide bromide (EMAC2063) was the most potent towards RNaseH (IC50 = 4.5 mM)- and RDDP (IC50 = 8.0 mM) HIV RT-associated functions.
Collapse
Affiliation(s)
- Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Lisa Sequeira
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Daniela Secci
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Alessia Onali
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Erica Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Italo Cirone
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy; (F.O.); (S.A.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy; (F.O.); (S.A.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Péter Mátyus
- Institute of Digital Health Sciences, Faculty of Health and Public Services, Semmelweis University, Ferenc tér 15, 1094 Budapest, Hungary;
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
- Correspondence: ; Tel.: +39-070-6758744
| |
Collapse
|
3
|
de Castro S, Camarasa MJ. Polypharmacology in HIV inhibition: can a drug with simultaneous action against two relevant targets be an alternative to combination therapy? Eur J Med Chem 2018. [PMID: 29529501 DOI: 10.1016/j.ejmech.2018.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIV infection still has a serious health and socio-economical impact and is one of the primary causes of morbidity and mortality all over the world. HIV infection and the AIDS pandemic are still matters of great concern, especially in less developed countries where the access to highly active antiretroviral therapy (HAART) is limited. Patient compliance is another serious drawback. Nowadays, HAART is the treatment of choice although it is not the panacea. Despite the fact that it suppresses viral replication at undetectable viral loads and prevents progression of HIV infection into AIDS HAART has several pitfalls, namely, long-term side-effects, drug resistance development, emergence of drug-resistant viruses, low compliance and the intolerance of some patients to these drugs. Moreover, another serious health concern is the event of co-infection with more than one pathogen at the same time (e.g. HIV and HCV, HBV, herpes viruses, etc). Currently, the multi-target drug approach has become an exciting strategy to address complex diseases and overcome drug resistance development. Such multifunctional molecules combine in their structure pharmacophores that may simultaneously interfere with multiple targets and their use may eventually be more safe and efficacious than that involving a mixture of separate molecules because of avoidance or delay of drug resistance, lower incidence of unwanted drug-drug interactions and improved compliance. In this review we focus on multifunctional molecules with dual activity against different targets of the HIV life cycle or able to block replication, not only of HIV but also of other viruses that are often co-pathogens of HIV. The different approaches are documented by selected examples.
Collapse
Affiliation(s)
- Sonia de Castro
- Instituto de Química Médica (IQM, CSIC) Juan de La Cierva 3, E-28006 Madrid, Spain
| | - María-José Camarasa
- Instituto de Química Médica (IQM, CSIC) Juan de La Cierva 3, E-28006 Madrid, Spain.
| |
Collapse
|
4
|
Dual-targeted anti-TB/anti-HIV heterodimers. Antiviral Res 2017; 145:175-183. [PMID: 28743447 DOI: 10.1016/j.antiviral.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
Abstract
HIV and M. tuberculosis are two intersecting epidemics making the search for new dual action drugs against both pathogens extremely important. Here, we report on the synthesis and suppressive activities of five dual-targeted HIV/TB compounds. These compounds are heterodimers of AZT, as anti-HIV molecules, and 5-substituted uracil derivatives, as anti-TB molecules. We found that these compounds inhibit the growth of M. tuberculosis and suppress the replication of HIV in human cell cultures and human lymphoid tissues ex vivo. We identified one particular heterodimer that inhibited both HIV and the drug-resistant TB strain MS-115 most potently. This compound demonstrated low toxicity and had no cytostatic effect on cells in culture, constituting an ideal candidate for future development and further in vivo testing.
Collapse
|
5
|
Doepner AM, Aboagye EO, Barrett AG. 2′-Deoxy-2′,2′-difluorothymidine analogues for radiolabeling with fluorine-18 and other biomedical applications. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
New hybrids between triterpenoid acids and nucleoside HIV-RT inhibitors. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Pradere U, Garnier-Amblard E, Coats SJ, Amblard F, Schinazi RF. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 2014; 114:9154-218. [PMID: 25144792 PMCID: PMC4173794 DOI: 10.1021/cr5002035] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Ugo Pradere
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | | | | | - Franck Amblard
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Iyidogan P, Sullivan TJ, Chordia MD, Frey KM, Anderson KS. Design, Synthesis, and Antiviral Evaluation of Chimeric Inhibitors of HIV Reverse Transcriptase. ACS Med Chem Lett 2013; 4:1183-8. [PMID: 24900627 DOI: 10.1021/ml4002979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/04/2013] [Indexed: 02/02/2023] Open
Abstract
In a continuing study of potent bifunctional anti-HIV agents, we rationally designed a novel chimeric inhibitor utilizing thymidine (THY) and a TMC derivative (a diarylpyrimidine NNRTI) linked via a polymethylene linker (ALK). The nucleoside, 5'-hydrogen-phosphonate (H-phosphonate), and 5'-triphosphate forms of this chimeric inhibitor (THY-ALK-TMC) were synthesized and the antiviral activity profiles were evaluated at the enzyme and cellular level. The nucleoside triphosphate (11) and the H-phosphonate (10) derivatives inhibited RT polymerization with an IC50 value of 6.0 and 4.3 nM, respectively. Additionally, chimeric nucleoside (9) and H-phosphonate (10) derivatives reduced HIV replication in a cell-based assay with low nanomolar antiviral potencies.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department
of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | - Todd J. Sullivan
- Department
of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | | | - Kathleen M. Frey
- Department
of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | - Karen S. Anderson
- Department
of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Bailey CM, Sullivan TJ, Iyidogan P, Tirado-Rives J, Chung R, Ruiz-Caro J, Mohamed E, Jorgensen WL, Jorgensen W, Hunter R, Anderson KS. Bifunctional inhibition of human immunodeficiency virus type 1 reverse transcriptase: mechanism and proof-of-concept as a novel therapeutic design strategy. J Med Chem 2013; 56:3959-68. [PMID: 23659183 DOI: 10.1021/jm400160s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is a major target for currently approved anti-HIV drugs. These drugs are divided into two classes: nucleoside and non-nucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). This study illustrates the synthesis and biochemical evaluation of a novel bifunctional RT inhibitor utilizing d4T (NRTI) and a TMC-derivative (a diarylpyrimidine NNRTI) linked via a poly(ethylene glycol) (PEG) linker. HIV-1 RT successfully incorporates the triphosphate of d4T-4PEG-TMC bifunctional inhibitor in a base-specific manner. Moreover, this inhibitor demonstrates low nanomolar potency that has 4.3-fold and 4300-fold enhancement of polymerization inhibition in vitro relative to the parent TMC-derivative and d4T, respectively. This study serves as a proof-of-concept for the development and optimization of bifunctional RT inhibitors as potent inhibitors of HIV-1 viral replication.
Collapse
Affiliation(s)
- Christopher M Bailey
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Younis Y, Hunter R, Muhanji CI, Hale I, Singh R, Bailey CM, Sullivan TJ, Anderson KS. [d4U]-spacer-[HI-236] double-drug inhibitors of HIV-1 reverse-transcriptase. Bioorg Med Chem 2010; 18:4661-73. [PMID: 20605472 DOI: 10.1016/j.bmc.2010.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 11/17/2022]
Abstract
Four double-drug HIV NRTI/NNRTI inhibitors 15a-d of the type [d4U]-spacer-[HI-236] in which the spacer is varied as 1-butynyl (15a), propargyl-1-PEG (15b), propargyl-2-PEG (15c) and propargyl-4-PEG (15d) have been synthesized and biologically evaluated as RT inhibitors against HIV-1. The key step in their synthesis involved a Sonogashira coupling of 5-iodo d4U's benzoate with an alkynylated tethered HI-236 precursor followed by introduction of the HI-236 thiourea functionality. Biological evaluation in both cell-culture (MT-2 cells) as well as using an in vitro RT assay revealed 15a-c to be all more active than d4T. However, overall the results indicate the derivatives are acting as chain-extended NNRTIs in which for 15b-d the nucleoside component is likely situated outside of the pocket but with no evidence for any synergistic double binding between the NRTI and NNRTI sites. This is attributed, in part, to the lack of phosphorylation of the nucleoside component of the double-drug as a result of kinase recognition failure, which is not improved upon with the phosphoramidate of 15d incorporating a 4-PEG spacer.
Collapse
Affiliation(s)
- Yassir Younis
- Department of Chemistry, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li GR, Liu J, Pan Q, Song ZB, Luo FL, Wang SR, Zhang XL, Zhou X. Synthesis and anti-HIV activity of [ddN]-[ddN] dimers and benzimidazole nucleoside dimers. Chem Biodivers 2010; 6:2200-8. [PMID: 20020452 DOI: 10.1002/cbdv.200800281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In an attempt to combine the HIV-inhibitory capacity of different 2',3'-dideoxynucleoside (ddN) analogs, we have designed and synthesized several dimers of [AZT]-[AZT] and [AZT]-[d4T]. In addition, we also synthesized the dimers of 1-(1H-benzimidazol-1-yl)-1-deoxy-beta-D-ribofuranose. The in vitro anti-HIV activity of these compounds on a pseudotype virus, pNL4-3.Luc.R-E-, in the 293T cells has been determined. Among these compounds, 2,2'-(propane-1,3-diyl)bis[1-(beta-D-ribofuranosyl)-1H-benzimidazole] showed the highest anti-HIV activity with similar effect as AZT.
Collapse
Affiliation(s)
- Guo-Rui Li
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, Wuhan 430072, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sniady A, Sevilla MD, Meneni S, Lis T, Szafert S, Khanduri D, Finke JM, Dembinski R. Synthesis and EPR studies of 2'-deoxyuridines with alkynyl, rodlike linkages. Chemistry 2009; 15:7569-77. [PMID: 19609983 PMCID: PMC4596529 DOI: 10.1002/chem.200900481] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sonogashira coupling of diacetyl 5-ethynyl-2'-deoxyuridine with diacetyl 5-iodo-2'-deoxyuridine gave the acylated ethynediyl-linked 2'-deoxyuridine dimer (3 b; 63%), which was deprotected with ammonia/methanol to give ethynediyl-linked 2'-deoxyuridines (3 a; 79%). Treatment of 5-ethynyl-2'-deoxyuridine (1 a) with 5-iodo-2'-deoxyuridine gave the furopyrimidine linked to 2'-deoxyuridine (78%). Catalytic oxidative coupling of 1 a (O(2), CuI, Pd/C, N,N-dimethylformamide) gave butadiynediyl-linked 2'-deoxyuridines (4; 84 %). Double Sonogashira coupling of 5-iodo-2'-deoxyuridine with 1,4-diethynylbenzene gave 1,4-phenylenediethynediyl-bridged 2'-deoxyuridines (5; 83%). Cu-catalyzed cycloisomerization of dimers 4 and 5 gave their furopyrimidine derivatives. One-electron addition to 1 a, 3 a, and 4 gave the anion radical, the EPR spectra of which showed that the unpaired electron is largely localized at C6 of one uracil ring (17 G doublet) at 77 K. The EPR spectra of the one-electron-oxidized derivatives of ethynediyl- and butadiynediyl-linked uridines 3 a and 4 at 77 K showed that the unpaired electron is delocalized over both rings. Therefore, structures 3 a and 4 provide an efficient electronic link for hole conduction between the uracil rings. However, for the excess electron, an activation barrier prevents coupling to both rings. These dimeric structures could provide a gate that would separate hole transfer from electron transport between strands in DNA systems. In the crystal structure of acylated dimer 3 b, the bases were found in the anti position relative to each other across the ethynyl link, and similar anti conformation was preserved in the derived furopyrimidine-deoxyuridine dinucleoside.
Collapse
Affiliation(s)
- Adam Sniady
- Department of Chemistry and Center for Biomedical Research, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, USA
| | - Michael D. Sevilla
- Department of Chemistry and Center for Biomedical Research, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, USA
| | - Srinivasarao Meneni
- Department of Chemistry and Center for Biomedical Research, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, USA
| | - Tadeusz Lis
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Slawomir Szafert
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Deepthi Khanduri
- Department of Chemistry and Center for Biomedical Research, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, USA
| | - John M. Finke
- Department of Chemistry and Center for Biomedical Research, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, USA
| | - Roman Dembinski
- Department of Chemistry and Center for Biomedical Research, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, USA
| |
Collapse
|
13
|
Hunter R, Younis Y, Muhanji CI, Curtin TL, Naidoo KJ, Petersen M, Bailey CM, Basavapathruni A, Anderson KS. C-2-aryl O-substituted HI-236 derivatives as non-nucleoside HIV-1 reverse-transcriptase inhibitors. Bioorg Med Chem 2008; 16:10270-80. [PMID: 18996020 PMCID: PMC2639753 DOI: 10.1016/j.bmc.2008.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/20/2008] [Indexed: 11/23/2022]
Abstract
Several novel thiourea derivatives of the NNRTI HI-236 substituted at the C-2 oxygen of the phenyl ring have been synthesized and evaluated for their inhibitory activity against HIV-1 (IIIB) replication in MT-2 cell cultures. The compounds were synthesized in order to fine-tune the activity of HI-236 as well as to gain insight into spatial characteristics in the pocket pertaining to the positional choice of tether in the design of [NRTI]-tether-[HI-236] bifunctional inhibitors. Two of the thiourea derivatives bearing a butynyl (6c) or hydroxyethyl tether (6n) were endowed with improved anti-HIV activity compared to HI-236. NNRTI activity was confirmed by a cell-free RT assay on six of the derivatives in which 6c returned an IC(50) of 3.8 nM compared to 28 nM for HI-236, establishing it as an improved lead for HI-236. The structure-activity profile is discussed in terms of potential interactions in the NNRTI pocket as suggested by a docking model using AutoDock, which have a bearing on the bifunctional drug design.
Collapse
Affiliation(s)
- Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hunter R, Muhanji CI, Hale I, Bailey CM, Basavapathruni A, Anderson KS. [d4U]-butyne-[HI-236] as a non-cleavable, bifunctional NRTI/NNRTI HIV-1 reverse-transcriptase inhibitor. Bioorg Med Chem Lett 2007; 17:2614-7. [PMID: 17317163 DOI: 10.1016/j.bmcl.2007.01.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/18/2022]
Abstract
The synthesis of bifunctional compound 10 consisting of d4U joined at C-5 to a butynyl spacer attached to HI-236 is reported using a Sonogashira coupling as a key step. As a non-cleavable bifunctional HIV inhibitor incorporating an NRTI with an NNRTI, 10 shows good inhibitory activity (EC(50)=250 nM) against HIV (IIIB) replication in MT-2 cell culture, which is eight times greater than that of d4T and between those of the two component drugs.
Collapse
Affiliation(s)
- Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | | | | | | | | | | |
Collapse
|
15
|
Sluis-Cremer N, Hamamouch N, San Félix A, Velazquez S, Balzarini J, Camarasa MJ. Structure−Activity Relationships of [2‘,5‘-Bis-O-(tert-butyldimethylsilyl)-β-d-ribofuranosyl]- 3‘-spiro-5‘ ‘-(4‘ ‘-amino-1‘ ‘,2‘ ‘-oxathiole-2‘ ‘,2‘ ‘-dioxide)thymine Derivatives as Inhibitors of HIV-1 Reverse Transcriptase Dimerization. J Med Chem 2006; 49:4834-41. [PMID: 16884295 DOI: 10.1021/jm0604575] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polymerase activity of HIV-1 reverse transcriptase (RT) is entirely dependent on the heterodimeric structure of the enzyme. Accordingly, RT dimerization represents a target for the development of a new therapeutic class of HIV inhibitors. We previously demonstrated that the N-3-ethyl derivative of 2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5' '-(4' '-amino-1' ',2' '-oxathiole-2' ',2' '-dioxide)thymine (TSAO-T) destabilizes the inter-subunit interactions of HIV-1 RT [Sluis-Cremer, N.; Dmietrinko, G. I.; Balzarini, J.; Camarasa, M.-J.; Parniak, M. A. Biochemistry 2000, 39, 1427-1433]. In the current study, we evaluated the ability of 64 TSAO-T derivatives to inhibit RT dimerization using a novel screening assay. Five derivatives were identified with improved activity compared to TSAO-T. Four of these harbored hydrophilic or aromatic substituents at the N3 position. Furthermore, a good correlation between the ability of the TSAO-T derivatives to inhibit RT dimerization and the enzyme's polymerase activity was also observed. This study provides an important framework for the rational design of more potent inhibitors of RT dimerization.
Collapse
Affiliation(s)
- Nicolas Sluis-Cremer
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Arnott G, Hunter R, Mbeki L, Mohamed E. New methodology for 2-alkylation of 3-furoic acids: application to the synthesis of tethered UC-781/d4T bifunctional HIV reverse-transcriptase inhibitors. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
De Clercq E. Nucleoside analogues exerting antiviral activity through a non-nucleoside mechanism. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 23:457-70. [PMID: 15043166 DOI: 10.1081/ncn-120028339] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In analogy with maribavir [1-(beta-L-ribofuranosyl)-isopropylamino-5,6-dichlorobenzimidazole], a nucleoside analogue that acts against human cytomegalovirus (HCMV) by a non-nucleoside mechanism, here I present three other examples of classes of nucleoside analogues (i.e. bicyclic furo[2,3-d]pyrimidine as well as HEPT and TSAO derivatives) that act against either HCMV or human immunodeficiency virus (HIV) through a non-nucleoside mode of action.
Collapse
|
18
|
Gavriliu D, Fossey C, Ciurea A, Delbederi Z, Sugeac E, Ladurée D, Schmidt S, Laumond G, Aubertin AM. Synthesis and anti-HIV activity of [d4U]-[trovirdine analogue] and [d4T]-[trovirdine analogue] heterodimers as inhibitors of HIV-1 reverse transcriptase. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2003; 21:505-33. [PMID: 12484448 DOI: 10.1081/ncn-120015066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A series of eleven heterodimers containing both a nucleoside analogue (d4U, d4T) and a non-nucleoside type inhibitor (Trovirdine analogue) were synthesized and evaluated for their ability to inhibit HIV replication. Unfortunately, the (N-3)d4U-Trovirdine conjugates (9a-e) and (N-3)d4T-Trovirdine conjugates (10a-f) were found to be inactive suggesting that the two individual inhibitor compounds do not bind simultaneously in their respective sites.
Collapse
Affiliation(s)
- D Gavriliu
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, U.F.R. des Sciences Pharmaceutiques, 5 Rue Vaubénard, 14032 Caen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xiao Q, Sun J, Ju Y, Zhao YF, Cui YX. Novel approach to the synthesis of AZT 5′-O-hydrogen phospholipids. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)01045-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Ma CM, Nakamura N, Hattori M, Kawahata T, Otake T. Inhibitory effects of triterpene-azidothymidine conjugates on proliferation of human immunodeficiency virus type 1 and its protease. Chem Pharm Bull (Tokyo) 2002; 50:877-80. [PMID: 12045355 DOI: 10.1248/cpb.50.877] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conjugates of some dicarboxylic acid hemiesters of triterpenes which show potent inhibition against human immunodeficiency virus type 1 protease (HIV-1 PR) with a reverse transcriptase inhibitor azidothymidine (AZT) or anti-HIV alkaloid FK 3000 were prepared, and their inhibitory activities were investigated against HIV-induced cytopathic effects (CPE) and HIV-1 PR. Most of the triterpene-AZT conjugates showed potent anti-HIV activity as well as moderate to potent PR inhibitory activity, though AZT itself showed no PR inhibitory activity at all. However, the triterpene-FK 3000 conjugates showed neither PR inhibitory activity nor anti-HIV activity.
Collapse
Affiliation(s)
- Chao-Mei Ma
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Sugitani, Japan
| | | | | | | | | |
Collapse
|
21
|
Rodríguez-Barrios F, Pérez C, Lobatón E, Velázquez S, Chamorro C, San-Félix A, Pérez-Pérez MJ, Camarasa MJ, Pelemans H, Balzarini J, Gago F. Identification of a putative binding site for [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)thymine (TSAO) derivatives at the p51-p66 interface of HIV-1 reverse transcriptase. J Med Chem 2001; 44:1853-65. [PMID: 11384232 DOI: 10.1021/jm001095i] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A binding site for TSAO-m(3)T at the interface between the p66 and p51 subunits of HIV-1 reverse transcriptase (RT) and distinct from that of "classical" HIV-1 non-nucleoside inhibitors is proposed. The feasibility of the binding mode was assessed by carrying out nanosecond molecular dynamics simulations for the complexes of TSAO-m(3)T with reduced models of both the wild-type enzyme and a more sensitive R172A mutant. The molecular model is in agreement with a previous proposal, with known structure-activity and mutagenesis data for this unique class of inhibitors, and also with recent biochemical evidence indicating that TSAO analogues can affect enzyme dimerization. The relative importance of residues involved in dimer formation and TSAO-RT complex stabilization was assessed by a combination of surface area accessibility, molecular mechanics, and continuum electrostatics calculations. A structure-based modification introduced into the lead compound yielded a new derivative with improved antiviral activity.
Collapse
Affiliation(s)
- F Rodríguez-Barrios
- Departamento de Farmacología, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Synthesis of a phosphoramidate pro-drug of 6-thio-7-deaza-2′-deoxyguanosine (TDG): a regioselective phosphorylation. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(00)02045-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Synthesis of New Bis-Alkylated Phosphono Alkenyl Acyclonucleosides : (Z) and (E)-Diethyl-2-(3-alkyl pyrimidin-1-yl)ethylen-1-yl Phosphonate. Molecules 2000. [DOI: 10.3390/51001139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Gavriliu D, Fossey C, Fontaine G, Benzaria S, Ciurea A, Delbederi Z, Lelong B, Ladurée D, Aubertin AM, Kirn A. Synthesis and antiviral activity of C-5 substituted analogues of d4T bearing methylamino- or methyldiamino-linker arms. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1017-31. [PMID: 10893719 DOI: 10.1080/15257770008033040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A general strategy is reported for the preparation of C-5-methylamino- or methyldiamino-d4T analogues of "different sizes". Reactions of the 2',3'-didehydro-2',3'-dideoxy-C-5 hydroxymethyl precursor (7) with either polymethylene diamines (n = 6, 8, 10 and 12) or propargylamine proceed regioselectively via substitution reactions at the C-5 position of uracil. The compounds were evaluated for antiviral activity and cytotoxicity. No significant activity was observed for compounds 9, 11, and 13, but 10 and 12 exhibited a weak activity against HIV-1.
Collapse
Affiliation(s)
- D Gavriliu
- Centre d'Etudes et de Recherche sur le Médicament de Normandie U.F.R. des Sciences Pharmaceutiques, Caen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|