1
|
Baek SM, Ahn SI, Lee SH, Choi JM, Hong J, Kim YJ, Han BK. Prediction model of browning inhibitor concentration and its optimal composition for mass processing of ready-to-eat fresh-cut 'Fuji' apple (Malus domestica Borkh.) strains. J Food Sci 2024; 89:4986-4996. [PMID: 38922901 DOI: 10.1111/1750-3841.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
In this study, we optimized the composition of the browning inhibitor for apples and established a prediction model for the browning inhibitor concentration in mass-processed fresh-cut apples based on electrical conductivity measurements. The "Fuji" apples that were harvested in Chungju, Korea, were used for this study. Vitamin C mixture (VCM) and trehalose (Tre) were used as browning inhibitors at a 4% ratio. The browning reaction under Δ3 of BI (browning index) for 5 days was defined as the target shelf-life of the apple flesh. The ΔBI of VCM and Tre was lower than that of VCM by 4%. It is revealed that the electrical conductivity of the browning inhibitor was highly correlated with its concentration and the number of soaked apples. Finally, the regression of the conductivity was fitted as Y = -0.0024 (number of soaked apples) + 0.5111 (R2 = 0.9931). In the validation test, the conductivity must be maintained at 0.4373 S/m or higher to maintain the target anti-browning level of Δ3 or less, which corresponded to ∼80% of the initial qualitative level after manufacture. The conductivity measurement of the browning inhibitor is suitable for monitoring and predicting its concentration in the mass processing of fresh-cut apple production due to the convenience of this method. PRACTICAL APPLICATION: The conductivity measurement of browning inhibitors can be applied not only to the mass processing of apple production but also to the anti-browning treatment of other fruits and vegetables, due to the convenience of this method. From these research results, it is expected to derive a formula that can predict the concentration of browning inhibitors through simple experiments for other fruits or vegetables.
Collapse
Affiliation(s)
- Soo Min Baek
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Sung-Il Ahn
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, Republic of Korea
| | - Sang Hoon Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Jae-Mun Choi
- Department of Food and Regulatory Science, Korea University, Sejong, Republic of Korea
- Calici Co., Ltd., Youseong-gu, Daejeon, Republic of Korea
- Department of Bio-AI Convergence, Chungnam National University (CNU), Yuseong-gu, Daejeon, Republic of Korea
| | - Jiyoun Hong
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong, Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, Republic of Korea
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, Republic of Korea
| |
Collapse
|
2
|
Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides. Polymers (Basel) 2022; 14:polym14112179. [PMID: 35683852 PMCID: PMC9182803 DOI: 10.3390/polym14112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to determine the effect of disaccharides on the encapsulation of the phenolics and volatiles of blackberry juice with the use of apple fiber. For this purpose, apple fiber/blackberry microparticles were prepared as the control, as well as microparticles additionally containing disaccharides, i.e., sucrose or trehalose. Fiber:disaccharide ratios were 1:0.5, 1:1, and 1:2. Formulated microparticles were characterized for total phenolics, proanthocyanidins, individual phenolics, antioxidant activity, flavor profiles, and color parameters. Both applied disaccharides affected the encapsulation of phenolics and volatiles by the apple fibers. Control microparticles had a higher content of phenolics than microparticles with disaccharides. Comparing disaccharides, the microparticles with trehalose had a higher content of phenolics than the ones containing sucrose. The amount of proanthocyanidins in the control microparticles was 47.81 mg PB2/100 g; in trehalose, the microparticles ranged from 39.88 to 42.99 mg PB2/100 g, and in sucrose, the microparticles ranged from 12.98 to 26.42 mg PB2/100 g, depending on the fiber:disaccharide ratio. Cyanidin-3-glucoside was the dominant anthocyanin. Its amount in the control microparticles was 151.97 mg/100 g, while in the trehalose microparticles, this ranged from 111.97 to 142.56 mg /100 g and in sucrose microparticles, from 100.28 to 138.74 mg /100 g. On the other hand, microparticles with disaccharides had a higher content of volatiles than the control microparticles. Trehalose microparticles had a higher content of volatiles than sucrose ones. These results show that the formulation of microparticles, i.e., the selection of carriers, had an important role in the final quality of the encapsulates.
Collapse
|
3
|
Zhou T, Zheng A, Zhang W, Lu X, Chen H, Tan H. Concise total syntheses of two flavans and structure revision assisted by quantum NMR calculations. Org Biomol Chem 2022; 20:4096-4100. [PMID: 35522925 DOI: 10.1039/d2ob00634k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step protecting-group-free protocol for the synthesis of 3'-hydroxy-5,7-dimethoxy-4-O-2'-cycloflavan (1) and concise total synthesis of 4'-hydroxy-5,7-dimethoxy-4-O-2'-cycloflavan (8) enabled by a PTSA triggered bioinspired olefin isomerization/hemiacetalization/dehydration/[3 + 3]-type cycloaddition cascade reaction are reported. The successful synthesis of cycloflavan 8 along with GIAO 13C NMR calculations of flavan-4-ol 9 and cycloflavan 8 indicated the misassignment of the flavonoid isolated previously and realized the revision of its actual structure.
Collapse
Affiliation(s)
- Tingting Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Anquan Zheng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Wenge Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Xiuxiang Lu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| |
Collapse
|
4
|
Kopjar M, Ivić I, Buljeta I, Ćorković I, Vukoja J, Šimunović J, Pichler A. Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081640. [PMID: 34451685 PMCID: PMC8400944 DOI: 10.3390/plants10081640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Citrus fiber/blackberry gels (CBg) can be used for the preparation of various bakery products as well as confectioneries. The objective of this study was to evaluate the influence of the type of disaccharides (sucrose or trehalose) and their percentages (10% or 20%) on volatile compounds as well as phenolics, antioxidant activity and color of formulated CBg. Additionally, CBg were stored at room temperature for 3 months to evaluate their stability. Both disaccharides type and their percentage affected the investigated parameters. Sucrose had a higher positive impact on volatiles after formulation and storage of CBg, while trehalose had a higher positive impact on total phenolics. Amounts of phenolics increased with the increase of disaccharides amount, while the behavior of volatiles also depended on volatiles' properties. Results of this study emphasized the importance of the adequate choice of ingredients for the formulation of high-quality fruit products.
Collapse
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Ivana Ivić
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Josipa Vukoja
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA;
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (I.B.); (I.Ć.); (J.V.); (A.P.)
| |
Collapse
|
5
|
Vukoja J, Buljeta I, Ivić I, Šimunović J, Pichler A, Kopjar M. Disaccharide Type Affected Phenolic and Volatile Compounds of Citrus Fiber-Blackberry Cream Fillings. Foods 2021; 10:foods10020243. [PMID: 33530336 PMCID: PMC7912440 DOI: 10.3390/foods10020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The food industry is continuously developing ingredients, processing methods and packaging materials to improve the quality of fruit products. The aim of this work was to study the possibility of using citrus fiber in the preparation of blackberry cream fillings in combination with disaccharides (sucrose, maltose and trehalose). Evaluations of the phenolics, proanthocyanidins, antioxidant activity, color and volatiles of blackberry cream fillings were conducted after preparation and after three months of storage. Blackberry cream fillings were prepared from citrus fiber (5%), blackberry juice and disaccharides (50%). Disaccharide type had an effect on all investigated parameters. The highest phenol content was in fillings with trehalose (4.977 g/100 g) and the lowest was in fillings prepared with sucrose (4.249 g/100 g). The same tendency was observed after storage. Fillings with maltose had the highest proanthocyanidins content (473.05 mg/100 g) while fillings with sucrose had the lowest amount (299.03 mg/100 g) of these compounds. Regarding volatile compounds, terpenes and aldehydes and ketones were evaluated in the highest concentration. Terpenes were determined in the highest concentration in fillings with trehalose (358.05 µg/kg), while aldehydes and ketones were highest in fillings with sucrose (250.87 µg/kg). After storage, concentration of volatiles decreased. These results indicate that the selection of adequate disaccharides is very important since it can influence the final quality of the product.
Collapse
Affiliation(s)
- Josipa Vukoja
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Ivana Buljeta
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Ivana Ivić
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Anita Pichler
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, F. Kuhača 18, Josip Juraj Strossmayer University in Osijek, 31000 Osijek, Croatia; (J.V.); (I.B.); (I.I.); (A.P.)
- Correspondence:
| |
Collapse
|
6
|
Radbakhsh S, Ganjali S, Moallem SA, Guest PC, Sahebkar A. Antioxidant Effects of Trehalose in an Experimental Model of Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:473-480. [PMID: 34981498 DOI: 10.1007/978-3-030-73234-9_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress that occurs as a consequence of the imbalance between antioxidant activity and free radicals can contribute in the pathogenesis of metabolic disorders, such as type 2 diabetes mellitus (T2DM). Antioxidant therapies have been proposed as possible approaches to treat and attenuate diabetic complications. The purpose of this study was to evaluate potential antioxidant effects of trehalose on oxidative indices in a streptozotocin (STZ)-induced diabetic rat model. METHODS Diabetic rats were divided randomly into five treatment groups (six rats per group). One test group received 45 mg/kg/day trehalose via intraperitoneal injection, and another received 1.5 mg/kg/day trehalose via oral gavage for 4 weeks. Three control groups were also tested including nondiabetic rats as a normal control (NC), a nontreated diabetic control (DC), and a positive control given 200 mg/kg/day metformin. Levels of thiol groups (-SH), and serum total antioxidant capacity were measured between control and test groups. In addition, superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were assessed. RESULTS In both oral and injection trehalose-treated groups, a marked increase was observed in serum total antioxidant capacity (TAC) (p > 0.05) and thiol groups (-SH) (p < 0.05). Also, SOD and GPx activities were increased after 4 weeks of treatment with trehalose. CONCLUSION In conclusion, the present results indicate ameliorative effects of trehalose on oxidative stress, with increase antioxidant enzyme activities in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahra University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul C Guest
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Khalifeh M, Barreto GE, Sahebkar A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson's disease. Br J Pharmacol 2019; 176:1173-1189. [PMID: 30767205 PMCID: PMC6468260 DOI: 10.1111/bph.14623] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement disorder resulting primarily from loss of nigrostriatal dopaminergic neurons. PD is characterized by the accumulation of protein aggregates, and evidence suggests that aberrant protein deposition in dopaminergic neurons could be related to the dysregulation of the lysosomal autophagy pathway. The therapeutic potential of autophagy modulators has been reported in experimental models of PD. Trehalose is a natural disaccharide that has been considered as a new candidate for the treatment of neurodegenerative diseases. It has a chaperone-like activity, prevents protein misfolding or aggregation, and by promoting autophagy, contributes to the removal of accumulated proteins. In this review, we briefly summarize the role of aberrant autophagy in PD and the underlying mechanisms that lead to the development of this disease. We also discuss reports that used trehalose to counteract the neurotoxicity in PD, focusing particularly on the autophagy promoting, protein stabilization, and anti-neuroinflammatory effects of trehalose.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
- Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileSantiagoChile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
Barrera C, Burca C, Betoret E, García‐Hernández J, Hernández M, Betoret N. Improving antioxidant properties and probiotic effect of clementine juice inoculated with
Lactobacillus salivarius
spp.
salivarius
(CECT 4063) by trehalose addition and/or sublethal homogenisation. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cristina Barrera
- Instituto de Ingeniería de Alimentos para el desarrollo Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | - Cristina Burca
- Instituto de Ingeniería de Alimentos para el desarrollo Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos Consejo Superior de Investigaciones Científicas C/ Catedrático Agustín Escardino Benlloch 7 46980 Paterna Spain
| | - Jorge García‐Hernández
- Departamento de Biotecnología Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | - Manuel Hernández
- Departamento de Biotecnología Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | - Noelia Betoret
- Instituto de Ingeniería de Alimentos para el desarrollo Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| |
Collapse
|
9
|
Zlatic E, Pichler A, Vidrih R, Hribar J, Piližota V, Kopjar M. Volatile profile of sour cherry puree as affected by sucrose and trehalose. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1374289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emil Zlatic
- Biotechnical Faculty, University in Ljubljana, Ljubljana, Slovenia
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University in Osijek, Osijek, Croatia
| | - Rajko Vidrih
- Biotechnical Faculty, University in Ljubljana, Ljubljana, Slovenia
| | - Janez Hribar
- Biotechnical Faculty, University in Ljubljana, Ljubljana, Slovenia
| | - Vlasta Piližota
- Faculty of Food Technology, Josip Juraj Strossmayer University in Osijek, Osijek, Croatia
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University in Osijek, Osijek, Croatia
| |
Collapse
|
10
|
de la Torre JC. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia. Brain Pathol 2018; 26:618-31. [PMID: 27324946 DOI: 10.1111/bpa.12405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia.
Collapse
|
11
|
Zlatić E, Pichler A, Kopjar M. Disaccharides: Influence on Volatiles and Phenolics of Sour Cherry Juice. Molecules 2017; 22:E1939. [PMID: 29120375 PMCID: PMC6150359 DOI: 10.3390/molecules22111939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/04/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022] Open
Abstract
The food industry is continuously developing ingredients, processing methods and packaging materials to improve the quality of fruit products. The aim of this work was to study the effect of sugars, a common ingredient in the food industry, on phenolics and volatiles of sour cherry juice. Sucrose, trehalose and maltose chemical isomers were chosen for this investigation. All sugars influenced the evaluated parameters. Samples with maltose addition had lower, while samples with sucrose and trehalose addition had higher anthocyanin content than the control sample. Generally, trehalose had a higher positive effect on volatiles with the desired flavor note.
Collapse
Affiliation(s)
- Emil Zlatić
- Biotechnical Faculty, Jamnikarjeva 101, Ljubljana 1000, Slovenia.
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University in Osijek, F. Kuhača 20, Osijek 31000, Croatia.
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University in Osijek, F. Kuhača 20, Osijek 31000, Croatia.
| |
Collapse
|
12
|
Khatib A, Perumal V, Ahmed QU, Uzir BF, Abas F, Murugesu S. Characterization of Antioxidant Activity ofMomordica CharantiaFruit by Infrared-Based Fingerprinting. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1261877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang DM, Malaysia
| | - Vikneswari Perumal
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang DM, Malaysia
| | - Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang DM, Malaysia
| | - Bisha Fathamah Uzir
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang DM, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia, Serdang, Malaysia
| | - Suganya Murugesu
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang DM, Malaysia
| |
Collapse
|
13
|
Kopjar M, Pichler A, Turi J, Piližota V. Influence of trehalose addition on antioxidant activity, colour and texture of orange jelly during storage. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology; Josip Juraj Strossmayer University in Osijek; F. Kuhača 20 Osijek 31000 Croatia
| | - Anita Pichler
- Faculty of Food Technology; Josip Juraj Strossmayer University in Osijek; F. Kuhača 20 Osijek 31000 Croatia
| | - Josipa Turi
- Faculty of Food Technology; Josip Juraj Strossmayer University in Osijek; F. Kuhača 20 Osijek 31000 Croatia
| | - Vlasta Piližota
- Faculty of Food Technology; Josip Juraj Strossmayer University in Osijek; F. Kuhača 20 Osijek 31000 Croatia
| |
Collapse
|
14
|
Bonnett TR, Robert JA, Pitt C, Fraser JD, Keeling CI, Bohlmann J, Huber DPW. Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:890-901. [PMID: 22982448 DOI: 10.1016/j.ibmb.2012.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Mountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), are native to western North America, but have recently begun to expand their range across the Canadian Rocky Mountains. The requirement for larvae to withstand extremely cold winter temperatures and potentially toxic host secondary metabolites in the midst of their ongoing development makes this a critical period of their lives. RESULTS We have uncovered global protein profiles for overwintering mountain pine beetle larvae. We have also quantitatively compared the proteomes for overwintering larvae sampled during autumn cooling and spring warming using iTRAQ methods. We identified 1507 unique proteins across all samples. In total, 33 proteins exhibited differential expression (FDR < 0.05) when compared between larvae before and after a cold snap in the autumn; and 473 proteins exhibited differential expression in the spring when measured before and after a steady incline in mean daily temperature. Eighteen proteins showed significant changes in both autumn and spring samples. CONCLUSIONS These first proteomic data for mountain pine beetle larvae show evidence of the involvement of trehalose, 2-deoxyglucose, and antioxidant enzymes in overwintering physiology; confirm and expand upon previous work implicating glycerol in cold tolerance in this insect; and provide new, detailed information on developmental processes in beetles. These results and associated data will be an invaluable resource for future targeted research on cold tolerance mechanisms in the mountain pine beetle and developmental biology in coleopterans.
Collapse
Affiliation(s)
- Tiffany R Bonnett
- Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | | | | | | | | | | | | |
Collapse
|
15
|
AOKI N, SATO K, KANDA S, MUKAI K, OBARA Y, ITABASHI H. Time course of changes in antioxidant activity of milk from dairy cows fed a trehalose-supplemented diet. Anim Sci J 2012; 84:42-7. [DOI: 10.1111/j.1740-0929.2012.01040.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Chiu PL, Kelly DF, Walz T. The use of trehalose in the preparation of specimens for molecular electron microscopy. Micron 2011; 42:762-72. [PMID: 21752659 PMCID: PMC3156378 DOI: 10.1016/j.micron.2011.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/29/2022]
Abstract
Biological specimens have to be prepared for imaging in the electron microscope in a way that preserves their native structure. Two-dimensional (2D) protein crystals to be analyzed by electron crystallography are best preserved by sugar embedding. One of the sugars often used to embed 2D crystals is trehalose, a disaccharide used by many organisms for protection against stress conditions. Sugars such as trehalose can also be added to negative staining solutions used to prepare proteins and macromolecular complexes for structural studies by single-particle electron microscopy (EM). In this review, we describe trehalose and its characteristics that make it so well suited for preparation of EM specimens and we review specimen preparation methods with a focus on the use of trehalose.
Collapse
Affiliation(s)
- Po-Lin Chiu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Sakakura K, Okabe A, Oku K, Sakurai M. Experimental and theoretical study on the intermolecular complex formation between trehalose and benzene compounds in aqueous solution. J Phys Chem B 2011; 115:9823-30. [PMID: 21740054 DOI: 10.1021/jp2037203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The uniqueness of trehalose as a stress protectant may exist in its potential amphiphilic character capable of interacting with both hydrophilic and hydrophobic partners in aqueous solution. To address this issue, we here investigated the interaction between trehalose and aromatic compounds. NMR measurements, including (1)H-(1)H NOESY spectra, provide direct evidence for the formation of stable intermolecular complexes of trehalose with benzene (or p-cresol) in aqueous solution. In addition, corresponding theoretical evidence is provided by calculating the potential mean force as a function of the distance between trehalose and benzene. In the energy minimum structure, the benzene molecule is located only around the hydrophobic side of trehalose where the first hydration shell is not formed. Therefore, it can be concluded that benzene binds to trehalose in a fashion in which dehydration penalty is minimized. Finally, we discuss the possible biological roles of the trehalose-benzene interaction discovered here.
Collapse
Affiliation(s)
- Kota Sakakura
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
18
|
Sun L, Li HM, Seufferheld MJ, Walters KR, Margam VM, Jannasch A, Diaz N, Riley CP, Sun W, Li YF, Muir WM, Xie J, Wu J, Zhang F, Chen JY, Barker EL, Adamec J, Pittendrigh BR. Systems-scale analysis reveals pathways involved in cellular response to methamphetamine. PLoS One 2011; 6:e18215. [PMID: 21533132 PMCID: PMC3080363 DOI: 10.1371/journal.pone.0018215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/28/2011] [Indexed: 12/20/2022] Open
Abstract
Background Methamphetamine (METH), an abused illicit drug, disrupts many cellular
processes, including energy metabolism, spermatogenesis, and maintenance of
oxidative status. However, many components of the molecular underpinnings of
METH toxicity have yet to be established. Network analyses of integrated
proteomic, transcriptomic and metabolomic data are particularly well suited
for identifying cellular responses to toxins, such as METH, which might
otherwise be obscured by the numerous and dynamic changes that are
induced. Methodology/Results We used network analyses of proteomic and transcriptomic data to evaluate
pathways in Drosophila melanogaster that are affected by
acute METH toxicity. METH exposure caused changes in the expression of genes
involved with energy metabolism, suggesting a Warburg-like effect (aerobic
glycolysis), which is normally associated with cancerous cells. Therefore,
we tested the hypothesis that carbohydrate metabolism plays an important
role in METH toxicity. In agreement with our hypothesis, we observed that
increased dietary sugars partially alleviated the toxic effects of METH. Our
systems analysis also showed that METH impacted genes and proteins known to
be associated with muscular homeostasis/contraction, maintenance of
oxidative status, oxidative phosphorylation, spermatogenesis, iron and
calcium homeostasis. Our results also provide numerous candidate genes for
the METH-induced dysfunction of spermatogenesis, which have not been
previously characterized at the molecular level. Conclusion Our results support our overall hypothesis that METH causes a toxic syndrome
that is characterized by the altered carbohydrate metabolism, dysregulation
of calcium and iron homeostasis, increased oxidative stress, and disruption
of mitochondrial functions.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
- Synthetic Biology & Bioenergy, J. Craig Venter Institute, San Diego,
California, United States of America
- Department of Entomology, Purdue University, West Lafayette, Indiana,
United States of America
| | - Hong-Mei Li
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
| | - Manfredo J. Seufferheld
- Department of Crop Sciences, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
| | - Kent R. Walters
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
| | - Venu M. Margam
- Department of Entomology, Purdue University, West Lafayette, Indiana,
United States of America
| | - Amber Jannasch
- Metabolomics Profiling Facility at Bindley Bioscience Center, Purdue
University, West Lafayette, Indiana, United States of America
| | - Naomi Diaz
- Metabolomics Profiling Facility at Bindley Bioscience Center, Purdue
University, West Lafayette, Indiana, United States of America
| | - Catherine P. Riley
- Metabolomics Profiling Facility at Bindley Bioscience Center, Purdue
University, West Lafayette, Indiana, United States of America
| | - Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
| | - Yueh-Feng Li
- Department of Entomology, Purdue University, West Lafayette, Indiana,
United States of America
- Chung Hwa College of Medical Technology, Jen-Te Hsiang, Tainan,
Taiwan
| | - William M. Muir
- Department of Animal Sciences, Purdue University, West Lafayette,
Indiana, United States of America
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, Indiana,
United States of America
| | - Jing Wu
- Department of Statistics, Carnegie Mellon University, Pittsburgh,
Pennsylvania, United States of America
| | - Fan Zhang
- School of Informatics, Indiana University, Indianapolis, Indiana, United
States of America
| | - Jake Y. Chen
- School of Informatics, Indiana University, Indianapolis, Indiana, United
States of America
| | - Eric L. Barker
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West
Lafayette, Indiana, United States of America
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska,
United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Sirangelo I, Irace G. Inhibition of aggregate formation as therapeutic target in protein misfolding diseases: effect of tetracycline and trehalose. Expert Opin Ther Targets 2010; 14:1311-21. [DOI: 10.1517/14728222.2010.531012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Aoki N, Furukawa S, Sato K, Kurokawa Y, Kanda S, Takahashi Y, Mitsuzumi H, Itabashi H. Supplementation of the diet of dairy cows with trehalose results in milk with low lipid peroxide and high antioxidant content. J Dairy Sci 2010; 93:4189-95. [DOI: 10.3168/jds.2009-2961] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/26/2010] [Indexed: 11/19/2022]
|
21
|
|
22
|
Experimental and computational studies investigating trehalose protection of HepG2 cells from palmitate-induced toxicity. Biophys J 2007; 94:2869-83. [PMID: 18096630 DOI: 10.1529/biophysj.107.120717] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding the mechanism of saturated fatty acid-induced hepatocyte toxicity may provide insight into cures for diseases such as obesity-associated cirrhosis. Trehalose, a nonreducing disaccharide shown to protect proteins and cellular membranes from inactivation or denaturation caused by different stress conditions, also protects hepatocytes from palmitate-induced toxicity. Our results suggest that trehalose serves as a free radical scavenger and alleviates damage from hydrogen peroxide secreted by the compromised cells. We also observe that trehalose protects HepG2 cells by interacting with the plasma membrane to counteract the changes in membrane fluidity induced by palmitate. The experimental results are supported by molecular dynamics simulations of model cell membranes that closely reflect the experimental conditions. Simulations were performed to understand the specific interactions between lipid bilayers, palmitate, and trehalose. The simulations results reveal the early stages of how palmitate induces biophysical changes to the cellular membrane and the role of trehalose in protecting the membrane structure.
Collapse
|
23
|
Watanabe M, Sakashita T, Fujita A, Kikawada T, Nakahara Y, Hamada N, Horikawa DD, Wada S, Funayama T, Kobayashi Y, Okuda T. Estimation of radiation tolerance to high LET heavy ions in an anhydrobiotic insect, Polypedilum vanderplanki. Int J Radiat Biol 2007; 82:835-42. [PMID: 17178623 DOI: 10.1080/09553000600979100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Anhydrobiotic larvae of Polypedilum vanderplanki are known to show an extremely high tolerance against a range of stresses. We have recently reported that this insect withstands exposure to high doses of gamma-rays (linear energy transfer [LET] 0.2 keV/microm). However, its tolerance against high LET radiation remains unknown. The aim of this study is to characterize the tolerance to high-LET radiations of P. vanderplanki. MATERIALS AND METHODS Larval survival and subsequent metamorphoses were compared between anhydrobiotic (dry) and non-anhydrobiotic (wet) samples after exposure to 1 - 7000 Gy of three types of heavy ions delivered from the azimuthally varying field (AVF) cyclotron with LET values ranging from 16.2 - 321 keV/microm. The tolerance against 4He ions was also compared among three chironomid species. RESULTS At all LET values measured, dry larvae consistently showed greater radiation tolerance than hydrated larvae, perhaps due to the presence of high concentrations of the disaccharide trehalose in anhydrobiotic animals, and the radiation-induced damage became evident at lower doses as development progressed. Relative biological effectiveness (RBE) values based on the median inhibitory doses reached a maximum at 116 keV/microm (12C), and the maximum RBE clearly increased as development progressed. Lower D0 (dose to reduce survival from relative value 1.00 - 0.37 on the exponential part of the survival curve), and higher Dq (quasi-threshold dose) were found in individuals exposed to 4He ions, compared to gamma-rays, and in P. vanderplanki larvae compared to non-anhydrobiotic chironomids. CONCLUSION Anhydrobiosis potentiates radiation tolerance in terms of larval survival, pupation and adult emergence of P. vanderplanki exposed to high-LET radiations as well as to low-LET radiation. P. vanderplanki larvae might have more efficient DNA damage repair after radiation than other chironomid species.
Collapse
Affiliation(s)
- Masahiko Watanabe
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Ohwashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oku K, Kudou N, Kurose M, Shibuya T, Chaen H, Fukuda S. The Crystal Properties of Cyclic Nigerosyl-(1.RAR.6)-nigerose (CNN) and Powdering of .ALPHA.-Tocopherol, Cholecalciferol and EPA Using CNN. J JPN SOC FOOD SCI 2007. [DOI: 10.3136/nskkk.54.326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Oku K, Kurose M, Chaen H, Fukuda S, Tsujisaka Y, Sakurai M. Suppressive Effect of Trehalose on Radical Oxidation of Unsaturated Fatty Acids. J Appl Glycosci (1999) 2005. [DOI: 10.5458/jag.52.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|