1
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Abstract
Glycerophospholipids are major components of cellular membranes and provide important signaling molecules. Besides shaping membrane properties, some bind to specific receptors to activate biological pathways. Untangling the roles of individual glycerophospholipids requires clearly defined molecular species, a challenge that can be best addressed through chemical synthesis. However, glycerophospholipid syntheses are often lengthy due to the contrasting polarities found within these lipids. We now report a general strategy to quickly access glycerophospholipids via opening of a phosphate triester epoxide with carboxylic acids catalyzed by Jacobsen's Co(salen) complex. We show that this method can be applied to a variety of commercially available fatty acids, photoswitchable fatty acids, and other carboxylic acids to provide the corresponding glycerophosphate derivatives.
Collapse
Affiliation(s)
- Tufan K Mukhopadhyay
- Department of Chemistry, New York University, Silver Center, 31 Washington Place, New York, New York 10003, United States
| | - Dirk Trauner
- Department of Chemistry, College of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
4
|
Papangelis A, Ulven T. Synthesis of Lysophosphatidylcholine and Mixed Phosphatidylcholine. J Org Chem 2022; 87:8194-8197. [PMID: 35649118 DOI: 10.1021/acs.joc.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) are important membrane constituents implicated in signaling and immune regulation. Synthesis of LPCs is challenging due to rapid acyl migration, e.g., induced by chromatography. We here report a highly regioselective synthesis of LPC and mixed PC via an intermediate allowing specific terminal acyl introduction, yielding the pure LPC without chromatography by an exceedingly mild TBS deprotection, using 1 equiv of TFA in aqueous solution. The method enabled the synthesis of glycerol-, acyl-, and choline-labeled LPC.
Collapse
Affiliation(s)
- Athanasios Papangelis
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Andringa RLH, Jonker M, Minnaard AJ. Synthesis of phosphatidic acids via cobalt(salen) catalyzed epoxide ring-opening with dibenzyl phosphate. Org Biomol Chem 2022; 20:2200-2204. [PMID: 35253820 PMCID: PMC8924959 DOI: 10.1039/d2ob00168c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
Abstract
With a CoIII(salen)OTs catalyst, dibenzyl phosphate ring-opens a variety of terminal epoxides with excellent regio-selectively and yields up to 85%. The reaction is used in a highly efficient synthesis of enantiopure mixed-diacyl phosphatidic acids, including a photoswitchable phosphatidic acid mimic.
Collapse
Affiliation(s)
- Ruben L H Andringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Marijn Jonker
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
6
|
Polar Head Modified Phospholipids by Phospholipase D-Catalyzed Transformations of Natural Phosphatidylcholine for Targeted Applications: An Overview. Catalysts 2020. [DOI: 10.3390/catal10090997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review describes the use of phospholipase D (PLD) to perform the transphosphatidylation of the most common natural phospholipid (PL), phosphatidylcholine (PC) to obtain polar head modified phospholipids with real targeted applications. The introduction of different polar heads with distinctive physical and chemical properties such as charge, polarity and dimensions allows the obtainment of very different PLs, which can be exploited in very diverse fields of application. Moreover, the inclusions of a bioactive moiety in the PL polar head constitutes a powerful tool for the stabilization and administration of active ingredients. The use of this biocatalytic approach allows the preparation of compounds which cannot be easily obtained by classical chemical methods, by using mild and green reaction conditions. PLD is a very versatile enzyme, able to catalyze both the hydrolysis of PC to choline and phosphatidic acid (PA), and the transphosphatidylation reaction in the presence of an appropriate alcohol. The yield of production of the desired product and the ratio with the collateral PA formation is highly dependent on parameters such as the nature and concentration of the alcohol and the enzymatic source. The application of PLD catalyzed transformations for the production of a great number of PLs with important uses in medical, nutraceutical and cosmetic sectors will be discussed in this work.
Collapse
|
7
|
Abstract
Although prebiotic condensations of glycerol, phosphate and fatty acids produce phospholipid esters with a racemic backbone, most experimental studies on vesicles intended as protocell models have been carried out by employing commercial enantiopure phospholipids. Current experimental research on realistic protocell models urgently requires racemic phospholipids and efficient synthetic routes for their production. Here we propose three synthetic pathways starting from glycerol or from racemic solketal (α,β-isopropylidene-dl-glycerol) for the gram-scale production (up to 4 g) of racemic phospholipid ester precursors. We describe and compare these synthetic pathways with literature data. Racemic phosphatidylcholines and phosphatidylethanolamines were obtained in good yields and high purity from 1,2-diacylglycerols. Racemic POPC (rac-POPC, (R,S)-1-palmitoyl-2-oleoyl-3-phosphocholine), was used as a model compound for the preparation of giant vesicles (GVs). Confocal laser scanning fluorescence microscopy was used to compare GVs prepared from enantiopure (R)-POPC), racemic POPC (rac-POPC) and a scalemic mixture (scal-POPC) of (R)-POPC enriched with rac-POPC. Vesicle morphology and size distribution were similar among the different (R)-POPC, rac-POPC and scal-POPC, while calcein entrapments in (R)-POPC and in scal-POPC were significantly distinct by about 10%.
Collapse
|
8
|
Mallik S, Prasad R, Bhattacharya A, Sen P. Synthesis of Phosphatidylserine and Its Stereoisomers: Their Role in Activation of Blood Coagulation. ACS Med Chem Lett 2018; 9:434-439. [PMID: 29795755 DOI: 10.1021/acsmedchemlett.8b00008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022] Open
Abstract
Natural phosphatidylserine (PS), which contains two chiral centers, enhances blood coagulation. However, the process by which PS enhanced blood coagulation is not completely understood. An efficient and flexible synthetic route has been developed to synthesize all of the possible stereoisomers of PS. In this study, we examined the role of PS chiral centers in modulating the activity of the tissue factor (TF)-factor VIIa coagulation initiation complex. Full length TF was relipidated with phosphatidylcholine, and the synthesized PS isomers were individually used to estimate the procoagulant activity of the TF-FVIIa complex via a FXa generation assay. The results revealed that the initiation complex activity was stereoselective and had increased sensitivity to the configuration of the PS glycerol backbone due to optimal protein-lipid interactions.
Collapse
Affiliation(s)
- Suman Mallik
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Ramesh Prasad
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Bhattacharya
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Prosenjit Sen
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
9
|
Anankanbil S, Pérez B, Banerjee C, Guo Z. New phenophospholipids equipped with multi-functionalities: Regiospecific synthesis and characterization. J Colloid Interface Sci 2018; 523:169-178. [PMID: 29621644 DOI: 10.1016/j.jcis.2018.03.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS In multi-phase systems, many complex reactions take place at the interface where a molecule equipped with manifold functionalities is demanded. By taking advantage of the surface-active property of phosphatidylcholine (PC) scaffold and antioxidant properties of phenolic acids, new multifunctional molecules are generated, which are expected to confer physical and oxidative stability to sensitive bioactive ingredients in delivery systems. EXPERIMENTS This work reports a successful synthesis of two new arrays of phenophospholipids sn-1-acyl(C12-C18)-sn-2-caffeoyl and sn-1-caffeoyl-sn-2-acyl phosphatidylcholines via mild scalable regiospecific pathways; as structurally verified by MS, 1H/13C NMR analyses, and characterized by critical micelle concentrations (CMC), FTIR, and DSC analysis. Synthesized phenophospholipids are subjected to stabilizing o/w emulsion, and antioxidation tests as demonstrated by TBARS (Thiobarbituric Acid Reactive Substances) and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays. FINDINGS This study has demonstrated that; (1) phenophospholipids with a broad spectrum of CMC are created, affording superior emulsion stability than soybean PC; (2) all phenophospholipids present improved oxidation inhibition and sn-2-caffeoyl phenophospholipids display superior performance to sn-1-caffeoyl phenophospholipids, soybean PC or admixture of caffeic acid and soybean PC; (3) incorporation of caffeoyl in PC scaffold does not sacrifice radical scavenging ability of caffeic acid, whilst the ion chelating capacity of sn-1-myristoyl(C14)-sn-2-caffeoyl PC enhance by 4.5 times compared to soy PC. Fluorescence Microscopy imaging verified the location of phenophospholipids in the interface as desired. Among synthetic phenophospholipids, sn-1-myristoyl(C14)-sn-2-caffeoyl PC commits the cut-off effect in most desired functionalities, which might be of great potential for multi-purpose applications.
Collapse
Affiliation(s)
- Sampson Anankanbil
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Bianca Pérez
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Chiranjib Banerjee
- Department of Chemistry, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Zheng Guo
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
10
|
2- OMe -lysophosphatidylcholine analogues are GPR119 ligands and activate insulin secretion from βTC-3 pancreatic cells: Evaluation of structure-dependent biological activity. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:91-103. [DOI: 10.1016/j.bbalip.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 01/08/2023]
|
11
|
Brancucci NMB, Gerdt JP, Wang C, De Niz M, Philip N, Adapa SR, Zhang M, Hitz E, Niederwieser I, Boltryk SD, Laffitte MC, Clark MA, Grüring C, Ravel D, Blancke Soares A, Demas A, Bopp S, Rubio-Ruiz B, Conejo-Garcia A, Wirth DF, Gendaszewska-Darmach E, Duraisingh MT, Adams JH, Voss TS, Waters AP, Jiang RHY, Clardy J, Marti M. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum. Cell 2017; 171:1532-1544.e15. [PMID: 29129376 PMCID: PMC5733390 DOI: 10.1016/j.cell.2017.10.020] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/17/2017] [Accepted: 10/12/2017] [Indexed: 01/11/2023]
Abstract
Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Joseph P Gerdt
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, MA 02155, USA
| | - ChengQi Wang
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Nisha Philip
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Swamy R Adapa
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Min Zhang
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Eva Hitz
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Igor Niederwieser
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Sylwia D Boltryk
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Marie-Claude Laffitte
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Martha A Clark
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Christof Grüring
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Deepali Ravel
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Alexandra Blancke Soares
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Allison Demas
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Selina Bopp
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Belén Rubio-Ruiz
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010 Granada, Spain
| | - Ana Conejo-Garcia
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010 Granada, Spain
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland
| | - Manoj T Duraisingh
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - John H Adams
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Till S Voss
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Andrew P Waters
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rays H Y Jiang
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Jon Clardy
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, MA 02155, USA.
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA.
| |
Collapse
|
12
|
Gagnon MC, Dautrey S, Bertrand X, Auger M, Paquin JF. A Flexible Synthetic Approach to Phosphatidylglycerols. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marie-Claude Gagnon
- CERMA; PROTEO; CQMF; Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
- CGCC; PROTEO; Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| | - Sébastien Dautrey
- CERMA; PROTEO; CQMF; Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
- CGCC; PROTEO; Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| | - Xavier Bertrand
- CERMA; PROTEO; CQMF; Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
- CGCC; PROTEO; Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| | - Michèle Auger
- CERMA; PROTEO; CQMF; Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| | - Jean-Francois Paquin
- CGCC; PROTEO; Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| |
Collapse
|
13
|
Drzazga A, Sowinska A, Krzeminska A, Rytczak P, Koziolkiewicz M, Gendaszewska-Darmach E. Lysophosphatidylcholine elicits intracellular calcium signaling in a GPR55-dependent manner. Biochem Biophys Res Commun 2017; 489:242-247. [PMID: 28552522 DOI: 10.1016/j.bbrc.2017.05.145] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 01/28/2023]
Abstract
The GPR55 signaling is fertile ground for drug discovery, however despite considerable research progress during the past 10 years, many open questions remain. The GPR55 pharmacology remains controversial, as many ligands have been reported with inconsistent results. Here, we show that various molecular species of lysophosphatidylcholine (LPC) elicit intracellular Ca2+ mobilization in GPR55-expressing PC-3 human prostate carcinoma cells. The response was even stronger than [Ca2+]i flux evoked by endogenous (OEA) and synthetic (Abn-CBD) agonists. Treatment with GPR55 antagonists CID16020046 and ML193 as well as the lipid raft disrupter methyl-β-cyclodextrin strongly blunted LPC-induced calcium signal. Additionally, molecular modeling analysis revealed that LPC 16:0 and LPC 18:1 interact stronger with the receptor than to OEA. Identified electrostatic interactions between GPR55 residues and the ligands overlap with the binding site identified previously for lysophosphatidylinositol. Therefore, we prove that LPC is another GPR55-sensitive ligand. This finding is relevant in understanding lysophospolipids-mediated signaling and opens new avenues to develop therapeutic approach based on GPR55 targeting.
Collapse
Affiliation(s)
- Anna Drzazga
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Agata Sowinska
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Agnieszka Krzeminska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Przemysław Rytczak
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Maria Koziolkiewicz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| |
Collapse
|
14
|
Vijeeta T, Balakrishna M, Lakshmi Karuna MS, Surya Koppeswara Rao BV, Narayana Prasad RB. Chemo-enzymatic synthesis of rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine and its analogues. J Oleo Sci 2014; 63:933-8. [PMID: 25174676 DOI: 10.5650/jos.ess14001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The synthesis of rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholines (6a-c), blood platelet activating ether lipid analogues has been achieved in a four-step sequence from epichlorohydrin (1). Etherification of epichlorohydrin with different alcohols namely tetradecyl (2a), hexadecyl (2b) and octadecyl (2c) alcohols gave glycidyl ethers (3a-c) with 78-80% yields. The second step involved opening of the epoxide by acetic anhydride to give acetylated products (4a-c, 76-78% yield), which were subsequently hydrolyzed selectively, a key step of the method employing a 1,3 specific lipase to obtain rac 1-O-alkyl-2- acetylglycerol (5a-c) with 45-50% yields. The hydrolyzed products (5a-c) were phosphorylated to obtain rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholines (6a-c) in 80-85% yields.
Collapse
Affiliation(s)
- Tadla Vijeeta
- Centre for Lipid Research, CSIR-Indian Institute of Chemical Technology
| | | | | | | | | |
Collapse
|
15
|
Fodran P, Minnaard AJ. Catalytic synthesis of enantiopure mixed diacylglycerols – synthesis of a major M. tuberculosis phospholipid and platelet activating factor. Org Biomol Chem 2014; 11:6919-28. [PMID: 24191360 DOI: 10.1039/c3ob41483c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient catalytic one-pot synthesis of TBDMS-protected diacylglycerols has been developed, starting from enantiopure glycidol. Subsequent migration-free deprotection leads to stereo- and regiochemically pure diacylglycerols. This novel strategy has been applied to the synthesis of a major Mycobacterium tuberculosis phospholipid, its desmethyl analogue, and platelet activating factor.
Collapse
|
16
|
East JE, Macdonald TL. Cost-Effective and Large-Scale Synthesis of 16:0 Lysophosphatidic Acid. SYNTHETIC COMMUN 2012; 42:3614-3618. [DOI: 10.1080/00397911.2011.587080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Phosphonate-free phosphorylation of alcohols using bis-(tert-butyl) phosphoramidite with imidazole·hydrochloride and imidazole as the activator. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Popov AV, Mawn TM, Kim S, Zheng G, Delikatny EJ. Design and synthesis of phospholipase C and A2-activatable near-infrared fluorescent smart probes. Bioconjug Chem 2011; 21:1724-7. [PMID: 20882956 DOI: 10.1021/bc100271v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The primary focus of this work was to develop activatable probes suitable for in vivo detection of phospholipase activity. Phospholipases (PLs) are ubiquitous enzymes that perform a number of critical regulatory functions. They catalyze phospholipid breakdown and are categorized as A(1), A(2) (PLA(2)), C (PLC), and D (PLD) based on their site of action. Here, we report the design, synthesis, and characterization of self-quenching reporter probes that release fluorescent moieties upon cleavage with PLA(2) or PLC. A series of phospholipids were synthesized bearing the NIR fluorophore pyropheophorbide a (Pyro) at the sn-2 position. Fluorescence quenching was achieved by attachment of either a positively charged black hole quencher-3 (BHQ-3) to the phospholipid headgroup or another neutral Pyro moiety at the sn-1 position. The specificity to different phospholipases was modulated by insertion of spacers (C(6), C(12)) between Pyro and the lipid backbone. The specificity of the quenched fluorescent phospholipids was assayed on a plate reader against a number of phospholipases and compared with two commercial probes bearing the visible fluorophore BODIPY. While PyroC(6)-PyroC(6)-PtdCho revealed significant background fluorescence, and a 10% fluorescence increase under the action of PLA(2), Pyro-PtdEtn-BHQ demonstrated high selective sensitivity to PLC, particularly to the PC-PLC isoform, and its sensitivity to PLA(2) was negligible due to steric hindrance at the sn-2 position. In contrast, the C(12)-spacered PyroC(12)-PtdEtn-BHQ demonstrated a remarkable selectivity for PLA(2) and the best relative PLA(2)/PLC sensitivity, significantly outperforming previously known probes. These results open an avenue for future in vivo experiments and for new probes to detect PL activity.
Collapse
Affiliation(s)
- Anatoliy V Popov
- University of Pennsylvania, Department of Radiology, Philadelphia Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
19
|
Kanie K, Sekiguchi J, Zeng X, Ungar G, Muramatsu A. Phospholipids with a stimuli-responsive thermotropic liquid-crystalline moiety. Chem Commun (Camb) 2011; 47:6885-7. [DOI: 10.1039/c1cc11843a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Bandyopadhyay S, Bong D. Synthesis of Trifunctional Phosphatidylserine Probes for Identification of Lipid-Binding Proteins. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Park JM, De Castro KA, Ahn HS, Rhee HJ. Facile Syntheses of L-α-Glycerophosphorylcholine. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.9.2689] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Placzek EA, Cooper BR, Placzek AT, Chester JA, Davisson VJ, Barker EL. Lipidomic metabolism analysis of the endogenous cannabinoid anandamide (N-arachidonylethanolamide). J Pharm Biomed Anal 2010; 53:567-75. [PMID: 20417049 DOI: 10.1016/j.jpba.2010.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 01/21/2023]
Abstract
Elucidation of pathways involved with lipid metabolism has been limited by analytical challenges associated with detection and structure identification. A discovery-based mass spectrometry lipidomic approach has been applied to identify metabolites of the endogenous cannabinoid anandamide (N-arachidonylethanolamide). Previously, a model system was established to show that anandamide can be recycled by cells to form new endocannabinoids suggesting recycling of the arachidonate carbon chain. We hypothesized that distinct cellular pathways exist to direct the anandamide-derived arachidonate chain into a specific set of metabolites, different from the metabolite pool that is comprised of non-anandamide-derived arachidonic acid. Using stable isotope encoding and liquid chromatography-mass spectrometry, we identified a distinct pool of lipid metabolites derived from exogenous anandamide or arachidonic acid in RBL-2H3 cells. We discovered that arachidonic acid-derived metabolites were primarily comprised of the eicosanoid lipid class, whereas anandamide-derived arachidonic acid, in addition to eicosanoids, was metabolized into diradylglycerols, fatty acid amides, sterols, and glycerophospholipids. From the list of anandamide metabolites of particular interest was 1-O-arachidonyl-sn-glycero-3-phosphocholine. Furthermore, we determined that while 1-O-arachidonyl-sn-glycero-3-phosphocholine may be a metabolite of anandamide, the sn-2 compound was more abundant in mouse brain tissue. Overall, our results provide a novel approach to study the metabolic fate of endocannabinoids and fatty acid-derived signaling molecules.
Collapse
Affiliation(s)
- Ekaterina A Placzek
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47904, United States
| | | | | | | | | | | |
Collapse
|
23
|
Jung HR, Vu TK, Choi SK, Park SM, Kim BH. Synthesis of Nucleoside-based Phospholipid Amphiphiles. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.03.549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
D'Arrigo P, Servi S. Synthesis of lysophospholipids. Molecules 2010; 15:1354-77. [PMID: 20335986 PMCID: PMC6257299 DOI: 10.3390/molecules15031354] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/04/2010] [Accepted: 03/05/2010] [Indexed: 12/01/2022] Open
Abstract
New synthetic methods for the preparation of biologically active phospholipids and lysophospholipids (LPLs) are very important in solving problems of membrane-chemistry and biochemistry. Traditionally considered just as second-messenger molecules regulating intracellular signalling pathways, LPLs have recently shown to be involved in many physiological and pathological processes such as inflammation, reproduction, angiogenesis, tumorogenesis, atherosclerosis and nervous system regulation. Elucidation of the mechanistic details involved in the enzymological, cell-biological and membrane-biophysical roles of LPLs relies obviously on the availability of structurally diverse compounds. A variety of chemical and enzymatic routes have been reported in the literature for the synthesis of LPLs: the enzymatic transformation of natural glycerophospholipids (GPLs) using regiospecific enzymes such as phospholipases A1 (PLA1), A2 (PLA2) phospholipase D (PLD) and different lipases, the coupling of enzymatic processes with chemical transformations, the complete chemical synthesis of LPLs starting from glycerol or derivatives. In this review, chemo-enzymatic procedures leading to 1- and 2-LPLs will be described.
Collapse
Affiliation(s)
- Paola D'Arrigo
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica Giulio Natta, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy. paola.d'
| | | |
Collapse
|
25
|
Yao Z, Borbas KE, Lindsey JS. Soluble precipitable porphyrins for use in targeted molecular brachytherapy. NEW J CHEM 2008. [DOI: 10.1039/b714127k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Reisch A, Voegel JC, Decher G, Schaaf P, Mésini PJ. Synthesis of Polyelectrolytes Bearing Phosphorylcholine Moieties. Macromol Rapid Commun 2007. [DOI: 10.1002/marc.200700510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Bérubé M, Poirier D. Chemical synthesis and in vitro biological evaluation of a phosphorylated bisubstrate inhibitor of type 3 17beta-hydroxysteroid dehydrogenase. J Enzyme Inhib Med Chem 2007; 22:201-11. [PMID: 17518347 DOI: 10.1080/14756360601051423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Type 3 17beta-hydroxysteroid dehydrogenase (17beta-HSD) catalyzes the last step in the biosynthesis of the potent androgen testosterone (T) by selectively reducing the C17 ketone of 4-androstene-3,17-dione (delta4-dione), with NADPH as cofactor. This enzyme is thus an interesting therapeutic target for androgen-sensitive diseases. Using an efficient convergent chemical approach we synthesized a phosphorylated version of the best delta4-dione/adenosine hybrid inhibitor of type 3 17beta-HSD previously reported. An appropriately protected C2' phosphorylated adenosine was first prepared and linked by esterification to the steroid delta4-dione bearing an alkyl spacer. After three deprotection steps, the phosphorylated bisubstrate inhibitor was obtained. The inhibitory potency of this compound was evaluated on homogenated HEK-293 cells overexpressing type 3 17beta-HSD and compared to the best non-phosphorylated bisubstrate inhibitor. Unexpectedly, the phosphorylated derivative was slightly less potent than the non-phosphorylated bisubstrate inhibitor of type 3 17beta-HSD. Two hypotheses are discussed to explain this result: 1) the phosphorylated adenosine moiety does not interact optimally with the cofactor-binding site and 2) the bisubstrate inhibitors, phosphorylated or not, interact only with the substrate-binding site of type 3 17beta-HSD.
Collapse
Affiliation(s)
- Marie Bérubé
- Medicinal Chemistry Division, Oncology and Molecular Endocrinology Research Center, CHUQ-Pavillon CHUL and Université Laval, Québec G1V 4G2, Canada
| | | |
Collapse
|
28
|
D'Arrigo P, Fasoli E, Pedrocchi-Fantoni G, Rossi C, Saraceno C, Tessaro D, Servi S. A practical selective synthesis of mixed short/long chains glycerophosphocholines. Chem Phys Lipids 2007; 147:113-8. [PMID: 17499652 DOI: 10.1016/j.chemphyslip.2007.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 11/26/2022]
Abstract
Glycerophosphorylcholine (GPC) is transformed into the cyclic stannylene derivatives, which are selectively acylated to 1-acyl-2-lyso-glycerophosphocholines. The reaction is effective using C-2 to C-16 acid chlorides in 2-propanol. After solvent replacement the lyso-phospholipid (lyso-PL) is subjected to a second acylation using acid anhydrides in methylene chloride. A series of 1(2)-short-2(1)-long-diacyl-glycerophosphocholines are obtained in high yields and selectivity. No diacylation product was detected. In order to detect mixed-chain lipids with inverted disposition of acyl chains, the long chain was introduced first and the thus resulting isomeric compounds compared by NMR. An NMR method was developed in order to determine the positional purity of the isomeric compounds.
Collapse
Affiliation(s)
- Paola D'Arrigo
- Dipartimento di Chimica, Materiali e Ingegneria Chimica G. Natta, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy. paola.d'
| | | | | | | | | | | | | |
Collapse
|
29
|
Rosseto R, Bibak N, DeOcampo R, Shah T, Gabrielian A, Hajdu J. A New Synthesis of Lysophosphatidylcholines and Related Derivatives. Use of p-Toluenesulfonate for Hydroxyl Group Protection. J Org Chem 2007; 72:1691-8. [PMID: 17284078 DOI: 10.1021/jo062352f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new stereoselective synthesis of lysophosphatidylcholines is reported. The synthesis is based upon (1) the use of 3-p-toluenesulfonyl-sn-glycerol to provide the stereocenter for construction of the optically active lysophospholipid molecule, (2) tetrahydropyranylation of the secondary alcohol function to achieve orthogonal protection of the sn-2- and sn-3-glycerol positions, and (3) elaboration of the phosphodiester headgroup using a 2-chloro-1,3,2-dioxaphospholane/trimethylamine sequence. In the course of developing the synthesis it has been discovered that methoxyacetate displacement of the sn-3-p-toluenesulfonate yields a reactive methoxyacetyl ester, which in turn can be selectively cleaved with methanol/tert-butylamine, while the ester group at the sn-1-position remains unaffected. The sequence has been shown to be suitable for preparation of spectroscopically labeled lysophosphatidylcholines. One of these compounds was readily converted to a double-labeled mixed-chain phosphatidylcholine applicable for real-time fluorescence resonance energy transfer (FRET) assay of lipolytic enzymes. In addition, the work led to new synthetic strategies based on chemoselective manipulation of the tosyl group in the presence of other base-labile groups such as FMOC derivatives that are often used for the protection of amino and hydroxyl groups in syntheses.
Collapse
Affiliation(s)
- Renato Rosseto
- Department of Chemistry and Biochemistry, California State University-Northridge, Northridge, CA 91330-8262, USA
| | | | | | | | | | | |
Collapse
|
30
|
Qian L, Xu Y, Simper T, Jiang G, Aoki J, Umezu-Goto M, Arai H, Yu S, Mills GB, Tsukahara R, Makarova N, Fujiwara Y, Tigyi G, Prestwich GD. Phosphorothioate analogues of alkyl lysophosphatidic acid as LPA3 receptor-selective agonists. ChemMedChem 2006; 1:376-83. [PMID: 16892372 DOI: 10.1002/cmdc.200500042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The metabolically stabilized LPA analogue 1-oleoyl-2-O-methyl-rac-glycerophosphorothioate (OMPT) was recently shown to be a potent subtype-selective agonist for LPA3, a G-protein-coupled receptor (GPCR) in the endothelial differentiation gene (EDG) family. Further stabilization was achieved by replacing the sn-1 O-acyl group with an O-alkyl ether. A new synthetic route for the enantiospecific synthesis of the resulting alkyl LPA phosphorothioate analogues is described. The pharmacological properties of the alkyl OMPT analogues were characterized for subtype-specific agonist activity using Ca2+-mobilization assays in RH7777 cells expressing the individual EDG family LPA receptors. Alkyl OMPT analogues induced cell migration in cancer cells mediated through LPA1. Alkyl OMPT analogues also activated Ca2+ release through LPA2 activation but with less potency than sn-1-oleoyl LPA. In contrast, alkyl OMPT analogues were potent LPA3 agonists. The alkyl OMPTs 1 and 3 induced cell proliferation at submicromolar concentrations in 10T 1/2 fibroblasts. Interestingly, the absolute configuration of the sn-2 methoxy group of the alkyl OMPT analogues was not recognized by any of the LPA receptors in the EDG family. By using a reporter gene assay for the LPA-activated nuclear transcription factor PPARgamma, we demonstrated that phosphorothioate diesters have agonist activity that is independent of their ligand properties at the LPA-activated GPCRs. The availability of new alkyl LPA analogues expands the scope of structure-activity studies and will further refine the molecular nature of ligand-receptor interactions for this class of GPCRs.
Collapse
Affiliation(s)
- Lian Qian
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu DZ, Sinchaikul S, Reddy PVG, Chang MY, Chen ST. Synthesis of 2'-paclitaxel methyl 2-glucopyranosyl succinate for specific targeted delivery to cancer cells. Bioorg Med Chem Lett 2006; 17:617-20. [PMID: 17113288 DOI: 10.1016/j.bmcl.2006.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/01/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
A novel glucose-conjugated paclitaxel 5 was synthesized using succinic acid as linker between 2'-paclitaxel and methyl 2'-glucopyranose. 5 has not only improved the pharmaceutical properties of paclitaxel, such as solubility and stability, but also enhanced the specific target delivery to MCF-7 cells without the cytotoxicity against normal cells. Therefore, the glucose conjugation may be potentially used in the targeted delivery of other drugs into cells via glucose transporters (GLUTs) for cancer therapy.
Collapse
Affiliation(s)
- Der-Zen Liu
- Graduate Institute of Biomedical Materials, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Acharya HP, Kobayashi Y. Total synthesis of 2-(5,6-epoxyisoprostane A2)phosphorylcholine and elucidation of the relative configuration of the isoprostane moiety. Angew Chem Int Ed Engl 2006; 44:3481-4. [PMID: 15861439 DOI: 10.1002/anie.200500534] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hukum P Acharya
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Box B-52, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
33
|
Ali SM, Ahmad MU, Koslosky P, Kasireddy K, Murali Krishna U, Ahmad I. Synthesis of short and long chain cardiolipins. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Rosseto R, Bibak N, Hajdu J. A new approach to phospholipid synthesis using tetrahydropyranyl glycerol: rapid access to phosphatidic acid and phosphatidylcholine, including mixed-chain glycerophospholipid derivatives. Org Biomol Chem 2006; 4:2358-60. [PMID: 16763679 DOI: 10.1039/b603788g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthesis of phosphatidic acid and phosphatidylcholine is reported, relying on the preparation of 3-tetrahydropyranyl-sn-glycerol as the key intermediate for sequential introduction of the primary and secondary acyl functions to produce chiral diglycerides that are phosphorylated to obtain the target phospholipid compounds.
Collapse
Affiliation(s)
- Renato Rosseto
- Department of Chemistry and Biochemistry, California State University, Northridge, 91330-8262, USA
| | | | | |
Collapse
|
35
|
Fasoli E, Arnone A, Caligiuri A, D'Arrigo P, de Ferra L, Servi S. Tin-mediated synthesis of lyso-phospholipids. Org Biomol Chem 2006; 4:2974-8. [PMID: 16855747 DOI: 10.1039/b604636c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1-O-Acyl-sn-glycero-3-phosphocholine and 1-O-acyl-sn-glycero-3-phosphoric acid have been prepared selectively and with high yields from the corresponding diols, glycerophosphoryl choline and glycerol-3-phosphate. Starting from the diols, the activated tin ketals were prepared in 2-propanol by reaction with dialkyltin oxide. The intermediates were acylated in the same solvent with long-chain fatty acid chlorides, giving the corresponding 1-acyl-lyso-phospholipids in high yield and with complete regioselectivity. The catalytic nature of the tin-mediated acylation and the relevance of the solvent are discussed.
Collapse
Affiliation(s)
- Ezio Fasoli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, G. Natta Politecnico di Milano, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Durgam GG, Tsukahara R, Makarova N, Walker MD, Fujiwara Y, Pigg KR, Baker DL, Sardar VM, Parrill AL, Tigyi G, Miller DD. Synthesis and pharmacological evaluation of second-generation phosphatidic acid derivatives as lysophosphatidic acid receptor ligands. Bioorg Med Chem Lett 2005; 16:633-40. [PMID: 16263282 DOI: 10.1016/j.bmcl.2005.10.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 10/08/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Short-chain phosphatidic acid derivatives, dioctanoyl glycerol pyrophosphate (DGPP 8:0, 1) and phosphatidic acid 8:0 (PA 8:0, 2), were previously identified as subtype-selective LPA(1) and LPA(3) receptor antagonists. Recently, we reported that the replacement of the phosphate headgroup by thiophosphate in a series of fatty alcohol phosphates (FAP) improves agonist as well as antagonist activities at LPA GPCR. Here, we report the synthesis of stereoisomers of PA 8:0 analogs and their biological evaluation at LPA GPCR, PPARgamma, and ATX. The results indicate that LPA receptors stereoselectively interact with glycerol backbone modified ligands. We observed entirely stereospecific responses by dioctyl PA 8:0 compounds, in which (R)-isomers were found to be agonists and (S)-isomers were antagonists of LPA GPCR. From this series, we identified compound 13b as the most potent LPA(3) receptor subtype-selective agonist (EC(50)=3 nM), and 8b as a potent and selective LPA(3) receptor antagonist (K(i)=5 nM) and inhibitor of ATX (IC(50)=600 nM). Serinediamide phosphate 19b was identified as an LPA(3) receptor specific antagonist with no effect on LPA(1), LPA(2), and PPARgamma.
Collapse
Affiliation(s)
- Gangadhar G Durgam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Andresen TL, Jensen SS, Madsen R, Jørgensen K. Synthesis and Biological Activity of Anticancer Ether Lipids That Are Specifically Released by Phospholipase A2 in Tumor Tissue. J Med Chem 2005; 48:7305-14. [PMID: 16279790 DOI: 10.1021/jm049006f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The clinical use of anticancer lipids is severely limited by their ability to cause lysis of red blood cells prohibiting intravenous injection. Novel delivery systems are therefore required in order to develop anticancer ether lipids (AELs) into clinically useful anticancer drugs. In a recent article (J. Med. Chem. 2004, 47, 1694) we showed that it is possible to construct liposome systems composed of masked AELs that are activated by secretory phospholipase A2 in cancerous tissue. We present here the synthesis of six AELs and evaluate the biological activity of these bioactive lipids. The synthesized AEL 1-6 were tested against three different cancer cell lines. It was found that the stereochemistry of the glycerol headgroup in AEL-2 and 3 has a dramatic effect on the cytotoxicity of the lipids. AEL 1-4 were furthermore evaluated for their ability to prevent phosphorylation of the apoptosis regulating kinase Akt, and a correlation was found between their cytotoxic activity and their ability to inhibit Akt phosphorylation.
Collapse
Affiliation(s)
- Thomas L Andresen
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
38
|
Durgam GG, Virag T, Walker MD, Tsukahara R, Yasuda S, Liliom K, van Meeteren LA, Moolenaar WH, Wilke N, Siess W, Tigyi G, Miller DD. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Fatty Alcohol Phosphates as Lysophosphatidic Acid Receptor Ligands, Activators of PPARγ, and Inhibitors of Autotaxin†. J Med Chem 2005; 48:4919-30. [PMID: 16033271 DOI: 10.1021/jm049609r] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that fatty alcohol phosphates (FAP) represent a minimal pharmacophore required to interact with lysophosphatidic acid (LPA) receptors. To improve the activity of the first-generation saturated FAP series, a structure-activity relationship (SAR) study was carried out that includes modifications to the headgroup and alkyl side chain of the FAP pharmacophore. A series of unsaturated (C(10)-C(18)) FAP, headgroup-modified hydrolytically stable saturated (C(10)-C(18)) alkyl phosphonates, and saturated and unsaturated (C(10)-C(18)) thiophosphate analogues were synthesized and evaluated for activity in RH7777 cells transfected with individual LPA(1)(-3) receptors, in PC-3 cells and in human platelets that endogenously express all three isoforms. In this series we identified several LPA(1)- and LPA(3)-selective antagonists with IC(50) values in the nanomolar range. Oleoyl-thiophosphate (15g) was shown to be a pan-agonist, whereas tetradecyl-phosphonate (16c) was identified as a pan-antagonist. These compounds were also tested for the ability to activate the transcription factor PPARgamma, an intracellular receptor for LPA, in CV1 cells transfected with the PPRE-Acox-Rluc reporter gene. All the FAP tested, along with the previously reported LPA GPCR antagonists dioctanoyl glycerol pyrophosphate (2), Ki16425 (6), and the agonist OMPT (3), were activators of PPARgamma. The pan-agonist oleoyl-thiophosphate (15g) and pan-antagonist tetradecyl-phosphonate (16c) mimicked LPA in inhibiting autotaxin, a secreted lysophospholipase D that produces LPA in biological fluids.
Collapse
Affiliation(s)
- Gangadhar G Durgam
- Department of Pharmaceutical Sciences, College of Pharmacy and Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Room 227C, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Acharya HP, Kobayashi Y. Total Synthesis of 2-(5,6-Epoxyisoprostane A2)phosphorylcholine and Elucidation of the Relative Configuration of the Isoprostane Moiety. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200500534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
A rapid and efficient method for migration-free acylation of lysophospholipids: synthesis of phosphatidylcholines with sn-2-chain-terminal reporter groups. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.02.150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Choi SK, Vu TK, Jung JM, Kim SJ, Jung HR, Chang T, Kim BH. Nucleoside-Based Phospholipids and Their Liposomes Formed in Water. Chembiochem 2005; 6:432-9. [PMID: 15678427 DOI: 10.1002/cbic.200400320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phospholipids and liposomes have been the subjects of considerable attention because of their importance in biological systems. We have efficiently synthesized novel nucleoside-based phospholipids in six-step sequences starting from their corresponding nucleosides. These nucleoside-based phospholipids self-assemble into liposome-like structures in aqueous solutions. We have analyzed the structures of these liposomes by dynamic light scattering, transmission electron microscopy, and confocal microscopy.
Collapse
Affiliation(s)
- Seung Kyu Choi
- Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31 Hyoja Dong, Pohang 790-784, South Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Xu Y, Tanaka M, Arai H, Aoki J, Prestwich GD. Alkyl lysophosphatidic acid and fluoromethylene phosphonate analogs as metabolically-stabilized agonists for LPA receptors. Bioorg Med Chem Lett 2004; 14:5323-8. [PMID: 15454220 DOI: 10.1016/j.bmcl.2004.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 11/28/2022]
Abstract
We describe an efficient method for the synthesis of alkyl lysophosphatidic acid (LPA) analogs as well as alkyl LPA mono- and difluoromethylene phosphonate analogs. Each alkyl LPA analog was evaluated for subtype-specific LPA receptor agonist activity using a cell migration assay for LPA(1) activation in cancer cells and an intracellular calcium mobilization assay for LPA(2) and LPA(3) activation. Alkyl LPAs induced pronounced cell migration activity with equivalent or higher potency than sn-1-oleoyl LPA, while the alkyl LPA fluoromethylene phosphonates proved to be less potent agonists in this assay. However, each alkyl LPA analog activated Ca(2+) release by activation of LPA(2) and LPA(3) receptors. Interestingly, the absolute configuration of the sn-2 hydroxyl group of the alkyl LPA analogs was not recognized by any of the three LPA receptors. The use of alkyl LPA analogs further expands the scope of structure-activity studies, which will better define LPA-LPA receptor interactions.
Collapse
Affiliation(s)
- Yong Xu
- Department of Medicinal Chemistry, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA
| | | | | | | | | |
Collapse
|
43
|
Meyer O, Rohmer M, Grosdemange-Billiard C. Short and efficient synthesis of a stock material of dihydroxyacetone phosphate from glycidol. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.08.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Nilsson UK, Andersson RGG, Ekeroth J, Hallin EC, Konradsson P, Lindberg J, Svensson SPS. Lack of stereospecificity in lysophosphatidic acid enantiomer-induced calcium mobilization in human erythroleukemia cells. Lipids 2004; 38:1057-64. [PMID: 14669971 DOI: 10.1007/s11745-006-1161-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that, among several other cellular responses, can stimulate cells to mobilize calcium (Ca2+). LPA is known to activate at least three different subtypes of G protein-coupled receptors. These receptors can then stimulate different kinds of G proteins. In the present study, LPA and LPA analogs were synthesized from (R)- and (S)-glycidol and used to characterize the ability to stimulate Ca2+ mobilization. The cytosolic Ca2+ concentration ([Ca2+]i) was measured in fura-2-acetoxymethylester-loaded human erythroleukemia (HEL) cells. Furthermore, a reverse transcriptase polymerase chain reaction was used to characterize LPA receptor subtypes expressed in HEL cells. The results show that HEL cells mainly express LPA1 and LPA2, although LPA3 might possibly be expressed as well. Moreover, LPA and its analogs concentration-dependently increased [Ca2+]i in HEL cells. The response involved both influx of extracellular Ca2+ and release of Ca2+ from intracellular stores. This is the first time the unnatural (S)-enantiomer of LPA, (S)-3-O-oleoyl-1-O-phosphoryl-glycerol, has been synthesized and studied according to its ability to activate cells. The results indicate that this group of receptors does not discriminate between (R)- and (S)-enantiomers of LPA and its analogs. When comparing ether analogs having different hydrocarbon chain lengths, the tetradecyl analog (14 carbons) was found to be the most effective in increasing [Ca2+]i. Pertussis toxin treatment of the HEL cells resulted in an even more efficient Ca2+ mobilization stimulated by LPA and its analogs. Furthermore, at repeated incubation with the same ligand no further increase in [Ca2+]i was obtained. When combining LPA with the ether analogs no suppression of the new Ca2+ signal occurred. All these findings may be of significance in the process of searching for specific agonists and antagonists of the LPA receptor subtypes.
Collapse
Affiliation(s)
- Ulrika K Nilsson
- Division of Pharmacology, Department of Medicine and Care, Faculty of Health Sciences, Linköpings Universitet, SE-581 85 Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Vares L, Koulov AV, Smith BD. Synthesis and supramolecular properties of conformationally restricted and flexible phospholipids. J Org Chem 2004; 68:10073-8. [PMID: 14682702 DOI: 10.1021/jo034843v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Short synthetic routes are described to produce structurally related phospholipids that are either conformationally restricted or flexible. The conformationally restricted structures have a cyclopropyl ring in the interfacial region of the phospholipid. The key synthetic step is a cyclopropanation reaction between 2(5H)-furanone and a stabilized chloroallylic phosphonate anion. The synthetic routes enable the incorporation of different polar headgroups as well as nonpolar tails at late stages in the sequence. The phosphoethanolamine derivatives 1b and 2b readily form encapsulating vesicles, however, dye leakage from vesicles composed of the restricted phospholipid 1b is significantly slower than from vesicles composed of flexible analogue 2b. Physicochemical analyses using 31P NMR, differential scanning calorimetry, fluorescence anisotropy, and Langmuir-Blodgett films suggest that the decreased permeability of membranes composed of conformationally restricted 1b is due to its ability to pack more closely in a bilayer assembly.
Collapse
Affiliation(s)
- Lauri Vares
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
46
|
Nederberg F, Bowden T, Hilborn J. Synthesis, Characterization, and Properties of Phosphoryl Choline Functionalized Poly ε-caprolactone and Charged Phospholipid Analogues. Macromolecules 2003. [DOI: 10.1021/ma035433b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fredrik Nederberg
- Uppsala University, Materials Chemistry, Polymer Chemistry, Box 538, S-751 21 Uppsala, Sweden
| | - Tim Bowden
- Uppsala University, Materials Chemistry, Polymer Chemistry, Box 538, S-751 21 Uppsala, Sweden
| | - Jöns Hilborn
- Uppsala University, Materials Chemistry, Polymer Chemistry, Box 538, S-751 21 Uppsala, Sweden
| |
Collapse
|
47
|
Xu Y, Prestwich GD. Synthesis of chiral (alpha,alpha-difluoroalkyl)phosphonate analogues of (lyso)phosphatidic acid via hydrolytic kinetic resolution. Org Lett 2002; 4:4021-4. [PMID: 12423076 DOI: 10.1021/ol026684s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrolytic kinetic resolution of 1,1-difluoro-3,4-epoxy-butylphosphonate using a chiral salen-Co complex was employed as a key step to obtain enantiomeric diols in 99% ee as key intermediates. The enantiomerically homogeneous (alpha,alpha-difluoroalkyl)phosphonates were obtained after selective esterification and deprotection of the corresponding phosphonates. These compounds are novel phosphatase-resistant analogues of lysophosphatidic acid and phosphatidic acid. [reaction: see text]
Collapse
Affiliation(s)
- Yong Xu
- Department of Medicinal Chemistry and Center for Cell Signaling, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA
| | | |
Collapse
|
48
|
|