1
|
Kaladari F, El-Maghrabey M, Kishikawa N, El-Shaheny R, Kuroda N. Polymerized Alizarin Red-Inorganic Hybrid Nanoarchitecture (PARIHN) as a Novel Fluorogenic Label for the Immunosorbent Assay of COVID-19. BIOSENSORS 2025; 15:256. [PMID: 40277569 PMCID: PMC12025067 DOI: 10.3390/bios15040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
This study seeks to develop and implement a non-enzymatic fluorescent labeling for immunoassay and immunochromatographic assay (ICAs) targeting SARS-CoV-2, to meet the extensive interest and need for effective COVID-19 diagnosis. In this manuscript, we delineate the development, synthesis, and evaluation of a novel quinone polymer zinc hybrid nanoarchitecture, referred to as polymerized alizarin red-inorganic hybrid nanoarchitecture (PARIHN), which integrates an antibody for direct use in fluorescent immunoassays, offering enhanced sensitivity, reduced costs, and improved environmental sustainability. The designed nanoarchitecture can enhance the sensitivity of the immunoassay and enable rapid results without the complexities associated with enzymes, such as their low stability and high cost. At first, a chitosan-alizarin polymer was synthesized utilizing quinone-chitosan conjugation chemistry (QCCC). Then, the chitosan-alizarin polymer was embedded with the detection antibody using zinc ion, forming PARIHN, which was proven to be a stable label with the ability to enhance the assay stability and sensitivity of the immunoassay. PARIHN can react with phenylboronic acid (PBA) or boric acid through its alizarin content to produce fluorescence signals with an LOD of 15.9 and 2.6 pm for PBA and boric acid, respectively, which is the first use of a boric acid derivative in signal generation in the immunoassay. Furthermore, PARIHN demonstrated high practicality in detecting SARS-CoV-2 nucleoprotein in fluorescence (PBA and boric acid) systems with an LOD of 0.76 and 10.85 pm, respectively. Furthermore, owing to the high brightness of our PARIHN fluorogenic reaction, our labeling approach was extended to immunochromatographic assays for SARS-CoV-2 with high sensitivity down to 9.45 pg/mL.
Collapse
Affiliation(s)
- Fatema Kaladari
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.-M.); (R.E.-S.)
| | - Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.-M.); (R.E.-S.)
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
2
|
Barthelmes K, Yaginuma K, Matsumoto A. Tuning the Stability and Kinetics of Dioxazaborocanes. Chemistry 2025; 31:e202402625. [PMID: 39297303 DOI: 10.1002/chem.202402625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
We investigated the equilibrium reaction of boronic acid (BA), diethanolamines (DEA), and 1,3,6,2-dioxazaborocanes (DOAB) in aqueous solutions, both theoretically and experimentally. Our findings show that the association constant can be adjusted by substituting BA and DEA derivatives, ranging from 100 to 103 M-1, exhibiting a bell-shaped pH dependency. The highest stability was achieved when the pKa values of DEA and BA were closely matched. This approach enabled the preparation of a highly stable DOAB under physiological conditions. Furthermore, the hydrolysis kinetics of DOABs were controllable over a range of five orders of magnitude based on the substituent's steric effect. In the slowest case, this resulted in quasi-static stability with only 1 % cleavage in the first hour, followed by a week-long cleavage period to reach equilibrium. These insights could establish a unique chemistry platform for designing scheduled cleavability on a day-to-week timescale, relevant to protein engineering, immunotherapy, and other smart drug delivery applications.
Collapse
Affiliation(s)
- Kevin Barthelmes
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Keiichiro Yaginuma
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Miller JS, Finney TJ, Ilagan E, Frank S, Chen-Izu Y, Suga K, Kuhl TL. Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles. BIOSENSORS 2025; 15:27. [PMID: 39852078 PMCID: PMC11763271 DOI: 10.3390/bios15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. Although less studied and utilized, the transition also results in a change from a non-fluorescent to a highly fluorescent state, making polydiacetylenes useful for both colorimetric and fluorogenic sensing applications. Here, we focus on the characterization and optimization of polydiacetylene vesicles to tune their sensitivity for fluorogenic sensing applications. Particularly, we look at how the structure of the diacetylene (DA) hydrocarbon tail and headgroup affect the self-assembled vesicle size and stability, polymerization kinetics, and the fluorogenic, blue to red phase transition. Longer DA acyl tails generally resulted in smaller and more stable vesicles. The polymerization kinetics and the blue to red transition were a function of both the DA acyl tail length and structure of the headgroup. Decreasing the acyl tail length generally led to vesicles that were more sensitive to energetic stimuli. Headgroup modifications had different effects depending on the structure of the headgroup. Ethanolamine headgroups resulted in vesicles with potentially increased stimuli responsivity. The lower energy stimulus to induce the chromatic transition was attributed to an increase in headgroup hydrogen bonding and polymer backbone strain. Boronic-acid headgroup functionalization led to vesicles that were generally unstable, only weakly polymerized, and unable to fully transform to the red phase due to strong polar, aromatic headgroup interactions. This work presents the design of PDA vesicles in the context of biosensing platforms and includes a discussion of the past, present, and future of PDA biosensing.
Collapse
Affiliation(s)
- John S. Miller
- Department of Materials Science and Engineering, University of California Davis, Davis, CA 95616, USA;
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
| | - Tanner J. Finney
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
- Materials Synthesis and Integrated Devices Group, Los Alamos National Laboratory, Materials Physics and Applications Division, Los Alamos, NM 87545, USA
| | - Ethan Ilagan
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
| | - Skye Frank
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
| | - Ye Chen-Izu
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA;
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
- Department of Internal Medicine/Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Keishi Suga
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Miyagi, Japan
| | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA; (T.J.F.)
| |
Collapse
|
4
|
Lin Z, Nie F, Hou J, Guo X, Gong X, Zhang L, Xu J, Guo Y. Development of pH-responsive porphyran-coated gold nanorods for tumor photothermal and immunotherapy. Int J Biol Macromol 2024; 275:133460. [PMID: 38945321 DOI: 10.1016/j.ijbiomac.2024.133460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Cancer poses a significant threat to human health, and monotherapy frequently fails to achieve optimal therapeutic outcomes. Based on this premise, porphyran (PHP), a marine polysaccharide with immunomodulatory function, was used as a framework to coat gold nanorods and construct a novel nanomedicine (PHP-MPBA-GNRs) combining photothermal therapy and immunotherapy. In this design, PHP not only maintained the dispersion stability and photothermal stability of gold nanorods but also could be released under weakly acidic conditions to activate anti-tumor immunity. In vivo studies have shown that PHP-MPBA-GNRs can effectively inhibit tumor cell proliferation and reduce metastasis under near-infrared (NIR) light irradiation. Preliminary mechanistic investigations revealed that PHP-MPBA-GNRs could increase reactive oxygen species (ROS) and induce apoptosis in cancer cells. The PHP in PHP-MPBA-GNRs can also activate dendritic cells and up-regulate the expression of co-stimulatory molecules and antigen-presenting complexes. All biological experiments, including in vivo tests, demonstrated that PHP-MPBA-GNRs achieved a combination of photothermal therapy and immunotherapy for tumors.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaoyang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaotang Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Linsu Zhang
- Qiannan Medical College for Nationalities, Duyun 558000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
5
|
Mukherjee A, Kadam VD, Miao Q, Zhang W, MacKenzie KR, Tan Z, Teng M. On-demand modular assembly for expedited PROTAC development. Expert Opin Drug Discov 2024; 19:769-772. [PMID: 38842359 DOI: 10.1080/17460441.2024.2364637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Ayan Mukherjee
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Vilas D Kadam
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Qi Miao
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Wanheng Zhang
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Rong G, Zhou X, Hong J, Cheng Y. Reversible Assembly of Proteins and Phenolic Polymers for Intracellular Protein Delivery with Serum Stability. NANO LETTERS 2024; 24:5593-5602. [PMID: 38619365 DOI: 10.1021/acs.nanolett.4c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The design of intracellular delivery systems for protein drugs remains a challenge due to limited delivery efficacy and serum stability. Herein, we propose a reversible assembly strategy to assemble cargo proteins and phenolic polymers into stable nanoparticles for this purpose using a heterobifunctional adaptor (2-formylbenzeneboronic acid). The adaptor is easily decorated on cargo proteins via iminoboronate chemistry and further conjugates with catechol-bearing polymers to form nanoparticles via boronate diester linkages. The nanoparticles exhibit excellent serum stability in culture media but rapidly release the cargo proteins triggered by lysosomal acidity and GSH after endocytosis. In a proof-of-concept animal model, the strategy successfully transports superoxide dismutase to retina via intravitreal injection and efficiently ameliorates the oxidative stress and cellular damage in the retina induced by ischemia-reperfusion (I/R) with minimal adverse effects. The reversible assembly strategy represents a robust and efficient method to develop serum-stable systems for the intracellular delivery of biomacromolecules.
Collapse
Affiliation(s)
- Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Yiyun Cheng
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
7
|
Giardina SF, Valdambrini E, Singh PK, Bacolod MD, Babu-Karunakaran G, Peel M, Warren JD, Barany F. Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs): A Modular Platform for Generating Reversible, Self-Assembling Bifunctional Targeted Degraders. J Med Chem 2024; 67:5473-5501. [PMID: 38554135 DOI: 10.1021/acs.jmedchem.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are bifunctional molecules that bring a target protein and an E3 ubiquitin ligase into proximity to append ubiquitin, thus directing target degradation. Although numerous PROTACs have entered clinical trials, their development remains challenging, and their large size can produce poor drug-like properties. To overcome these limitations, we have modified our Coferon platform to generate Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs). CURE-PROs are small molecule degraders designed to self-assemble through reversible bio-orthogonal linkers to form covalent heterodimers. By modifying known ligands for Cereblon, MDM2, VHL, and BRD with complementary phenylboronic acid and diol/catechol linkers, we have successfully created CURE-PROs that direct degradation of BRD4 both in vitro and in vivo. The combinatorial nature of our platform significantly reduces synthesis time and effort to identify the optimal linker length and E3 ligase partner to each target and is readily amenable to screening for new targets.
Collapse
Affiliation(s)
- Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Elena Valdambrini
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Pradeep K Singh
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| | - Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | | | - Michael Peel
- MRP Pharma LLC, Chapel Hill, North Carolina 27514, United States
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
8
|
Yildirim A, Ascioglu S, Kocer MB, Ozyilmaz E, Yilmaz M. Design of a novel fluorescent metal-organic framework (UiO-66-NG) for the detection of boric acid in aqueous medium and bioimaging in a living plant system. Talanta 2024; 268:125285. [PMID: 37832455 DOI: 10.1016/j.talanta.2023.125285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
UiO-66-NH2 material is a variant of Zr-based MOF most widely used for various applications, exhibiting unprecedented excellent hydrothermal and physicochemical stability. In this study, after UiO-66-NH2 reacted with chlorosulfonyl isocyanate, the fluorescent UiO-66-NG probe was prepared by interacting with the N-methylglucamine molecule. The structure of the prepared probe was confirmed by characterizing them with techniques such as FTIR, SEM, and XRD. The sensing properties of this prepared probe against different anions and cations were investigated and it was understood that it showed sensitive selectivity only for H3BO3. The H3BO3 detection limit (LOD) of the UiO-66-NG probe was determined as 1.81 μM. Boric acid was determined in real samples by using tap water, lake water, and river water. Fluorescence imaging was performed using the plant Lepidium sativum for the detection of boric acid in aqueous medium and for bio-imaging in a living plant system. These results show that the prepared UiO-66-NG can be used successfully in the determination of H3BO3 in living plants.
Collapse
Affiliation(s)
- Ayse Yildirim
- Selcuk University, Department of Chemistry, 42075, Konya, Turkey.
| | - Sebahat Ascioglu
- Selcuk University, Department of Biochemistry, 42075, Konya, Turkey
| | | | - Elif Ozyilmaz
- Selcuk University, Department of Biochemistry, 42075, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Department of Chemistry, 42075, Konya, Turkey.
| |
Collapse
|
9
|
Kuche K, Yadav V, Dharshini M, Ghadi R, Chaudhari D, Date T, Jain S. Synergistic anticancer therapy via ferroptosis using modified bovine serum albumin nanoparticles loaded with sorafenib and simvastatin. Int J Biol Macromol 2023; 253:127254. [PMID: 37813219 DOI: 10.1016/j.ijbiomac.2023.127254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Ferroptosis is a non-apoptotic cell death pathway characterized by the accumulation of lipid-peroxy radicals within the affected cells. Here, we investigate the synergistic capacity of sorafenib (SOR) and simvastatin (SIM) to trigger ferroptosis for cancer therapy. For precise in-vivo delivery, SOR + SIM was ratiometrically loaded in bovine serum albumin nanoparticles (BSA-NPs) modified with 4-carboxy phenylboronic acid (CPBA). The developed CPBA-BSA(SOR + SIM)-NPs revealed size of 175.2 ± 12.8 nm, with PDI of 0.22 ± 0.03 and Z-potential of -29.6 ± 4.8 mV. Significantly, CPBA-BSA(SOR + SIM)-NPs exhibited > 2 and > 5-fold reduction in IC50 values compared to individual SOR and SIM treatments respectively, in all tested cell lines. Moreover, CPBA-BSA(SOR + SIM)-NPs treated cells exhibited decrease in glutathione levels, increase in malonaldehyde levels and depolarization of mitochondrial membrane potential (JC-1 assay). Pharmacokinetic analysis revealed enhanced AUC0-∞ and MRT levels for SOR and SIM when administered as CPBA-BSA(SOR + SIM)-NPs compared to free drugs. Crucially, in in-vivo experiments, CPBA-BSA(SOR + SIM)-NPs led to a significant reduction in tumor volume compared to various control groups. Histological and biomarker analyses underscore their biocompatibility for clinical applications. In conclusion, this study highlights the potential of CPBA-BSA(SOR + SIM)-NPs as a promising strategy for inducing ferroptosis in cancer cells, concurrently improving drug delivery and therapeutic efficacy. This approach opens new avenues in cancer treatment.
Collapse
Affiliation(s)
- Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - M Dharshini
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India.
| |
Collapse
|
10
|
Yucknovsky A, Amdursky N. Controlling pH-Sensitive Chemical Reactions Pathways with Light - a Tale of Two Photobases: an Arrhenius and a Brønsted. Chemistry 2023:e202303767. [PMID: 38084008 DOI: 10.1002/chem.202303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/22/2023]
Abstract
Light-gated chemical reactions allow spatial and temporal control of chemical processes. Here, we suggest a new system for controlling pH-sensitive processes with light using two photobases of Arrhenius and Brønsted types. Only after light excitation do Arrhenius photobases undergo hydroxide ion dissociation, while Brønsted photobases capture a proton. However, none can be used alone to reversibly control pH due to the limitations arising from excessively fast or overly slow photoreaction timescales. We show here that combining the two types of photobases allows light-triggered and reversible pH control. We show an application of this method in directing the pH-dependent reaction pathways of the organic dye Alizarin Red S simply by switching between different wavelengths of light, i. e., irradiating each photobase separately. The concept of a light-controlled system shown here of a sophisticated interplay between two photobases can be integrated into various smart functional and dynamic systems.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | | |
Collapse
|
11
|
Maity B, Moorthy H, Govindaraju T. Glucose-Responsive Self-Regulated Injectable Silk Fibroin Hydrogel for Controlled Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49953-49963. [PMID: 37847862 DOI: 10.1021/acsami.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Stimuli-responsive drug delivery systems are gaining importance in personalized medicine to deliver therapeutic doses in response to disease-specific stimulation. Pancreas-mimicking glucose-responsive insulin delivery systems offer improved therapeutic outcomes in the treatment of type 1 and advanced stage of type 2 diabetic conditions. Herein, we present a glucose-responsive smart hydrogel platform based on phenylboronic acid-functionalized natural silk fibroin protein for regulated insulin delivery. The modified protein was synergistically self-assembled and cross-linked through β-sheet and phenylboronate ester formation. The dynamic nature of the bonding confers smooth injectability through the needle. The cross-linked hydrogel structures firmly hold the glucose-sensing element and insulin in its pores and contribute to long-term sensing and drug storage. Under hyperglycemic conditions, the hydrogen peroxide generated from the sensing element induces hydrogel matrix degradation by oxidative cleavage, enabling insulin release. In vivo studies in a type 1 diabetic Wistar rat model revealed that the controlled insulin release from the hydrogel restored diabetic glucose level to physiological conditions for 36 h. This work establishes the functional modification of silk fibroin into a glucose-responsive hydrogel platform for regulated and functional insulin delivery application.
Collapse
Affiliation(s)
- Biswanath Maity
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
12
|
He X, Mao H, Wang S, Tian Z, Zhou T, Cai L. Fabrication of chitosan/phenylboronic acid/SiO 2 hydrogel composite silk fabrics for enhanced adsorption and controllable release on luteolin. Int J Biol Macromol 2023; 248:125926. [PMID: 37481188 DOI: 10.1016/j.ijbiomac.2023.125926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Due to the growing demand for self-health and safety, eco-friendly health textile products with natural colors and pharmacological functionalities have gained considerable popularity. Rapid adsorption and controlled release of active molecules are important issues for functional health textiles. In this study, a functionalized chitosan-based hydrogel composite silk fabric was prepared using chitosan, 3-carboxyphenylboronic acid, and 3-(2, 3-epoxypropyl oxygen) propyl silane by dip-pad and vacuum freeze-drying techniques. The results showed that the incorporation of chitosan/phenylboronic/SiO2 hydrogel into silk fibers improved the UV protection capacity, mechanical properties, and adsorption properties of silk fabrics. The effects of various parameters on the luteolin adsorption properties of silk fabrics were discussed, including metal salt types, salt dosage, pH value, dyeing temperature, initial luteolin concentration, and dyeing time. Under the dyeing temperature of 60 °C and pH of 6.8, the luteolin exhaustion of the composite silk was more than that of the untreated silk, and the adsorption process followed the quasi-second-order kinetic model and the Langmuir adsorption isotherm model. Furthermore, the luteolin-dyed composite silk materials exhibited strong antioxidant activity and controllable release behavior with various pH levels. The as-prepared chitosan-hydrogel composite silk could be a promising material for the sustained release of drugs in medical and healthcare textiles.
Collapse
Affiliation(s)
- Xuemei He
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Haiyan Mao
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Shuzhen Wang
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhongliang Tian
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tianchi Zhou
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Lu Cai
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
13
|
Gui W, Giardina SF, Balzarini M, Barany F, Kodadek T. Reversible Assembly of Proteolysis Targeting Chimeras. ACS Chem Biol 2023; 18:1582-1593. [PMID: 37422908 DOI: 10.1021/acschembio.3c00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are of significant current interest for the development of probe molecules and drug leads. However, they suffer from certain limitations. PROTACs are rule-breaking molecules with sub-optimal cellular permeability, solubility, and other drug-like properties. In particular, they exhibit an unusual dose-response curve where high concentrations of the bivalent molecule inhibit degradation activity, a phenomenon known as the hook effect. This will likely complicate their use in vivo. In this study, we explore a novel approach to create PROTACs that do not exhibit a hook effect. This is achieved by equipping the target protein and E3 ubiquitin ligase ligands with functionalities that undergo rapid and reversible covalent assembly in cellulo. We report the development of Self-Assembled Proteolysis Targeting Chimeras that mediate the degradation of the Von Hippel-Lindau E3 ubiquitin ligase and do not evince a hook effect.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, Florida 33458, United States
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Madeline Balzarini
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, Florida 33458, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Thomas Kodadek
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
14
|
Larkin JO, Jayanthi B, Segatori L, Ball ZT. Boronic Acid Resin for Selective Immobilization of Canonically Encoded Proteins. Biomacromolecules 2023; 24:2196-2202. [PMID: 37084390 DOI: 10.1021/acs.biomac.3c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
The use of transition-metal-mediated boronic acid chemistry presents a novel method of protein immobilization on a solid support. This is a one-step method that site-selectively immobilizes pyroglutamate-histidine (pGH)-tagged proteins. Herein, we describe the synthesis of alkenylboronic acid-functionalized poly(ethylene glycol) acrylamide (PEGA) resin and its subsequent reactions with pGH-tagged proteins to produce covalent linkages. The selectivity of immobilization is demonstrated within fluorescent studies, model mixtures, and lysates.
Collapse
Affiliation(s)
- James O Larkin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Brianna Jayanthi
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Geng F, Liu X, Wei T, Wang Z, Liu J, Shao C, Liu G, Xu M, Feng L. An alkaline phosphatase-induced immunosensor for SARS-CoV-2 N protein and cardiac troponin I based on the in situ fluorogenic self-assembly between N-heterocyclic boronic acids and alizarin red S. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 378:133121. [PMID: 36514318 PMCID: PMC9731814 DOI: 10.1016/j.snb.2022.133121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Alkaline phosphatase (ALP)-induced in situ fluorescent immunosensor is less investigated and reported. Herein, a high-performance ALP-labeled in situ fluorescent immunoassay platform was constructed. The developed platform was based on a fluorogenic self-assembly reaction between pyridineboronic acid (PyB(OH)2) and alizarin red S (ARS). We first used density functional theory (DFT) to theoretically calculate the changes of Gibbs free energy of the used chemicals before and after the combination and simulated the electrostatic potential on its' surfaces. The free ARS and PyB(OH)2 exist alone, neither emits no fluorescence. However, the ARS/PyB(OH)2 complex emits strong fluorescence, which could be effectively quenched by PPi based on the stronger affinity between PPi and PyB(OH)2 than that of ARS and PyB(OH)2. PyB(OH)2 coordinated with ARS again in the presence of ALP due to the ALP-catalyzed hydrolysis of PPi, and correspondingly, the fluorescence was restored. We chose cTnI and SARS-CoV-2 N protein as the model antigen to construct ALP-induced immunosensor, which exhibited a wide dynamic range of 0-175 ng/mL for cTnI and SARS-CoV-2 N protein with a low limit of detection (LOD) of 0.03 ng/mL and 0.17 ng/mL, respectively. Moreover, the proposed immunosensor was used to evaluate cTnI and SARS-CoV-2 N protein level in serum with satisfactory results. Consequently, the method laid the foundation for developing novel fluorescence-based ALP-labeled ELISA technologies in the early diagnosis of diseases.
Collapse
Affiliation(s)
- Fenghua Geng
- Key Laboratory of Coal Processing & Efficient Utilization of Ministry of Education, National Engineering Research Center of Coal Preparation & Purification; School of Chemical Engineering & Technology, China University of Mining & Technology, Xuzhou 221116, China
- Henan Key Laboratory of Biomolecular Recognition & Sensing, College of Chemistry & Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing & Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Xiaoxue Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Tingwen Wei
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Zaixue Wang
- Key Laboratory of Coal Processing & Efficient Utilization of Ministry of Education, National Engineering Research Center of Coal Preparation & Purification; School of Chemical Engineering & Technology, China University of Mining & Technology, Xuzhou 221116, China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Congying Shao
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Gen Liu
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition & Sensing, College of Chemistry & Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing & Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, China
| | - Li Feng
- Key Laboratory of Coal Processing & Efficient Utilization of Ministry of Education, National Engineering Research Center of Coal Preparation & Purification; School of Chemical Engineering & Technology, China University of Mining & Technology, Xuzhou 221116, China
| |
Collapse
|
16
|
Du X, Zhang S, Wang L, Wang Y, Fan P, Jia W, Zhang P, Huang S. Single-Molecule Interconversion between Chiral Configurations of Boronate Esters Observed in a Nanoreactor. ACS NANO 2023; 17:2881-2892. [PMID: 36655995 DOI: 10.1021/acsnano.2c11286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Isomers of some chemical compounds may be dynamically interconvertible. Due to a lack of sensing methods with a sufficient resolution, however, direct monitoring of such processes can be difficult. Engineered Mycobacterium smegmatis porin A (MspA) nanopores can be applied as nanoreactors so that chemical reactions can be directly monitored. Here, an MspA modified with a phenylboronic acid (PBA) adapter was prepared and was used to observe dynamic interconversion between chiral configurations of boronate esters, which appears as telegraphic switching on top of nanopore events. The mechanism of this behavior was further confirmed by trials with different halogenated catechols, dopamine, adenosine, 1,2-propanediol, and (2R,3R)-2,3-butanediol, and its generality has been demonstrated. These results suggest that an engineered MspA possesses an exceptional resolution in its monitoring of chemical reaction processes and may inspire the future design of nanopore small-molecule sensors.
Collapse
Affiliation(s)
- Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023Nanjing, China
| |
Collapse
|
17
|
Sasaki Y, Lyu X, Minami T. Printed colorimetric chemosensor array on a 96-microwell paper substrate for metal ions in river water. Front Chem 2023; 11:1134752. [PMID: 36909708 PMCID: PMC9996040 DOI: 10.3389/fchem.2023.1134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Here, we propose a printed 96-well microtiter paper-based chemosensor array device (PCSAD) to simultaneously detect metal ions for river water assessment. Colorimetric chemosensors for metal ions have been designed based on molecular self-assembly using off-the-shelf catechol dyes and a phenylboronic acid (PBA) derivative. The colorimetric self-assembled chemosensors consisting of catechol dyes and a PBA derivative on a 96-well microtiter paper substrate demonstrated various color changes according to the disassembly of the ensembles by the addition of nine types of metal ions. An in-house-made algorithm was used to automate imaging analysis and extract color intensities at seven types of color channels from a captured digital image, allowing for rapid data processing. The obtained information-rich inset data showed fingerprint-like colorimetric responses and was applied to the qualitative and quantitative pattern recognition of metal ions using chemometric techniques. The feasibility of the 96-well microtiter PCSAD for environmental assessment has been revealed by the demonstration of a spike-and-recovery test against metal ions in a river water sample.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Xie X, Zhang Z, Jiang Q, Zheng S, Yun Y, Wu H, Li C, Tian F, Su M, Li F. A Rainbow Structural Color by Stretchable Photonic Crystal for Saccharide Identification. ACS NANO 2022; 16:20094-20099. [PMID: 36314922 DOI: 10.1021/acsnano.2c08708] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photonic crystals (PCs) with fascinating structural color nanomaterials present effectively spontaneous emission modulation and selectively optical signal amplification. Stretchability or elasticity could enable the feasible tunability for structural colors. Aimed at the regulation of structural colors, we endeavored to achieve the PC nanomatrix evolution and optical property during stretching. In this work, a rainbow structural color by stretchable PCs was exploited to provide abundant optical information for multianalyte recognition. The finite element analysis proved the electric field distribution in the PC matrix, which completely matched with the phenomenon of the measured PC spectra. By simply employing analysis of the multistate PC during stretching, the mono PC matrix chip can differentially enhance fluorescence signals in broad spectral regions, resulting in diverse sensing information for high-efficiency multianalysis. The stretchable PC chip can facilely discriminate 14 similar structured saccharides with a minimum concentration of 10-7 M using only one fluorescence complex. Furthermore, saccharides in different concentrations, mixtures, and real samples (beverages and sweets) also can be successfully distinguished. The exploration on fluorescent stretch dependence behavior of the photonic crystal contributes the biomatching optical platform for wearable devices, dynamic environment, clinical, or health monitoring auxiliary.
Collapse
Affiliation(s)
- Xinyuan Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zilu Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Qing Jiang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Suiting Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Yang Yun
- Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Chunbao Li
- Graduate School of Medical School, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Tian
- Phomera Metamaterials Inc., Guangdong 510535, China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
19
|
Ohno Y, Tanaka R, Suzuki Y, Sugaya T, Iwatsuki S, Inamo M, Ishihara K. Detailed Reaction Mechanism of Bis‐(
o
‐Aminomethylphenylboronic Acid)‐based Receptors with Various Length Methylene‐chain Linkers with D‐Glucose. ChemistrySelect 2022. [DOI: 10.1002/slct.202200603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Ohno
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Rei Tanaka
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Yota Suzuki
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University, Kioi-cho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Tomoaki Sugaya
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Education Center Faculty of Engineering Chiba Institute of Technology Narashino Chiba 275-0023 Japan
| | - Satoshi Iwatsuki
- Department of Chemistry Konan University, Higashinada-ku Kobe 658-8501 Japan
| | - Masahiko Inamo
- Department of Chemistry Aichi University of Education Kariya 448-8542 Japan
| | - Koji Ishihara
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
20
|
Lyu X, Sasaki Y, Ohshiro K, Tang W, Yuan Y, Minami T. Printed 384-Well Microtiter Plate on Paper for Fluorescent Chemosensor Array in Food Analysis. Chem Asian J 2022; 17:e202200479. [PMID: 35612563 DOI: 10.1002/asia.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Indexed: 11/06/2022]
Abstract
We propose a printed 384-well microtiter paper-based fluorescent chemosensor array device (384-well microtiter PCAD) to simultaneously categorize and discriminate saccharides and sulfur-containing amino acids for food analysis. The 384-well microtiter PCAD required 1 μL/4 mm 2 of each well can allow high-throughput sensing. The device embedded with self-assembled fluorescence chemosensors displayed a fingerprint-like response pattern for targets, the image of which was rapidly captured by a portable digital camera. Indeed, the paper-based chemosensor array system combined with imaging analysis and pattern recognition techniques successfully not only categorized saccharides and sulfur-containing amino acids but also classified mono- and disaccharide groups. Furthermore, the quantitative detectability of the printed device was revealed by a spike recovery test for fructose and glutathione in a diluted freshly made tomato juice. We believe that the 384-well microtiter PCAD using the imaging analysis system will be a powerful sensor for multi-analytes at several categorized groups in real samples.
Collapse
Affiliation(s)
- Xiaojun Lyu
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Yui Sasaki
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Kohei Ohshiro
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Wei Tang
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Yousi Yuan
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Tsuyoshi Minami
- The University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| |
Collapse
|
21
|
Abstract
In dynamic materials, the reversible condensation between boronic acids and diols provides adaptability, self-healing ability, and responsiveness to small molecules and pH. The thermodynamics and kinetics of bond exchange determine the mechanical properties of dynamic polymer networks. Here, we investigate the effects of diol structure and salt additives on the rate of boronic acid-diol bond exchange, binding affinity, and the mechanical properties of the corresponding polymer networks. We find that proximal amides used to conjugate diols to polymers and buffering anions induce significant rate acceleration, consistent with an internal and external catalysis, respectively. This rate acceleration is reflected in the stress relaxation of the gels. These findings contribute to the fundamental understanding of the boronic ester dynamic bond and offer molecular strategies to tune the macromolecular properties of dynamic materials.
Collapse
Affiliation(s)
- Boyeong Kang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Enhancement of natural dyeing properties and
UV
resistance of silk fibers modified by phenylboronic acid/hydroxypropyl‐β‐cyclodextrin functionalized
Fe
3
O
4
particle. J Appl Polym Sci 2022. [DOI: 10.1002/app.52253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Emami F, Abdollahi H, Minami T, Peco B, Reliford S. Mathematical Modeling of a Supramolecular Assembly for Pyrophosphate Sensing. Front Chem 2021; 9:759714. [PMID: 34993174 PMCID: PMC8724255 DOI: 10.3389/fchem.2021.759714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The power of sensing molecules is often characterized in part by determining their thermodynamic/dynamic properties, in particular the binding constant of a guest to a host. In many studies, traditional nonlinear regression analysis has been used to determine the binding constants, which cannot be applied to complex systems and limits the reliability of such calculations. Supramolecular sensor systems include many interactions that make such chemical systems complicated. The challenges in creating sensing molecules can be significantly decreased through the availability of detailed mathematical models of such systems. Here, we propose uncovering accurate thermodynamic parameters of chemical reactions using better-defined mathematical modeling-fitting analysis is the key to understanding molecular assemblies and developing new bio/sensing agents. The supramolecular example we chose for this investigation is a self-assembled sensor consists of a synthesized receptor, DPA (DPA = dipicolylamine)-appended phenylboronic acid (1) in combination with Zn2+(1.Zn) that forms various assemblies with a fluorophore like alizarin red S (ARS). The self-assemblies can detect multi-phosphates like pyrophosphate (PPi) in aqueous solutions. We developed a mathematical model for the simultaneous quantitative analysis of twenty-seven intertwined interactions and reactions between the sensor (1.Zn-ARS) and the target (PPi) for the first time, relying on the Newton-Raphson algorithm. Through analyzing simulated potentiometric titration data, we describe the concurrent determination of thermodynamic parameters of the different guest-host bindings. Various values of temperatures, initial concentrations, and starting pHs were considered to predict the required measurement conditions for thermodynamic studies. Accordingly, we determined the species concentrations of different host-guest bindings in a generalized way. This way, the binding capabilities of a set of species can be quantitatively examined to systematically measure the power of the sensing system. This study shows analyzing supramolecular self-assemblies with solid mathematical models has a high potential for a better understanding of molecular interactions within complex chemical networks and developing new sensors with better sensing effects for bio-purposes.
Collapse
Affiliation(s)
- Fereshteh Emami
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA, United States
| | - Hamid Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| | - Tsyuoshi Minami
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Japan
| | - Ben Peco
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA, United States
| | - Sean Reliford
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA, United States
| |
Collapse
|
24
|
Li Y, Liang H, Lin B, Yu Y, Wang Y, Zhang L, Cao Y, Guo M. A ratiometric fluorescence strategy based on inner filter effect for Cu 2+-mediated detection of acetylcholinesterase. Mikrochim Acta 2021; 188:385. [PMID: 34664146 DOI: 10.1007/s00604-021-05044-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
A novel ratiometric fluorescence strategy for detection of acetylcholestinerase (AChE) is proposed based on carbon nitride quantum dots (g-CNQD) and the complex (PA) formed between phenylboronic acid (PBA) and alizarin red S (ARS). PA showed fluorescence at 598 nm and quenched the fluorescence of g-CNQD at 438 nm. Through UV-visible absorption, fluorescence, and fluorescence lifetime measurements, the quenching effect was demonstrated as inner filter effect (IFE). When Cu2+ was added, the coordination of ARS and Cu2+ decreased the fluorescence of PA at 598 nm and recovered that of g-CNQD at 438 nm. In the presence of AChE it catalyzed the hydrolysis of acetylthiocholine (ATCh) to produce thiocholine (TCh) which competed with ARS for binding to Cu2+; thus, the fluorescence at 598 nm increased and that at 438 nm decreased again. Under the mediation of Cu2+, the fluorescence ratio F598/F438 of PA-CNQD probe had good linear relationship with AChE concentration in the range 0.5-15 mU/mL with a detection limit of 0.36 mU/mL. The method was successfully applied to the determination of AChE in human serum and the screening of inhibitors.
Collapse
Affiliation(s)
- Yongying Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Haibo Liang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China.
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Li Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
25
|
Jung S, Lee J, Kim WJ. Phenylboronic acid-based core-shell drug delivery platform clasping 1,3-dicarbonyl compounds by a coordinate interaction. Biomater Sci 2021; 9:6851-6864. [PMID: 34494051 DOI: 10.1039/d1bm01169c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Along with the successful commercialization of chemotherapeutics, such as doxorubicin and paclitaxel, numerous natural compounds have been investigated for clinical applications. Recently, curcumin (CUR), a natural compound with various therapeutic effects, has attracted attention for cancer immunotherapy. Most chemotherapeutics, however, have poor water solubility due to their hydrophobicity, which makes them less suited to biomedical applications; CUR is no exception because of its low bioavailability and extremely high hydrophobicity. In the present study, we developed an easy but effective strategy using the interaction between the 1,3-dicarbonyl groups of drugs and phenylboronic acid (PBA) to solubilize hydrophobic drugs. First, we verified the coordinate interaction between 1,3-dicarbonyl and PBA using 3,5-heptanedione as a model compound, followed by CUR as a model drug. A PBA-grafted hydrophilic polymer was used to form a nanoconstruct by coordination bonding with CUR, which then made direct administration of the nanoparticles possible. The nanoconstruct exhibited remarkable loading capability, uniform size, colloidal stability, and pH-responsive drug release, attributed to the formation of core-shell nanoconstructs by coordinate interaction. The therapeutic nanoconstructs successfully showed both chemotherapeutic and anti-PD-L1 anticancer effects in cellular and animal models. Furthermore, we demonstrated the applicability of this technique to other 1,3-dicarbonyl compounds. Overall, our findings suggest a facile, but expandable strategy by applying the coordinate interaction between 1,3-dicarbonyl and PBA, which enables high drug loading and stimuli-responsive drug release.
Collapse
Affiliation(s)
- Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Junseok Lee
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,OmniaMed Co., Ltd, Pohang 37673, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. .,Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,OmniaMed Co., Ltd, Pohang 37673, Republic of Korea
| |
Collapse
|
26
|
Mavliutova L, Munoz Aldeguer B, Wiklander J, Wierzbicka C, Huynh CM, Nicholls IA, Irgum K, Sellergren B. Discrimination between sialic acid linkage modes using sialyllactose-imprinted polymers. RSC Adv 2021; 11:22409-22418. [PMID: 35480790 PMCID: PMC9034230 DOI: 10.1039/d1ra02274a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Glycosylation plays an important role in various pathological processes such as cancer. One key alteration in the glycosylation pattern correlated with cancer progression is an increased level as well as changes in the type of sialylation. Developing molecularly-imprinted polymers (MIPs) with high affinity for sialic acid able to distinguish different glycoforms such as sialic acid linkages is an important task which can help in early cancer diagnosis. Sialyllactose with α2,6′ vs. α2,3′ sialic acid linkage served as a model trisaccharide template. Boronate chemistry was employed in combination with a library of imidazolium-based monomers targeting the carboxylate group of sialic acid. The influence of counterions of the cationic monomers and template on their interactions was investigated by means of 1H NMR titration studies. The highest affinities were afforded using a combination of Br− and Na+ counterions of the monomers and template, respectively. The boronate ester formation was confirmed by MS and 1H/11B NMR, indicating 1 : 2 stoichiometries between sialyllactoses and boronic acid monomer. Polymers were synthesized in the form of microparticles using boronate and imidazolium monomers. This combinatorial approach afforded MIPs selective for the sialic acid linkages and compatible with an aqueous environment. The molecular recognition properties with respect to saccharide templates and glycosylated targets were reported. 2,6′- and 2,3′-sialyllactose imprinted polymers (MIPs) capable of discriminating between two modes of sialic acid linkages in glycans are reported.![]()
Collapse
Affiliation(s)
- Liliia Mavliutova
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | - Bruna Munoz Aldeguer
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | - Jesper Wiklander
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University 391 82 Kalmar Sweden
| | - Celina Wierzbicka
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | | | - Ian A Nicholls
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University 391 82 Kalmar Sweden
| | - Knut Irgum
- Department of Chemistry, Umeå University 901 87 Umeå Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| |
Collapse
|
27
|
Yao T, Wang R, Meng Y, Hun X. Photoelectrochemical Sensing of α-Synuclein Based on a AuNPs/Graphdiyne-Modified Electrode Coupled with a Nanoprobe. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26515-26521. [PMID: 34060317 DOI: 10.1021/acsami.1c07617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We developed a method for photoelectrochemical (PEC) sensing based on a AuNPs/graphdiyne, as a low background signal composite material, modified electrode coupled with a nanoprobe (probe DNA/DA/MBA/WSe2) for sensitive α-synuclein (α-Syn) detection. A tungsten selenide (WSe2) nanoflower was first produced with a one-pot solvothermal method and employed as a signal amplification element and the modified substrate of the nanoprobe. The synergy effect between the WSe2 nanoflower and graphdiyne (GDY) can reduce the photoinduced electron-hole recombination and expedite the spatial charge separation. Due to the synergistic effect of AuNPs/GDY and WSe2, this detection strategy provides a high signal-to-noise ratio and good performance. The signal indicator, dopamine/4-mercaptophenyl boronic acid/WSe2 (DA/MBA/WSe2), was generated with the recognition of boron-diol. In the presence of the α-Syn oligomer, the target triggered cycle I strand displacement amplification and achieved the conversion of the α-Syn oligomer to a massive output of false-target DNA (FT). The output FT was used for the cycle II catalytic hairpin assembly onto the electrode which was modified with AuNPs/GDY and triple-stranded DNA (TsDNA); thereby, plenty of PEC nanoprobes which are composed of probe DNA and the signal indicator are captured, and the photocurrent response is produced correspondingly. This PEC biosensor generated a strong photocurrent with low blank (27.6 nA) and was sensitive to α-Syn oligomer. The limit of detection was 3.3 aM, and the relative standard deviation (RSD) was 3.7% at 100 aM. Moreover, it also has good selectivity, indicating promising potential in clinical diagnostics.
Collapse
Affiliation(s)
- Ting Yao
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Ruhao Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Yuchan Meng
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Xu Hun
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
28
|
Bharadwaj VS, Crowley MF, Peña MJ, Urbanowicz B, O'Neill M. Mechanism and Reaction Energy Landscape for Apiose Cross-Linking by Boric Acid in Rhamnogalacturonan II. J Phys Chem B 2020; 124:10117-10125. [PMID: 33112619 DOI: 10.1021/acs.jpcb.0c06920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhamnogalacturonan II (RG-II)-the most complex polysaccharide known in nature-exists as a borate cross-linked dimer in the plant primary cell wall. Boric acid facilitates the formation of this cross-link on the apiosyl residues of RG-II's side chain A. Here, we detail the reaction mechanism for the cross-linking process with ab initio calculations coupled with transition state theory. We determine the formation of the first ester linkage to be the rate-limiting step of the mechanism. Our findings demonstrate that the regio- and stereospecific nature of subsequent steps in the reaction itinerary presents four distinct energetically plausible reaction pathways. This has significant implications for the overall structure of the cross-linked RG-II dimer assembly. Our transition state and reaction path analyses reveal key geometric insights that corroborate previous experimental hypotheses on borate ester formation reactions.
Collapse
Affiliation(s)
- Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Michael F Crowley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Malcolm O'Neill
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
29
|
Cheng X, Li M, Wang H, Cheng Y. All-small-molecule dynamic covalent gels with antibacterial activity by boronate-tannic acid gelation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Kusano S, Miyamoto S, Matsuoka A, Yamada Y, Ishikawa R, Hayashida O. Benzoxaborole Catalyst for Site-Selective Modification of Polyols. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shuhei Kusano
- Department of Chemistry; Faculty of Science; Fukuoka University; Nanakuma 8-19-1 814-0180 Fukuoka Japan
| | - Shoto Miyamoto
- Department of Chemistry; Faculty of Science; Fukuoka University; Nanakuma 8-19-1 814-0180 Fukuoka Japan
| | - Aki Matsuoka
- Department of Chemistry; Faculty of Science; Fukuoka University; Nanakuma 8-19-1 814-0180 Fukuoka Japan
| | - Yuji Yamada
- Department of Chemistry; Faculty of Science; Fukuoka University; Nanakuma 8-19-1 814-0180 Fukuoka Japan
| | - Ryuta Ishikawa
- Department of Chemistry; Faculty of Science; Fukuoka University; Nanakuma 8-19-1 814-0180 Fukuoka Japan
| | - Osamu Hayashida
- Department of Chemistry; Faculty of Science; Fukuoka University; Nanakuma 8-19-1 814-0180 Fukuoka Japan
| |
Collapse
|
31
|
Suzuki Y, Kusuyama D, Sugaya T, Iwatsuki S, Inamo M, Takagi HD, Ishihara K. Reactivity of Boronic Acids toward Catechols in Aqueous Solution. J Org Chem 2020; 85:5255-5264. [DOI: 10.1021/acs.joc.9b03326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yota Suzuki
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo,
Shinjuku-ku, Tokyo 169-8555, Japan
| | - Daisuke Kusuyama
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo,
Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomoaki Sugaya
- Education Center, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0023, Japan
| | - Satoshi Iwatsuki
- Department of Chemistry, Konan University, Higashinada-ku, Kobe 658-8501, Japan
| | - Masahiko Inamo
- Department of Chemistry, Aichi University of Education, Kariya 448-8542, Japan
| | - Hideo D. Takagi
- Inorganic Chemistry Division, Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Koji Ishihara
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo,
Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
32
|
Simões EFC, da Silva LP, da Silva JCGE, Leitão JMM. Hypochlorite fluorescence sensing by phenylboronic acid-alizarin adduct based carbon dots. Talanta 2019; 208:120447. [PMID: 31816774 DOI: 10.1016/j.talanta.2019.120447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/02/2023]
Abstract
The selective fluorescence sensing of hypochlorite (ClO-) was achieved at pH 7.4 by a simple analytical procedure through the fluorescence quenching of autoclave synthesized carbon dots (CDs), which used as precursor an adduct formed between 3-aminophenylboronic acid (APBA) and alizarin red S (ARS). The use of this adduct allowed the preparation of CDs with a red shifted emission (560 nm) and excitation in the visible range (490 nm). Quantification of hypochlorite was achieved at physiological pH (pH 7.4) in aqueous solutions by fluorescence quenching with a linearity range of 0-200 μM (limit of detection of 4.47 μM, and limit of quantification of 13.41 μM). The selectivity of hypochlorite sensing was confirmed by comparison with other potential analytes, such as glucose, fructose and hydrogen peroxide. Finally, the validity of the proposed assay was further demonstrated by performing recovery assays in different matrices. Thus, this CDs allows the fluorescent sensing of ClO- with spectral properties more suitable for in vitro/in vivo applications.
Collapse
Affiliation(s)
- Eliana F C Simões
- Chemistry Research Unit (CIQUP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Luís Pinto da Silva
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal; Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal
| | - Joaquim C G Esteves da Silva
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal; Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal
| | - João M M Leitão
- Chemistry Research Unit (CIQUP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal.
| |
Collapse
|
33
|
Lim WQ, Phua SZF, Zhao Y. Redox-Responsive Polymeric Nanocomplex for Delivery of Cytotoxic Protein and Chemotherapeutics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31638-31648. [PMID: 31389684 DOI: 10.1021/acsami.9b09605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Responsive delivery of anticancer proteins into cells is an emerging field in biological therapeutics. Currently, the delivery of proteins is highly compromised by multiple successive physiological barriers that reduce the therapeutic efficacy. Hence, there is a need to design a robust and sustainable nanocarrier to provide suitable protection of proteins and overcome the physiological barriers for better cellular accumulation. In this work, polyethylenimine (PEI) cross-linked by oxaliplatin(IV) prodrug (oxliPt(IV)) was used to fabricate a redox-responsive nanocomplex (PEI-oxliPt(IV)@RNBC/GOD) for the delivery of a reactive oxygen species-cleavable, reversibly caged RNase A protein (i.e., RNase A nitrophenylboronic conjugate, RNBC) and glucose oxidase (GOD) in order to realize efficient cancer treatment. The generation of hydrogen peroxide by GOD can uncage and restore the enzymatic activity of RNBC. On account of the responsiveness of the nanocomplex to highly reducing cellular environment, it would dissociate and release the protein and active oxaliplatin drug, causing cell death by both catalyzing RNA degradation and inhibiting DNA synthesis. As assessed by the RNA degradation assay, the activity of the encapsulated RNBC was recovered by the catalytic production of hydrogen peroxide from GOD and glucose substrate overexpressed in cancer cells. Monitoring of the changes in nanoparticle size confirmed that the nanocomplex could dissociate in the reducing environment, with the release of active oxaliplatin drug and protein. Confocal laser scanning microscopy (CLSM) and flow cytometry analysis revealed highly efficient accumulation of the nanocomplex as compared to free native proteins. In vitro cytotoxicity experiments using 4T1 cancer cells showed ∼80% cell killing efficacy, with highly efficient apoptosis induction. Assisted by the cationic polymeric carrier, it was evident from CLSM images that intracellular delivery of the therapeutic protein significantly depleted the RNA level. Thus, this work provides a promising platform for the delivery of therapeutic proteins and chemotherapeutic drugs for efficient cancer treatment.
Collapse
Affiliation(s)
- Wei Qi Lim
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , 637553 , Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Yanli Zhao
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , 637553 , Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| |
Collapse
|
34
|
Qiao J, Liu Q, Wu H, Cai H, Qi L. Non-enzymatic detection of serum glucose using a fluorescent nanopolymer probe. Mikrochim Acta 2019; 186:366. [PMID: 31114937 DOI: 10.1007/s00604-019-3475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/29/2019] [Indexed: 01/05/2023]
Abstract
A fluorescent probe is described for the determination of serum glucose after hepatotoxin-induced liver injury. The probe is based on the use of a water-soluble polymer and has been prepared from a multi-functional azlactone polymer as the linker, amino boronic acid, and Alizarin Red as the signalling moiety. The excitation/emission peaks of the polymeric fluorescent probe are at 468/567 nm. Fluorescence is reduced on addition of glucose. Intensity drops linearly in the 0.1 mM to 14 mM glucose concentration range. The probe was applied to non-enzymatic detection of glucose in rat serum after CCl4-induced liver damage. Graphical abstract A polymer based fluorescent probe has been constructed and applied for non-enzymatic monitoring of serum glucose following hepatotoxin induced liver injury.
Collapse
Affiliation(s)
- Juan Qiao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing, 100049, China
| | - Qianrong Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Han Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Huiwu Cai
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Li Qi
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
35
|
Fornasari L, d'Agostino S, Braga D. Zwitterionic Systems Obtained by Condensation of Heteroaryl-Boronic Acids and Rhodizonic Acid. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Luca Fornasari
- Dipartimento di Chimica G. Ciamician; Università di Bologna; Via Selmi, 2 40126 Bologna Italy
| | - Simone d'Agostino
- Dipartimento di Chimica G. Ciamician; Università di Bologna; Via Selmi, 2 40126 Bologna Italy
| | - Dario Braga
- Dipartimento di Chimica G. Ciamician; Università di Bologna; Via Selmi, 2 40126 Bologna Italy
| |
Collapse
|
36
|
Dunn MF, Wei T, Zuckermann RN, Scott TF. Aqueous dynamic covalent assembly of molecular ladders and grids bearing boronate ester rungs. Polym Chem 2019. [DOI: 10.1039/c8py01705k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mimicking the self-assembly of nucleic acid sequences into double-stranded molecular ladders that incorporate hydrogen bond-based rungs, dynamic covalent interactions enable the fabrication of molecular ladder and grid structures with covalent bond-based rungs.
Collapse
Affiliation(s)
- Megan F. Dunn
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Tao Wei
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | | | - Timothy F. Scott
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
- Macromolecular Science and Engineering
| |
Collapse
|
37
|
Sato Y, Iwasawa D, Hui KP, Nakagomi R, Nishizawa S. Improved Boronate Affinity Electrophoresis by Optimization of the Running Buffer for a Single-step Separation of piRNA from Mouse Testis Total RNA. ANAL SCI 2018; 34:627-630. [PMID: 29743438 DOI: 10.2116/analsci.17n024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here we examined optimization of the running buffer in boronate affinity electrophoresis for improved separation of PIWI-interacting RNA (piRNA) with 2'-O-methylated ribose in 3'-terminal nucleotide. The use of Good's buffer, such as HEPES, significantly increased the separation efficiency for piRNA over normal RNA with free 3'-terminal ribose, and retained an ability to resolve the difference by at least 4-nucleotide lengths in the target piRNAs. We also demonstrated a single-step separation of piRNA from mouse testis total RNA.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University
| | - Daijiro Iwasawa
- Department of Chemistry, Graduate School of Science, Tohoku University
| | - Kuo Ping Hui
- Department of Chemistry, Graduate School of Science, Tohoku University
| | - Rena Nakagomi
- Department of Chemistry, Graduate School of Science, Tohoku University
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University
| |
Collapse
|
38
|
Aguilera-Sáez LM, Belmonte-Sánchez JR, Romero-González R, Martínez Vidal JL, Arrebola FJ, Garrido Frenich A, Fernández I. Pushing the frontiers: boron-11 NMR as a method for quantitative boron analysis and its application to determine boric acid in commercial biocides. Analyst 2018; 143:4707-4714. [PMID: 30183032 DOI: 10.1039/c8an00505b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quantitative boron-11 NMR (11B qNMR) spectroscopy has been introduced for the first time as a method to determine boric acid content in commercial biocides. Validation of the method affords a limit of detection of 0.02% w/w and a limit of quantification of 0.04% w/w, which are low enough to determine boric acid in commercial biocides. Other figures of merit such as linearity (R2 > 0.99), recovery (93.6%-106.2%), intra- and inter-day precision (from 0.7 to 2.0%), uncertainty (3.7 to 4.4%) and matrix effects were also evaluated. This method was successfully applied to determine boric acid in five different commercial biocides in a wide range of concentrations (<0.05 to 10% w/w) providing excellent results when they were compared with those obtained using inductively coupled plasma-mass spectrometry (ICP-MS). The suitability of this method for a fast and reliable quantification of boric acid in commercial biocide preparations has been demonstrated. The absence of the matrix effect allows the application of this validated method for the determination of boric acid in other matrices of diverse composition.
Collapse
Affiliation(s)
- Luis Manuel Aguilera-Sáez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, Agrifood Campus of International Excellence, ceiA3, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In this article we introduce the concept of ideal reversible polymer networks, which have well-controlled polymer network structures similar to ideal covalent polymer networks but exhibit viscoelastic behaviors due to the presence of reversible crosslinks. We first present a theory to describe the mechanical properties of ideal reversible polymer networks. Because short polymer chains of equal length are used to construct the network, there are no chain entanglements and the chains' Rouse relaxation time is much shorter than the reversible crosslinks' characteristic time. Therefore, the ideal reversible polymer network behaves as a single Maxwell element of a spring and a dashpot in series, with the instantaneous shear modulus and relaxation time determined by the concentration of elastically-active chains and the dynamics of reversible crosslinks, respectively. The theory provides general methods to (i) independently control the instantaneous shear modulus and relaxation time of the networks, and to (ii) quantitatively measure kinetic parameters of the reversible crosslinks, including reaction rates and activation energies, from macroscopic viscoelastic measurements. To validate the proposed theory and methods, we synthesized and characterized the mechanical properties of a hydrogel composed of 4-arm polyethylene glycol (PEG) polymers end-functionalized with reversible crosslinks. All the experiments conducted by varying pH, temperature and polymer concentration were consistent with the predictions of our proposed theory and methods for ideal reversible polymer networks.
Collapse
|
40
|
Minami T, Emami F, Nishiyabu R, Kubo Y, Anzenbacher P. Quantitative analysis of modeled ATP hydrolysis in water by a colorimetric sensor array. Chem Commun (Camb) 2018; 52:7838-41. [PMID: 27241171 DOI: 10.1039/c6cc02923j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Self-assembled colorimetric sensors have been prepared from Zn(II)-DPA-attached phenylboronic acid (·Zn) and catechol-type dyes. The ·Zn-dye sensors display selectivity towards oligophosphate over monophosphates. The colorimetric sensor assay (·Zn-dye) is utilized to monitor a model of a metabolic reaction where ATP is hydrolyzed to pyrophosphate (PPi) and AMP.
Collapse
Affiliation(s)
- Tsuyoshi Minami
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA. and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Fereshteh Emami
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| | - Pavel Anzenbacher
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
41
|
Larcher A, Lebrun A, Smietana M, Laurencin D. A multinuclear NMR perspective on the complexation between bisboronic acids and bisbenzoxaboroles with cis-diols. NEW J CHEM 2018. [DOI: 10.1039/c7nj04143h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new way of using solution NMR (especially 19F NMR) to study organoboron molecule/cis-diol equilibria is presented.
Collapse
Affiliation(s)
- Adèle Larcher
- Institut Charles Gerhardt de Montpellier (ICGM)
- UMR 5253
- CNRS
- Université de Montpellier
- ENSCM
| | - Aurélien Lebrun
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- ENSCM
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- ENSCM
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier (ICGM)
- UMR 5253
- CNRS
- Université de Montpellier
- ENSCM
| |
Collapse
|
42
|
Rodier B, de Leon A, Hemmingsen C, Pentzer E. Controlling Oil-in-Oil Pickering-Type Emulsions Using 2D Materials as Surfactant. ACS Macro Lett 2017; 6:1201-1206. [PMID: 35650795 DOI: 10.1021/acsmacrolett.7b00648] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emulsions are important in numerous fields, including cosmetics, coatings, and biomedical applications. A subset of these structures, oil-in-oil emulsions, are especially intriguing for water sensitive reactions such as polymerizations and catalysis. Widespread use and application of oil-in-oil emulsions is currently limited by the lack of facile and simple methods for preparing suitable surfactants. Herein, we report the ready preparation of oil-in-oil emulsions using 2D nanomaterials as surfactants at the interface of polar and nonpolar organic solvents. Both the edges and basal plane of graphene oxide nanosheets were functionalized with primary alkyl amines and we demonstrated that the length of the alkyl chain dictates the continuous phase of the oil-in-oil emulsions (i.e., nonpolar-in-polar or polar-in-nonpolar). The prepared emulsions are stable at least 5 weeks and we demonstrate they can be used to compartmentalize reagents such that reaction occurs only upon physical agitation. The simplicity and scalability of these oil-in-oil emulsions render them ideal for applications impossible with traditional oil-in-water emulsions, and provide a new interfacial area to explore and exploit.
Collapse
Affiliation(s)
- Bradley Rodier
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Al de Leon
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christina Hemmingsen
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Emily Pentzer
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
43
|
Pizer R. Boron acid complexation reactions with polyols and α-hydroxy carboxylic acids: Equilibria, reaction mechanisms, saccharide recognition. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Wuttke A, Geyer A. Self-assembly of peptide boroxoles on cis
-dihydroxylated oligoamide templates in water. J Pept Sci 2017; 23:549-555. [DOI: 10.1002/psc.3007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/14/2023]
Affiliation(s)
- André Wuttke
- Institute of Chemistry; Philipps-University Marburg; Hans-Meerwein-Straße 35032 Marburg Germany
| | - Armin Geyer
- Institute of Chemistry; Philipps-University Marburg; Hans-Meerwein-Straße 35032 Marburg Germany
| |
Collapse
|
45
|
Feng C, Wang F, Dang Y, Xu Z, Yu H, Zhang W. A Self-Assembled Ratiometric Polymeric Nanoprobe for Highly Selective Fluorescence Detection of Hydrogen Peroxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3287-3295. [PMID: 28345349 DOI: 10.1021/acs.langmuir.7b00189] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, a dual-emission fluorescence resonance energy transfer (FRET) polymeric nanoprobe by single-wavelength excitation was developed for sensitive and selective hydrogen peroxide (H2O2) detection. Polymeric nanoprobe was prepared by simple self-assembly of functional lipopolymers, which were 4-carboxy-3-fluorophenylboronic acid (FPBA)-modified DSPE-PEG (DSPE-PEG-FPBA) and 7-hydroxycoumarin (HC)-conjugated DSPE-PEG (DSPE-PEG-HC). Subsequent binding of alizarin red S (ARS) to FPBA endowed the nanoprobe with a new fluorescence emission peak at around 600 nm. Because of the perfect match of the fluorescence emission spectra of HC with the absorbance spectra of ARS-FPBA, FRET was achieved between them. The sensing strategy for H2O2 was based on H2O2-induced deboronation reaction and boronic acid-mediated ARS fluorescence. Interaction between phenylboronic acid and ARS was revisited herein and it was found that electron-donating or -withdrawing group on phenylboronic acid (PBA) has significant influence on the fluorescence property of ARS, which enabled sensitive and selective H2O2 sensing. The nanoprobe displayed two well-separated emission bands (150 nm), providing high specificity and sensitivity for ratiometric detection of H2O2. Further application was exploited for the determination of glucose and the results demonstrated that the proposed strategy showed ratiometric response capability for glucose detection. The current method does not involve complicated organic synthesis and opens a new avenue for the construction of multifunctional polymeric fluorescent nanoprobe.
Collapse
Affiliation(s)
- Chongchong Feng
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, People's Republic of China
| | - Fengyang Wang
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, People's Republic of China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, People's Republic of China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, People's Republic of China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, People's Republic of China
| |
Collapse
|
46
|
Suzuki Y, Sugaya T, Iwatsuki S, Inamo M, Takagi HD, Odani A, Ishihara K. Detailed Reaction Mechanism of Phenylboronic Acid with Alizarin Red S in Aqueous Solution: Re-Investigation with Spectrophotometry and Fluorometry. ChemistrySelect 2017. [DOI: 10.1002/slct.201700166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yota Suzuki
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering; Waseda University, Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
| | - Tomoaki Sugaya
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering; Waseda University, Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
- Education Center, Faculty of Engineering; Chiba Institute of Technology, Narashino; Chiba 275-0023 Japan
| | - Satoshi Iwatsuki
- Department of Chemistry; Konan University, Higashinada-ku; Kobe 658-8501 Japan
| | - Masahiko Inamo
- Department of Chemistry; Aichi University of Education; Kariya 448-8542 Japan
| | - Hideo D. Takagi
- Inorganic Chemistry Division, Research Center for Materials Science; Nagoya University, Furo-cho, Chikusa; Nagoya 464-8602 Japan
| | - Akira Odani
- Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa 920-1192 Japan
| | - Koji Ishihara
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering; Waseda University, Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
| |
Collapse
|
47
|
Georgiou I, Kervyn S, Rossignon A, De Leo F, Wouters J, Bruylants G, Bonifazi D. Versatile Self-Adapting Boronic Acids for H-Bond Recognition: From Discrete to Polymeric Supramolecules. J Am Chem Soc 2017; 139:2710-2727. [PMID: 28051311 DOI: 10.1021/jacs.6b11362] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the peculiar dynamic covalent reactivity of boronic acids to form tetraboronate derivatives, interest in using their aryl derivatives in materials science and supramolecular chemistry has risen. Nevertheless, their ability to form H-bonded complexes has been only marginally touched. Herein we report the first solution and solid-state binding studies of the first double-H-bonded DD·AA-type complexes of a series of aromatic boronic acids that adopt a syn-syn conformation with suitable complementary H-bonding acceptor partners. The first determination of the association constant (Ka) of ortho-substituted boronic acids in solution showed that Ka for 1:1 association is in the range between 300 and 6900 M-1. Crystallization of dimeric 1:1 and trimeric 1:2 and 2:1 complexes enabled an in-depth examination of these complexes in the solid state, proving the selection of the -B(OH)2 syn-syn conformer through a pair of frontal H-bonds with the relevant AA partner. Non-ortho-substituted boronic acids result in "flat" complexes. On the other hand, sterically demanding analogues bearing ortho substituents strive to retain their recognition properties by rotation of the ArB(OH)2 moiety, forming "T-shaped" complexes. Solid-state studies of a diboronic acid and a tetraazanaphthacene provided for the first time the formation of a supramolecular H-bonded polymeric ribbon. On the basis of the conformational dynamicity of the -B(OH)2 functional group, it is expected that these findings will also open new possibilities in metal-free catalysis or organic crystal engineering, where double-H-bonding donor boronic acids could act as suitable organocatalysts or templates for the development of functional materials with tailored organizational properties.
Collapse
Affiliation(s)
- Irene Georgiou
- Department of Chemistry, University of Namur (UNamur) , Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Simon Kervyn
- Department of Chemistry, University of Namur (UNamur) , Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Alexandre Rossignon
- Department of Chemistry, University of Namur (UNamur) , Rue de Bruxelles 61, 5000 Namur, Belgium.,School of Chemistry, Cardiff University , Park Place, Main Building, Cardiff CF10 3AT, U.K
| | - Federica De Leo
- Department of Chemistry, University of Namur (UNamur) , Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Johan Wouters
- Department of Chemistry, University of Namur (UNamur) , Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Gilles Bruylants
- Université Libre de Bruxelles , Ecole Polytechnique de Bruxelles, Campus du Solbosch, Avenue F. D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Davide Bonifazi
- Department of Chemistry, University of Namur (UNamur) , Rue de Bruxelles 61, 5000 Namur, Belgium.,School of Chemistry, Cardiff University , Park Place, Main Building, Cardiff CF10 3AT, U.K
| |
Collapse
|
48
|
New tetrahedral boron heterobicycles: Cyclocondensation of phenylboronic acid with β-keto butanoic acid N-acyl hydrazones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Zhang Q, Gong M. On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis. J Chromatogr A 2016; 1450:112-20. [PMID: 27156734 DOI: 10.1016/j.chroma.2016.04.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/18/2022]
Abstract
Flow-gated capillary electrophoresis (CE) coupled with microdialysis has become an important tool for in vivo bioanalytical measurements because it is capable of performing rapid and efficient separations of complex biological mixtures thus enabling high temporal resolution in chemical monitoring. However, the limit of detection (LOD) is often limited to a micro- or nano-molar range while many important target analytes have picomolar or sub-nanomolar levels in brain and other tissues. To enhance the capability of flow-gated CE for catecholamine detection, a novel and simple on-line sample preconcentration method was developed exclusively for fluorescent derivatives of catecholamines that were fluorogenically derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide. The effective preconcentration coupled with the sensitive laser-induced fluorescence (LIF) detection lowered the LOD down to 20pM for norepinephrine (NE) and 50pM for dopamine (DA) at 3-fold of S/N ratio, and the signal enhancement was estimated to be over 100-fold relative to normal injection when standard analytes were dissolved in artificial cerebrospinal fluid (aCSF). The basic focusing principle is novel since the sample plug contains borate while the background electrolyte (BGE) is void of borate. This strategy took advantage of the complexation between diols and borate, through which one negative charge was added to the complex entity. The sample derivatization mixture was electrokinetically injected into a capillary via the flow-gated injection, and then NE and DA derivatives were selectively focused to a narrow zone by the reversible complexation. Separation of NE and DA derivatives was executed by incoming surfactants of cholate and deoxycholate mixed in the front BGE plug. This on-line preconcentration method was finally applied to the detection of DA in rat cerebrospinal fluid (CSF) via microdialysis and on-line derivatization. It is anticipated that the method would be valuable for in vivo monitoring of DA and NE in various brain regions of live animals on flow-gated CE or microchip platforms.
Collapse
Affiliation(s)
- Qiyang Zhang
- Department of Chemistry, Wichita State University, Wichita, KS 67260, United States
| | - Maojun Gong
- Department of Chemistry, Wichita State University, Wichita, KS 67260, United States.
| |
Collapse
|
50
|
Akgun B, Hall DG. Fast and Tight Boronate Formation for Click Bioorthogonal Conjugation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Burcin Akgun
- Department of Chemistry, 4-010 CCIS; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| | - Dennis G. Hall
- Department of Chemistry, 4-010 CCIS; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|