1
|
Šímová I, Chrupková P, Gardiner AT, Koblížek M, Kloz M, Polívka T. Femtosecond Stimulated Raman Spectroscopy of Linear Carotenoids. J Phys Chem Lett 2024; 15:7466-7472. [PMID: 39008850 DOI: 10.1021/acs.jpclett.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption data measured in a single experiment are used to determine the vibronic properties of the S1 state of linear carotenoids with different conjugation lengths. The Raman band corresponding to the C═C stretching mode in the S1 state peaks at 1799 cm-1 (neurosporene), 1802 cm-1 (spheroidene), and 1791 cm-1 (lycopene). Contrary to the ground state C═C mode, variation of the C═C stretching mode in the S1 state is small and does not follow a linear dependence on N. The lifetime of the Raman band matches the S1 decays obtained from transient absorption, confirming its S1 state origin. Direct comparison of transient absorption and FSRS signals allowed us to assign Raman signatures of nonrelaxed S1 and S0 states. For lycopene, FSRS data identified a component associated with a downshifted ground state C═C mode, which matches the dynamics of the S* signal observed in transient absorption data.
Collapse
Affiliation(s)
- Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Petra Chrupková
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Miroslav Kloz
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Khokhlov D, Belov A. Low-Lying Excited States of Natural Carotenoids Viewed by Ab Initio Methods. J Phys Chem A 2022; 126:4376-4391. [PMID: 35767689 DOI: 10.1021/acs.jpca.2c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-lying excited states of carotenoids (the optically dark 2Ag- and bright 1Bu+) are deeply involved in energy transfer processes in photosynthetic antennas, such as light harvesting and non-photochemical quenching. Though any ab initio modeling of these phenomena has to rely on precise energies of the carotenoid electronic states, the accurate evaluation of these states remains a challenging problem due to their different natures. The paper aims to study the accuracy of the excitation energies of the low-lying excited states of certain open- and closed-chain carotenoids obtained by a state-of-the-art multireference approach for electronic structure calculation. Here, density matrix renormalization group SCF (DMRGSCF) and a perturbative approach based on driven similarity renormalization group second-order multireference perturbation theory (DSRG-MRPT2) were used to treat the static and dynamic correlation, respectively. Nuclear geometries of the electronic states were optimized with DFT-based approaches. It is demonstrated that spin-flip TD-DFT can replace multiconfigurational methods for the geometry optimization of the 2Ag- state but not for the calculation of the excitation energy. Adiabatic excitation energies to the 1Bu+ state were shown to be within a margin of 1000 cm-1 with an appropriate flow parameter value. Adiabatic excitation energies to the 2Ag- state for the open-chain carotenoids lie within a range of experimental values (taking into account the broad range of experimental estimates); for the closed-chain ones, the error does not exceed 2000 cm-1. Ab initio stationary (1Ag- → 1Bu+) and transient (2Ag- → 1Bu+) absorption spectra were modeled for violaxanthin and lycopene, and these spectra showed good agreement with the experimental ones both in terms of the vibronic structure and the transition energies.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
3
|
Jakučionis M, Gaižiu Nas I, Šulskus J, Abramavičius D. Simulation of Ab Initio Optical Absorption Spectrum of β-Carotene with Fully Resolved S0 and S2 Vibrational Normal Modes. J Phys Chem A 2022; 126:180-189. [PMID: 34985272 DOI: 10.1021/acs.jpca.1c06115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic absorption spectrum of β-carotene (β-Car) is studied using quantum chemistry and quantum dynamics simulations. Vibrational normal modes were computed in optimized geometries of the electronic ground state S0 and the optically bright excited S2 state using the time-dependent density functional theory. By expressing the S2-state normal modes in terms of the ground-state modes, we find that no one-to-one correspondence between the ground- and excited-state vibrational modes exists. Using the ab initio results, we simulated the β-Car absorption spectrum with all 282 vibrational modes in a model solvent at 300 K using the time-dependent Dirac-Frenkel variational principle and are able to qualitatively reproduce the full absorption line shape. By comparing the 282-mode model with the prominent 2-mode model, widely used to interpret carotenoid experiments, we find that the full 282-mode model better describes the high-frequency progression of carotenoid absorption spectra; hence, vibrational modes become highly mixed during the S0 → S2 optical excitation. The obtained results suggest that electronic energy dissipation is mediated by numerous vibrational modes.
Collapse
Affiliation(s)
- Mantas Jakučionis
- Institute of Chemical Physics, Vilnius University, Sauletekio Avenue 9-III, LT-10222 Vilnius, Lithuania
| | - Ignas Gaižiu Nas
- Institute of Chemical Physics, Vilnius University, Sauletekio Avenue 9-III, LT-10222 Vilnius, Lithuania
| | - Juozas Šulskus
- Institute of Chemical Physics, Vilnius University, Sauletekio Avenue 9-III, LT-10222 Vilnius, Lithuania
| | - Darius Abramavičius
- Institute of Chemical Physics, Vilnius University, Sauletekio Avenue 9-III, LT-10222 Vilnius, Lithuania
| |
Collapse
|
4
|
Ultrafast laser spectroscopic studies on carotenoids in solution and on those bound to photosynthetic pigment-protein complexes. Methods Enzymol 2022; 674:1-51. [DOI: 10.1016/bs.mie.2022.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Sutherland GA, Qian P, Hunter CN, Swainsbury DJ, Hitchcock A. Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes. Methods Enzymol 2022; 674:137-184. [DOI: 10.1016/bs.mie.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Khokhlov D, Belov A. Toward an Accurate Ab Initio Description of Low-Lying Singlet Excited States of Polyenes. J Chem Theory Comput 2021; 17:4301-4315. [PMID: 34125516 DOI: 10.1021/acs.jctc.0c01293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The low-lying excited states of carotenoids play a crucial role in many important biophysical processes such as photosynthesis. Most of these excited states are strongly correlated, which makes them both challenging for a qualitative ab initio description and an engaging model system for trying out emerging multireference methods. Among these methods, driven similarity renormalization group (DSRG) and its perturbative version (DSRG-MRPT2) are especially attractive in terms of both accuracy and moderate numerical complexity. In this paper, we applied density matrix renormalization group (DMRG) followed by DSRG-MRPT2 for the calculation of vertical and adiabatic excitation energies into the 2Ag-, 1Bu-, and 1Bu+ electronic states of polyenes containing from 8 to 13 conjugating double bonds acting as a model for natural carotenoids. It was shown that the DSRG flow parameter should be adjusted to ensure both the energy convergence with respect to it and the agreement with the experimental data. With the increased flow parameter, the proposed combination of methods provides a reasonable agreement with the experiment. The deviations of the adiabatic excitation energies are less than 1000 cm-1 for the 2Ag- and less than 3000 cm-1 for the excited states of the Bu symmetry, which in terms of accuracy significantly outperforms the N-electron valence state perturbation theory. At the same time, DSRG-MRPT2 is shown to be robust with respect to variation of quality of the DMRG reference wave function such as the orbital optimization or the number of electronic states in the averaging.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Khokhlov D, Belov A. Ab Initio Study of Low-Lying Excited States of Carotenoid-Derived Polyenes. J Phys Chem A 2020; 124:5790-5803. [PMID: 32573233 DOI: 10.1021/acs.jpca.0c01678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Knowledge about excited states of carotenoids is essential for understanding photophysical processes underlying photosynthesis. However, due to the presence of a large number of optically dark states, experimental study of the excited-state manifold is limited to a significant extent. In this paper, we apply high-level ab initio quantum chemical methods to study the low-lying excited states of polyenes containing from 8 to 13 conjugated double bonds, which serve as a model for natural carotenoids. Vertical and adiabatic excitation energies from the ground 1Ag- state to the excited 2Ag-, 1Bu+, and 1Bu- states were evaluated by means of density matrix renormalization group (DMRG) with NEVPT2 perturbative correction. The energies of all excited states are highly sensitive to nuclear geometry, especially the 2Ag- state. Thus, the 2Ag- and 1Bu+ states interchange their relative positions upon geometry relaxation, while the vertical excitation energy to the 2Ag- state is rather high. At the same time, the 1Bu- state energy is shown to be higher than other studied excited states at any geometry. With relaxed geometries of the excited states, absorption and transient absorption spectra were calculated within the Franck-Condon approximation bridging the gap between experimental spectroscopic data and computational results.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Niedzwiedzki DM, Swainsbury DJK, Hunter CN. Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls. PHOTOSYNTHESIS RESEARCH 2020; 144:155-169. [PMID: 31350671 PMCID: PMC7203092 DOI: 10.1007/s11120-019-00661-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 05/04/2023]
Abstract
Six variants of the LH2 antenna complex from Rba. sphaeroides, comprising the native B800-B850, B800-free LH2 (B850) and four LH2s with various (bacterio)chlorophylls reconstituted into the B800 site, have been investigated with static and time-resolved optical spectroscopies at room temperature and at 77 K. The study particularly focused on how reconstitution of a non-native (bacterio)chlorophylls affects excitation energy transfer between the naturally bound carotenoid spheroidene and artificially substituted pigments in the B800 site. Results demonstrate there is no apparent trend in the overall energy transfer rate from spheroidene to B850 bacteriochlorophyll a; however, a trend in energy transfer rate from the spheroidene S1 state to Qy of the B800 (bacterio)chlorophylls is noticeable. These outcomes were applied to test the validity of previously proposed energy values of the spheroidene S1 state, supporting a value in the vicinity of 13,400 cm-1 (746 nm).
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA.
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO, 63130, USA.
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
9
|
Taffet EJ, Lee BG, Toa ZSD, Pace N, Rumbles G, Southall J, Cogdell RJ, Scholes GD. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J Phys Chem B 2019; 123:8628-8643. [PMID: 31553605 DOI: 10.1021/acs.jpcb.9b04027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report quantum chemical calculations using multireference perturbation theory (MRPT) with the density matrix renormalization group (DMRG) plus photothermal deflection spectroscopy measurements to investigate the manifold of carotenoid excited states and establish their energies relative to the bright state (S2) as a function of nuclear reorganization. We conclude that the primary photophysics and function of carotenoids are determined by interplay of only the bright (S2) and lowest-energy dark (S1) states. The lowest-lying dark state, far from being energetically distinguishable from the lowest-lying bright state along the entire excited-state nuclear reorganization pathway, is instead computed to be either the second or first excited state depending on what equilibrium geometry is considered. This result suggests that, rather than there being a dark intermediate excited state bridging a non-negligible energy gap from the lowest-lying dark state to the lowest-lying bright state, there is in fact no appreciable energy gap to bridge following photoexcitation. Instead, excited-state nuclear reorganization constitutes the bridge from S2 to S1, in the sense that these two states attain energetic degeneracy along this pathway.
Collapse
Affiliation(s)
- Elliot J Taffet
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Benjamin G Lee
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Zi S D Toa
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Natalie Pace
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Garry Rumbles
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
10
|
Khosravi SD, Bishop MM, LaFountain AM, Turner DB, Gibson GN, Frank HA, Berrah N. Addition of a Carbonyl End Group Increases the Rate of Excited-State Decay in a Carotenoid via Conjugation Extension and Symmetry Breaking. J Phys Chem B 2018; 122:10872-10879. [PMID: 30387609 DOI: 10.1021/acs.jpcb.8b06732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state absorption, transient absorption, and transient grating spectroscopies were employed to elucidate the role of a conjugated carbonyl group in the photophysics of carotenoids. Spheroidenone and spheroidene have similar molecular structures and differ only in an additional carbonyl group in spheroidenone. Comparison of the optical responses of these two molecules under similar experimental conditions was used to understand the role of this carbonyl group in the structure. It was found that the carbonyl group has two main effects: first, it dramatically increases the depopulation rate of the excited states of the molecule. The lifetimes of all the excited states of spheroidenone were found to be almost half of the ones for spheroidene. Second, the presence of the carbonyl group in the chain alters the decay mechanism to the symmetry-forbidden S1 state of the molecule, so that the higher vibrational levels of the S1 state are populated much more effectively. It was also revealed that for both molecules, the S2/S x → S1(hot) → S1 decay process is not purely sequential and follows a branched model.
Collapse
Affiliation(s)
| | | | | | - Daniel B Turner
- Department of Chemistry , New York University , New York 10003 , United States
| | | | | | | |
Collapse
|
11
|
Excited-state dynamics of 3,3′-dihydroxyisorenieratene and (3R,3′R)-zeaxanthin: Observation of vibrationally hot S0 species. Arch Biochem Biophys 2018; 646:137-144. [DOI: 10.1016/j.abb.2018.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
|
12
|
Hashimoto H, Uragami C, Yukihira N, Gardiner AT, Cogdell RJ. Understanding/unravelling carotenoid excited singlet states. J R Soc Interface 2018; 15:20180026. [PMID: 29643225 PMCID: PMC5938589 DOI: 10.1098/rsif.2018.0026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.
Collapse
Affiliation(s)
- Hideki Hashimoto
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Nao Yukihira
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Balevičius V, Lincoln CN, Viola D, Cerullo G, Hauer J, Abramavicius D. Effects of tunable excitation in carotenoids explained by the vibrational energy relaxation approach. PHOTOSYNTHESIS RESEARCH 2018; 135:55-64. [PMID: 28741055 DOI: 10.1007/s11120-017-0423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/09/2017] [Indexed: 05/20/2023]
Abstract
Carotenoids are fundamental building blocks of natural light harvesters with convoluted and ultrafast energy deactivation networks. In order to disentangle such complex relaxation dynamics, several studies focused on transient absorption measurements and their dependence on the pump wavelength. However, such findings are inconclusive and sometimes contradictory. In this study, we compare internal conversion dynamics in [Formula: see text]-carotene, pumped at the first, second, and third vibronic progression peak. Instead of employing data fitting algorithms based on global analysis of the transient absorption spectra, we apply a fully quantum mechanical model to treat the high-frequency symmetric carbon-carbon (C=C and C-C) stretching modes explicitly. This model successfully describes observed population dynamics as well as spectral line shapes in their time-dependence and allows us to reach two conclusions: Firstly, the broadening of the induced absorption upon excess excitation is an effect of vibrational cooling in the first excited state ([Formula: see text]). Secondly, the internal conversion rate between the second excited state ([Formula: see text]) and [Formula: see text] crucially depends on the relative curve displacement. The latter point serves as a new perspective on solvent- and excitation wavelength-dependent experiments and lifts contradictions between several studies found in literature.
Collapse
Affiliation(s)
- Vytautas Balevičius
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Craig N Lincoln
- Photonics Institute, TU Wien, Gusshausstr. 27, 1040, Vienna, Austria
| | - Daniele Viola
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Jürgen Hauer
- Photonics Institute, TU Wien, Gusshausstr. 27, 1040, Vienna, Austria
| | - Darius Abramavicius
- Department of Theoretical Physics, Vilnius University, Sauletekio al. 9-III, 10222, Vilnius, Lithuania.
| |
Collapse
|
14
|
Caycedo-Soler F, Schroeder CA, Autenrieth C, Pick A, Ghosh R, Huelga SF, Plenio MB. Quantum Redirection of Antenna Absorption to Photosynthetic Reaction Centers. J Phys Chem Lett 2017; 8:6015-6021. [PMID: 29185757 DOI: 10.1021/acs.jpclett.7b02714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The early steps of photosynthesis involve the photoexcitation of reaction centers (RCs) and light-harvesting (LH) units. Here, we show that the historically overlooked excitonic delocalization across RC and LH pigments results in a redistribution of absorption amplitudes that benefits the absorption cross section of the optical bands associated with the RC of several species. While we prove that this redistribution is robust to the microscopic details of the dephasing between these units in the purple bacterium Rhodospirillum rubrum, we are able to show that the redistribution witnesses a more fragile, but persistent, coherent population dynamics which directs excitations from the LH toward the RC units under incoherent illumination and physiological conditions. Even though the redirection does not seem to affect importantly the overall efficiency in photosynthesis, stochastic optimization allows us to delineate clear guidelines and develop simple analytic expressions in order to amplify the coherent redirection in artificial nanostructures.
Collapse
Affiliation(s)
- Felipe Caycedo-Soler
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Christopher A Schroeder
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
- Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | - Caroline Autenrieth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart , Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Arne Pick
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart , Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Susana F Huelga
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| |
Collapse
|
15
|
Gacek DA, Moore AL, Moore TA, Walla PJ. Two-Photon Spectra of Chlorophylls and Carotenoid–Tetrapyrrole Dyads. J Phys Chem B 2017; 121:10055-10063. [DOI: 10.1021/acs.jpcb.7b08502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel A. Gacek
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department of Biophysical
Chemistry, Gaußstraße.
17, 38106 Braunschweig, Germany
| | - Ana L. Moore
- School
of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School
of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Peter Jomo Walla
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department of Biophysical
Chemistry, Gaußstraße.
17, 38106 Braunschweig, Germany
| |
Collapse
|
16
|
Kuznetsova V, Southall J, Cogdell RJ, Fuciman M, Polívka T. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J Phys Chem B 2016; 120:5429-43. [PMID: 27285777 PMCID: PMC4921951 DOI: 10.1021/acs.jpcb.6b03305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Six light-harvesting-2 complexes
(LH2) from genetically modified
strains of the purple photosynthetic bacterium Rhodobacter
(Rb.) sphaeroides were studied using static and ultrafast
optical methods and resonance Raman spectroscopy. These strains were
engineered to incorporate carotenoids for which the number of conjugated
groups (N = NC=C + NC=O) varies from 9 to 15.
The Rb. sphaeroides strains incorporate their native
carotenoids spheroidene (N = 10) and spheroidenone
(N = 11), as well as longer-chain analogues including
spirilloxanthin (N = 13) and diketospirilloxantion
(N = 15) normally found in Rhodospirillum
rubrum. Measurements of the properties of the carotenoid
first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to
those in LH2 complexes from various other bacterial species and thus
are not significantly impacted by differences in polypeptide composition.
Instead, variations in carotenoid-to-BChl a energy
transfer are primarily regulated by the N-determined
energy of the carotenoid S1 excited state, which for long-chain
(N ≥ 13) carotenoids is not involved in energy
transfer. Furthermore, the role of the long-chain carotenoids switches
from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial
(∼2-fold) reduction of the B850* lifetime and the B850* fluorescence
quantum yield for LH2 housing the longest carotenoids.
Collapse
Affiliation(s)
| | - Qun Tang
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - David F Bocian
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
18
|
Fiedor L, Fiedor J, Pilch M. Effects of Molecular Symmetry on the Electronic Transitions in Carotenoids. J Phys Chem Lett 2016; 7:1821-9. [PMID: 27138647 DOI: 10.1021/acs.jpclett.6b00637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aim of this work is the verification of symmetry effects on the electronic absorption spectra of carotenoids. The symmetry breaking in cis-β-carotenes and in carotenoids with nonlinear π-electron system is of virtually no effect on the dark transitions in these pigments, in spite of the loss of the inversion center and evident changes in their electronic structure. In the cis isomers, the S2 state couples with the higher excited states and the extent of this coupling depends on the position of the cis bend. A confrontation of symmetry properties of carotenoids with their electronic absorption and IR and Raman spectra shows that they belong to the C1 or C2 but not the C2h symmetry group, as commonly assumed. In these realistic symmetries all the electronic transitions are symmetry-allowed and the absence of some transitions, such as the dark S0 → S1 transition, must have another physical origin. Most likely it is a severe deformation of the carotenoid molecule in the S1 state, unachievable directly from the ground state, which means that the Franck-Condon factors for a vertical S0 → S1 transition are negligible because the final state is massively displaced along the vibrational coordinates. The implications of our findings have an impact on the understanding of the photophysics and functioning of carotenoids.
Collapse
Affiliation(s)
- Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Gronostajowa 7, 30-387 Kraków, Poland
- Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology , Mickiewicza 30, 30-059 Kraków, Poland
| | - Mariusz Pilch
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Gronostajowa 7, 30-387 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland
| |
Collapse
|
19
|
Niedzwiedzki DM, Tronina T, Liu H, Staleva H, Komenda J, Sobotka R, Blankenship RE, Polívka T. Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1430-1439. [PMID: 27133505 DOI: 10.1016/j.bbabio.2016.04.280] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022]
Abstract
Chl synthase (ChlG) is an important enzyme of the Chl biosynthetic pathway catalyzing attachment of phytol/geranylgeraniol tail to the chlorophyllide molecule. Here we have investigated the Flag-tagged ChlG (f.ChlG) in a complex with two different high-light inducible proteins (Hlips) HliD and HliC. The f.ChlG-Hlips complex binds a Chl a and three different carotenoids, β-carotene, zeaxanthin and myxoxanthophyll. Application of ultrafast time-resolved absorption spectroscopy performed at room and cryogenic temperatures revealed excited-state dynamics of complex-bound pigments. After excitation of Chl a in the complex, excited Chl a is efficiently quenched by a nearby carotenoid molecule via energy transfer from the Chl a Qy state to the carotenoid S1 state. The kinetic analysis of the spectroscopic data revealed that quenching occurs with a time constant of ~2ps and its efficiency is temperature independent. Even though due to its long conjugation myxoxanthophyll appears to be energetically best suited for role of Chl a quencher, based on comparative analysis and spectroscopic data we propose that β-carotene bound to Hlips acts as the quencher rather than myxoxanthophyll and zeaxanthin, which are bound at the f.ChlG and Hlips interface. The S1 state lifetime of the quencher has been determined to be 13ps at room temperature and 21ps at 77K. These results demonstrate that Hlips act as a conserved functional module that prevents photodamage of protein complexes during photosystem assembly or Chl biosynthesis.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in Saint Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Tomasz Tronina
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Haijun Liu
- Photosynthetic Antenna Research Center, Washington University in Saint Louis, 1 Brookings Drive, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, 1 Brookings, Drive. St. Louis, MO 63130, USA
| | - Hristina Staleva
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Josef Komenda
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Robert E Blankenship
- Photosynthetic Antenna Research Center, Washington University in Saint Louis, 1 Brookings Drive, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, 1 Brookings, Drive. St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, 1 Brookings, Drive. St. Louis, MO 63130, USA
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
20
|
Takaya T, Iwata K. Development of a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer in resonance with transitions in the 900–1550 nm region. Analyst 2016; 141:4283-92. [DOI: 10.1039/c6an01051b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer has been developed for investigating the structural dynamics in charge-transfer processes.
Collapse
Affiliation(s)
- Tomohisa Takaya
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Toshima-ku
- Japan
| | - Koichi Iwata
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Toshima-ku
- Japan
| |
Collapse
|
21
|
Abstract
Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.
Collapse
Affiliation(s)
- Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| | - Chiasa Uragami
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| |
Collapse
|
22
|
Natural and artificial light-harvesting systems utilizing the functions of carotenoids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Bocian DF, Holten D, Hunter CN. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:640-55. [PMID: 25871644 DOI: 10.1016/j.bbabio.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/24/2022]
Abstract
Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
Tonouchi N, Kosumi D, Sugisaki M, Nango M, Hashimoto H. How do surrounding environments influence the electronic and vibrational properties of spheroidene? PHOTOSYNTHESIS RESEARCH 2015; 124:77-86. [PMID: 25680581 DOI: 10.1007/s11120-015-0095-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Absorption and Raman spectra of spheroidene dissolved in various organic solvents and bound to peripheral light-harvesting LH2 complexes from photosynthetic purple bacteria Rhodobacter (Rba.) sphaeroides 2.4.1 were measured. The results showed that the peak energies of absorption and C-C and C=C stretching Raman lines are linearly proportional to the polarizability of solvents, as has already been reported. When comparing these results with those measured on LH2 complexes, it was confirmed that spheroidene is surrounded by a media with high polarizability. However, the change in the spectral width of the Raman lines, which reflect vibrational decay time, cannot be explained simply by a similar dependence of solvent polarizability. The experimental results were analyzed using a potential theoretical model. Consequently, a systematic change in the Raman line widths in the ground state can be satisfactorily explained as a function of the viscosity of the surrounding media. Even when the absorption peaks appear at the same energy, the vibrational decay time of spheroidene in the LH2 complexes is approximately 15-20 % slower than that in organic solvents.
Collapse
Affiliation(s)
- Noriyuki Tonouchi
- Department of Physics, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | | | | | | | | |
Collapse
|
25
|
Fuciman M, Keşan G, LaFountain AM, Frank HA, Polívka T. Tuning the spectroscopic properties of aryl carotenoids by slight changes in structure. J Phys Chem B 2015; 119:1457-67. [PMID: 25558974 DOI: 10.1021/jp512354r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two carotenoids with aryl rings were studied by femtosecond transient absorption spectroscopy and theoretical computational methods, and the results were compared with those obtained from their nonaryl counterpart, β-carotene. Although isorenieratene has more conjugated C═C bonds than β-carotene, its effective conjugation length, Neff, is shorter than of β-carotene. This is evidenced by a longer S1 lifetime and higher S1 energy of isorenieratene compared to the values for β-carotene. On the other hand, although isorenieratene and renierapurpurin have the same π-electron conjugated chain structure, Neff is different for these two carotenoids. The S1 lifetime of renierapurpurin is shorter than that of isorenieratene, indicating a longer Neff for renierapurpurin. This conclusion is also consistent with a lower S1 energy of renierapurpurin compared to those of the other carotenoids. Density functional theory (DFT) was used to calculate equilibrium geometries of ground and excited states of all studied carotenoids. The terminal ring torsion in the ground state of isorenieratene (41°) is very close to that of β-carotene (45°), but equilibration of the bond lengths within the aryl rings indicates that the each aryl ring forms its own conjugated system. This results in partial detachment of the aryl rings from the overall conjugation making Neff of isorenieratene shorter than that of β-carotene. The different position of the methyl group at the aryl ring of renierapurpurin diminishes the aryl ring torsion to ∼20°. This planarization results in a longer Neff than that of isorenieratene, rationalizing the observed differences in spectroscopic properties.
Collapse
Affiliation(s)
- Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Niedzwiedzki DM, Cranston L. Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids. Phys Chem Chem Phys 2015; 17:13245-56. [DOI: 10.1039/c5cp00836k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photophysical properties of two typical aryl carotenoids, okenone and chlorobactene, were studied with application of femtosecond and microsecond time-resolved absorption spectroscopies.
Collapse
Affiliation(s)
- Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research Center and Department of Chemistry
- Washington University in St Louis
- USA
| | - Laura Cranston
- Institute of Molecular Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- University of Glasgow
- Glasgow Biomedical Research Centre
| |
Collapse
|
27
|
Hashimoto H, Sugisaki M, Yoshizawa M. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:69-78. [PMID: 25223589 DOI: 10.1016/j.bbabio.2014.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 11/16/2022]
Abstract
This review discusses the application of time-resolved vibrational spectroscopies to the studies of carotenoids in photosynthesis. The focus is on the ultrafast time regime and the study of photophysics and photochemistry of carotenoids by femtosecond time-resolved stimulated Raman and four-wave mixing spectroscopies. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Mitsuru Sugisaki
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masayuki Yoshizawa
- Department of Physics, Graduate School of Science, Tohoku University, Aramaki-aza-aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
28
|
Di Donato M, Segado Centellas M, Lapini A, Lima M, Avila F, Santoro F, Cappelli C, Righini R. Combination of transient 2D-IR experiments and ab initio computations sheds light on the formation of the charge-transfer state in photoexcited carbonyl carotenoids. J Phys Chem B 2014; 118:9613-30. [PMID: 25050938 DOI: 10.1021/jp505473j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of trans-8'-apo-β-carotenal occurring on the picosecond time scale, after excitation in the S2 state. In a (slightly) polar solvent like chloroform, one-dimensional (T1D-IR) and two-dimensional (T2D-IR) transient infrared spectroscopy reveal spectral components with characteristic frequencies and lifetimes that are not observed in nonpolar solvents (cyclohexane). Combining experimental evidence with an analysis of CASPT2//CASSCF ground and excited state minima and energy profiles, complemented with TDDFT calculations in gas phase and in solvent, we propose a photochemical decay mechanism for this system where only the bright single-excited 1Bu(+) and the dark double-excited 2Ag(-) states are involved. Specifically, the initially populated 1Bu(+) relaxes toward 2Ag(-) in 200 fs. In a nonpolar solvent 2Ag(-) decays to the ground state (GS) in 25 ps. In polar solvents, distortions along twisting modes of the chain promote a repopulation of the 1Bu(+) state which then quickly relaxes to the GS (18 ps in chloroform). The 1Bu(+) state has a high electric dipole and is the main contributor to the charge-transfer state involved in the dynamics in polar solvents. The 2Ag(-) → 1Bu(+) population transfer is evidenced by a cross peak on the T2D-IR map revealing that the motions along the same stretching of the conjugated chain on the 2Ag(-) and 1Bu(+) states are coupled.
Collapse
Affiliation(s)
- Mariangela Di Donato
- LENS (European Laboratory for Nonlinear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Takaya T, Iwata K. Relaxation mechanism of β-carotene from S2 (1Bu(+)) state to S1 (2Ag(-)) state: femtosecond time-resolved near-IR absorption and stimulated resonance Raman studies in 900-1550 nm region. J Phys Chem A 2014; 118:4071-8. [PMID: 24844607 DOI: 10.1021/jp504272h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carotenoids have two major low-lying excited states, the second lowest (S2 (1Bu(+))) and the lowest (S1 (2Ag(-))) excited singlet states, both of which are suggested to be involved in the energy transfer processes in light-harvesting complexes. Studying vibrational dynamics of S2 carotenoids requires ultrafast time-resolved near-IR Raman spectroscopy, although it has much less sensitivity than visible Raman spectroscopy. In this study, the relaxation mechanism of β-carotene from the S2 state to the S1 state is investigated by femtosecond time-resolved multiplex near-IR absorption and stimulated Raman spectroscopy. The energy gap between the S2 and S1 states is estimated to be 6780 cm(-1) from near-IR transient absorption spectra. The near-IR stimulated Raman spectrum of S2 β-carotene show three bands at 1580, 1240, and 1050 cm(-1). When excess energy of 4000 cm(-1) is added, the S1 C═C stretch band shows a large upshift with a time constant of 0.2 ps. The fast upshift is explained by a model that excess energy generated by internal conversion from the S2 state to the S1 state is selectively accepted by one of the vibronic levels of the S1 state and is redistributed among all the vibrational modes.
Collapse
Affiliation(s)
- Tomohisa Takaya
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | | |
Collapse
|
30
|
Niedzwiedzki DM, Jiang J, Lo CS, Blankenship RE. Spectroscopic properties of the Chlorophyll a-Chlorophyll c 2-Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium. PHOTOSYNTHESIS RESEARCH 2014; 120:125-139. [PMID: 23361658 DOI: 10.1007/s11120-013-9794-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
Femtosecond time-resolved transient absorption spectroscopy was performed on the chlorophyll a-chlorophyll c 2-peridinin-protein-complex (acpPC), a major light-harvesting complex of the coral symbiotic dinoflagellate Symbiodinium. The measurements were carried out on the protein as well on the isolated pigments in the visible and the near-infrared region at 77 K. The data were globally fit to establish inter-pigment energy transfer paths within the scaffold of the complex. In addition, microsecond flash photolysis analysis was applied to reveal photoprotective capabilities of carotenoids (peridinin and diadinoxanthin) in the complex, especially the ability to quench chlorophyll a triplet states. The results demonstrate that the majority of carotenoids and other accessory light absorbers such as chlorophyll c 2 are very well suited to support chlorophyll a in light harvesting. However, their performance in photoprotection in the acpPC is questionable. This is unusual among carotenoid-containing light-harvesting proteins and may explain the low resistance of the acpPC complex against photoinduced damage under even moderate light conditions.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO, 63130, USA,
| | | | | | | |
Collapse
|
31
|
Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Jomova K, Valko M. Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur J Med Chem 2013; 70:102-10. [PMID: 24141200 DOI: 10.1016/j.ejmech.2013.09.054] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
Carotenoids are natural pigments attracting attention of physicists, chemists and biologists due to their multiple functions in the nature. While carotenoids have unusually high extinction coefficients, they do not exhibit adequate emission. This fact has resulted in detailed studies of photophysical and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Carotenoids are abundantly present in fruits and vegetables and are considered as important species with beneficial effect on human health by decreasing the risk of various diseases, particularly decreasing the incidence of cancers and eye disease. More trials are needed to ascertain the role of carotenoids in prevention of cardiovascular disease and metabolic disease. Carotenoids effectively scavenge peroxyl radicals and act predominantly as antioxidants. However, under conditions of increased concentration of oxygen and carotenoid concentration, beta-carotene was found to exhibit prooxidant behaviour. Photophysical properties of carotenoids and conditions affecting a switch between antioxidant and prooxidant behaviour of carotenoids are the main aims of this review. In addition, the localization of carotenoids in biological membranes, their interactions and reactions with ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) as well as their redox potentials are discussed in view of their antioxidant properties as beneficial species in preventing various diseases.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, SK-949 74 Nitra, Slovakia
| | | |
Collapse
|
33
|
Ostroumov EE, Mulvaney RM, Anna JM, Cogdell RJ, Scholes GD. Energy Transfer Pathways in Light-Harvesting Complexes of Purple Bacteria as Revealed by Global Kinetic Analysis of Two-Dimensional Transient Spectra. J Phys Chem B 2013; 117:11349-62. [DOI: 10.1021/jp403028x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evgeny E. Ostroumov
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| | - Rachel M. Mulvaney
- Glasgow Biomedical Research
Centre, IBLS, University of Glasgow, 126
Place, Glasgow G12 8TA, Scotland, U.K
| | - Jessica M. Anna
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| | - Richard J. Cogdell
- Glasgow Biomedical Research
Centre, IBLS, University of Glasgow, 126
Place, Glasgow G12 8TA, Scotland, U.K
| | - Gregory D. Scholes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| |
Collapse
|
34
|
Niedzwiedzki DM, Kajikawa T, Aoki K, Katsumura S, Frank HA. Excited States Energies and Dynamics of Peridinin Analogues and the Nature of the Intramolecular Charge Transfer State in Carbonyl-Containing Carotenoids. J Phys Chem B 2013; 117:6874-87. [DOI: 10.1021/jp400038k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research
Center, Washington University in St Louis, Saint Louis, Missouri 63130, United States
| | - Takayuki Kajikawa
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Kazuyoshi Aoki
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Shigeo Katsumura
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville
Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
35
|
Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:248-54. [DOI: 10.1016/j.bbabio.2012.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/04/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022]
|
36
|
Christensen RL, Enriquez MM, Wagner NL, Peacock-Villada AY, Scriban C, Schrock RR, Polívka T, Frank HA, Birge RR. Energetics and dynamics of the low-lying electronic states of constrained polyenes: implications for infinite polyenes. J Phys Chem A 2013; 117:1449-65. [PMID: 23330819 DOI: 10.1021/jp310592s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state and ultrafast transient absorption spectra were obtained for a series of conformationally constrained, isomerically pure polyenes with 5-23 conjugated double bonds (N). These data and fluorescence spectra of the shorter polyenes reveal the N dependence of the energies of six (1)B(u)(+) and two (1)A(g)(-) excited states. The (1)B(u)(+) states converge to a common infinite polyene limit of 15,900 ± 100 cm(-1). The two excited (1)A(g)(-) states, however, exhibit a large (~9000 cm(-1)) energy difference in the infinite polyene limit, in contrast to the common value previously predicted by theory. EOM-CCSD ab initio and MNDO-PSDCI semiempirical MO theories account for the experimental transition energies and intensities. The complex, multistep dynamics of the 1(1)B(u)(+) → 2(1)A(g)(-) → 1(1)A(g)(-) excited state decay pathways as a function of N are compared with kinetic data from several natural and synthetic carotenoids. Distinctive transient absorption signals in the visible region, previously identified with S* states in carotenoids, also are observed for the longer polyenes. Analysis of the lifetimes of the 2(1)A(g)(-) states, using the energy gap law for nonradiative decay, reveals remarkable similarities in the N dependence of the 2(1)A(g)(-) decay kinetics of the carotenoid and polyene systems. These findings are important for understanding the mechanisms by which carotenoids carry out their roles as light-harvesting molecules and photoprotective agents in biological systems.
Collapse
|
37
|
McCamant DW, Kukura P, Mathies RA. Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion in beta-Carotene. J Phys Chem A 2012; 107:8208-14. [PMID: 16710440 PMCID: PMC1463250 DOI: 10.1021/jp030147n] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed the technique of femtosecond stimulated Raman spectroscopy (FSRS), which allows the rapid collection of high-resolution vibrational spectra on the femtosecond time scale. FSRS combines a sub-50 fs actinic pump pulse with a two-pulse stimulated Raman probe to obtain vibrational spectra whose frequency resolution limits are uncoupled from the time resolution. This allows the acquisition of spectra with <100 fs time resolution and <30 cm(-1) frequency resolution. Additionally, FSRS is unaffected by background fluorescence, provides rapid (100 ms) acquisition times, and exhibits traditional spontaneous Raman line shapes. FSRS is used here to study the relaxation dynamics of beta-carotene. Following optical excitation to S(2) (1B(u) (+)) the molecule relaxes in 160 fs to S(1) (2A(g) (-)) and then undergoes two distinct stages of intramolecular vibrational energy redistribution (IVR) with 200 and 450 fs time constants. These processes are attributed to rapid (200 fs) distribution of the internal conversion energy from the S(1) C=C modes into a restricted bath of anharmonically coupled modes followed by complete IVR in 450 fs. FSRS is a valuable new technique for studying the vibrational structure of chemical reaction intermediates and transition states.
Collapse
Affiliation(s)
- David W McCamant
- Department of Chemistry, University of California, Berkeley, California 94720
| | | | | |
Collapse
|
38
|
Niedzwiedzki DM, Bina D, Picken N, Honkanen S, Blankenship RE, Holten D, Cogdell RJ. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1576-87. [PMID: 22659401 DOI: 10.1016/j.bbabio.2012.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/08/2012] [Accepted: 05/22/2012] [Indexed: 11/17/2022]
Abstract
Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex.
Collapse
|
39
|
Maiuri M, Polli D, Brida D, Lüer L, LaFountain AM, Fuciman M, Cogdell RJ, Frank HA, Cerullo G. Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene. Phys Chem Chem Phys 2012; 14:6312-9. [DOI: 10.1039/c2cp23585d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Niedzwiedzki DM, Fuciman M, Kobayashi M, Frank HA, Blankenship RE. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2011; 110:49-60. [PMID: 21984346 DOI: 10.1007/s11120-011-9692-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
41
|
Kusumoto T, Kosumi D, Uragami C, Frank HA, Birge RR, Cogdell RJ, Hashimoto H. Femtosecond transient absorption spectroscopic study of a carbonyl-containing carotenoid analogue, 2-(all-trans-retinylidene)-indan-1,3-dione. J Phys Chem A 2011; 115:2110-9. [PMID: 21361262 DOI: 10.1021/jp111313f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photophysical properties of a carbonyl-containing carotenoid analogue in an s-cis configuration, relative to the conjugated π system, 2-(all-trans-retinylidene)-indan-1,3-dione (C20Ind), were investigated by femtosecond time-resolved spectroscopy in various solvents. The lifetime of the optically forbidden S(1) state of C20Ind becomes long as solvent polarity increases. This trend is completely opposite to the situation of S(1-ICT) dynamics of carbonyl-containing carotenoids, such as peridinin and fucoxanthin. Excitation energy dependence of the transient absorption measurements shows that the transient absorption spectra in nonpolar solvents were originated from two distinct transient species, while those in polar and protic solvents are due to a single transient species. By referring to the results of MNDO-PSDCI (modified neglect of differential overlap with partial single- and double-configuration interaction) calculations, we conclude: (1) in polar and protic solvents, the S(1) state is generated following excitation up to the S(2) state; (2) in nonpolar solvents, however, both the S(1) and the (1)nπ* states are generated; and (3) C20Ind does not generate the S(1-ICT) state, despite the fact that it has two conjugated carbonyl groups.
Collapse
Affiliation(s)
- Toshiyuki Kusumoto
- CREST/JST and Department of Physics, Graduated School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Niedzwiedzki DM, Collins AM, LaFountain AM, Enriquez MM, Frank HA, Blankenship RE. Spectroscopic studies of carotenoid-to-bacteriochlorophyll energy transfer in LHRC photosynthetic complex from Roseiflexus castenholzii. J Phys Chem B 2010; 114:8723-34. [PMID: 20545331 DOI: 10.1021/jp1005764] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, gamma-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infrared (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S(1)(2(1)A(g)(-)) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.
Collapse
|
43
|
Kosumi D, Abe K, Karasawa H, Fujiwara M, Cogdell RJ, Hashimoto H, Yoshizawa M. Ultrafast relaxation kinetics of the dark S1 state in all-trans-β-carotene explored by one- and two-photon pump–probe spectroscopy. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2009.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Enriquez MM, LaFountain AM, Budarz J, Fuciman M, Gibson GN, Frank HA. Direct determination of the excited state energies of the xanthophylls diadinoxanthin and diatoxanthin from Phaeodactylum tricornutum. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Pang Y, Jones GA, Prantil MA, Fleming GR. Unusual Relaxation Pathway from the Two-Photon Excited First Singlet State of Carotenoids. J Am Chem Soc 2010; 132:2264-73. [DOI: 10.1021/ja908472y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yoonsoo Pang
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| | - Garth A. Jones
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| | - Matthew A. Prantil
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| |
Collapse
|
46
|
Pang Y, Prantil MA, Van Tassle AJ, Jones GA, Fleming GR. Excited-State Dynamics of 8′-Apo-β-caroten-8′-al and 7′,7′-Dicyano-7′-apo-β-carotene Studied by Femtosecond Time-Resolved Infrared Spectroscopy. J Phys Chem B 2009; 113:13086-95. [DOI: 10.1021/jp905758e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoonsoo Pang
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| | - Matthew A. Prantil
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| | - Aaron J. Van Tassle
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| | - Garth A. Jones
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460
| |
Collapse
|
47
|
|
48
|
Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 2009; 130:214506. [DOI: 10.1063/1.3147008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Polívka T, Balashov SP, Chábera P, Imasheva ES, Yartsev A, Sundström V, Lanyi JK. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys J 2009; 96:2268-77. [PMID: 19289053 DOI: 10.1016/j.bpj.2009.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/17/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022] Open
Abstract
Xanthorhodopsin of the extremely halophilic bacterium Salinibacter ruber represents a novel antenna system. It consists of a carbonyl carotenoid, salinixanthin, bound to a retinal protein that serves as a light-driven transmembrane proton pump similar to bacteriorhodopsin of archaea. Here we apply the femtosecond transient absorption technique to reveal the excited-state dynamics of salinixanthin both in solution and in xanthorhodopsin. The results not only disclose extremely fast energy transfer rates and pathways, they also reveal effects of the binding site on the excited-state properties of the carotenoid. We compared the excited-state dynamics of salinixanthin in xanthorhodopsin and in NaBH(4)-treated xanthorhodopsin. The NaBH(4) treatment prevents energy transfer without perturbing the carotenoid binding site, and allows observation of changes in salinixanthin excited-state dynamics related to specific binding. The S(1) lifetimes of salinixanthin in untreated and NaBH(4)-treated xanthorhodopsin were identical (3 ps), confirming the absence of the S(1)-mediated energy transfer. The kinetics of salinixanthin S(2) decay probed in the near-infrared region demonstrated a change of the S(2) lifetime from 66 fs in untreated xanthorhodopsin to 110 fs in the NaBH(4)-treated protein. This corresponds to a salinixanthin-retinal energy transfer time of 165 fs and an efficiency of 40%. In addition, binding of salinixanthin to xanthorhodopsin increases the population of the S(*) state that decays in 6 ps predominantly to the ground state, but a small fraction (<10%) of the S(*) state generates a triplet state.
Collapse
Affiliation(s)
- Tomás Polívka
- Institute of Physical Biology, University of South Bohemia, Nové Hrady, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
50
|
Chatterjee N, Niedzwiedzki DM, Aoki K, Kajikawa T, Katsumura S, Hashimoto H, Frank HA. Effect of structural modifications on the spectroscopic properties and dynamics of the excited states of peridinin. Arch Biochem Biophys 2009; 483:146-55. [PMID: 19000898 PMCID: PMC3641562 DOI: 10.1016/j.abb.2008.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 11/22/2022]
Abstract
The spectroscopic properties and dynamics of the lowest excited singlet states of peridinin and two derivatives have been studied by steady-state absorption and fast-transient optical spectroscopic techniques. One derivative denoted PerOlEs, possesses a double bond and a methyl ester group instead of the r-ylidenebutenolide of peridinin. Another derivative denoted PerAcEs, is the biosynthetic precursor of peridinin and possesses a triple bond and a methyl ester group corresponding to the r-ylidenbutenolide function. Ultrafast time-resolved spectroscopic experiments in the visible and near-infrared regions were performed on the molecules and reveal the energies and regarding the structural features and interactions responsible for the unusual solvent-induced changes in the steady-state and transient absorption spectra and dynamics of dynamics of the excited electronic states. The data also provide information peridinin.
Collapse
Affiliation(s)
- Nirmalya Chatterjee
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Dariusz M. Niedzwiedzki
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Kazuyoshi Aoki
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Takayuki Kajikawa
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Shigeo Katsumura
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Hideki Hashimoto
- Department of Physics, Osaka City University, 558-8585, Osaka, Japan
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| |
Collapse
|