1
|
Li X, Su Z, Jiang H, Liu J, Zheng L, Zheng H, Wu S, Shi X. Band Structure Tuning via Pt Single Atom Induced Rapid Hydroxyl Radical Generation toward Efficient Photocatalytic Reforming of Lignocellulose into H 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400617. [PMID: 38441279 DOI: 10.1002/smll.202400617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Indexed: 08/02/2024]
Abstract
Photocatalytic lignocellulose reforming for H2 production presents a compelling solution to solve environmental and energy issues. However, achieving scalable conversion under benign conditions faces consistent challenges including insufficient active sites for H2 evolution reaction (HER) and inefficient lignocellulose oxidation directly by photogenerated holes. Herein, it is found that Pt single atom-loaded CdS nanosheet (PtSA-CdS) would be an active photocatalyst for lignocellulose-to-H2 conversion. Theoretical and experimental analyses confirm that the valence band of CdS shifts downward after depositing isolated Pt atoms, and the slope of valence band potential on pH for PtSA-CdS is more positive than Nernstian equation. These characteristics allow PtSA-CdS to generate large amounts of •OH radicals even at pH 14, while the capacity is lacking with CdS alone. The employment of •OH/OH- redox shuttle succeeds in relaying photoexcited holes from the surface of photocatalyst, and the •OH radicals can diffuse away to decompose lignocellulose efficiently. Simultaneously, surface Pt atoms, featured with a thermoneutralΔ G H ∗ $\Delta G_{\mathrm{H}}^{\mathrm{*}}$ , would collect electrons to expedite HER. Consequently, PtSA-CdS performs a H2 evolution rate of 10.14 µmol h-1 in 1 m KOH aqueous solution, showcasing a remarkable 37.1-fold enhancement compared to CdS. This work provides a feasible approach to transform waste biomass into valuable sources.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Zhiqi Su
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huiqian Jiang
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiaqi Liu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
2
|
Krieg F, Sercel PC, Burian M, Andrusiv H, Bodnarchuk MI, Stöferle T, Mahrt RF, Naumenko D, Amenitsch H, Rainò G, Kovalenko MV. Monodisperse Long-Chain Sulfobetaine-Capped CsPbBr 3 Nanocrystals and Their Superfluorescent Assemblies. ACS CENTRAL SCIENCE 2021; 7:135-144. [PMID: 33532576 PMCID: PMC7845019 DOI: 10.1021/acscentsci.0c01153] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/18/2023]
Abstract
Ligand-capped nanocrystals (NCs) of lead halide perovskites, foremost fully inorganic CsPbX3 NCs, are the latest generation of colloidal semiconductor quantum dots. They offer a set of compelling characteristics-large absorption cross section, as well as narrow, fast, and efficient photoluminescence with long exciton coherence times-rendering them attractive for applications in light-emitting devices and quantum optics. Monodisperse and shape-uniform, broadly size-tunable, scalable, and robust NC samples are paramount for unveiling their basic photophysics, as well as for putting them into use. Thus far, no synthesis method fulfilling all these requirements has been reported. For instance, long-chain zwitterionic ligands impart the most durable surface coating, but at the expense of reduced size uniformity of the as-synthesized colloid. In this work, we demonstrate that size-selective precipitation of CsPbBr3 NCs coated with a long-chain sulfobetaine ligand, namely, 3-(N,N-dimethyloctadecylammonio)-propanesulfonate, yields monodisperse and sizable fractions (>100 mg inorganic mass) with the mean NC size adjustable in the range between 3.5 and 16 nm and emission peak wavelength between 479 and 518 nm. We find that all NCs exhibit an oblate cuboidal shape with the aspect ratio of 1.2 × 1.2 × 1. We present a theoretical model (effective mass/k·p) that accounts for the anisotropic NC shape and describes the size dependence of the first and second excitonic transition in absorption spectra and explains room-temperature exciton lifetimes. We also show that uniform zwitterion-capped NCs readily form long-range ordered superlattices upon solvent evaporation. In comparison to more conventional ligand systems (oleic acid and oleylamine), supercrystals of zwitterion-capped NCs exhibit larger domain sizes and lower mosaicity. Both kinds of supercrystals exhibit superfluorescence at cryogenic temperatures-accelerated collective emission arising from the coherent coupling of the emitting dipoles.
Collapse
Affiliation(s)
- Franziska Krieg
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Peter C. Sercel
- Center
for Hybrid Organic Inorganic Semiconductors for Energy, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Department
of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Max Burian
- Swiss
Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Hordii Andrusiv
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Thilo Stöferle
- IBM Research
Europe - Zurich, Säumerstrasse
4, 8803 Rüschlikon, Switzerland
| | - Rainer F. Mahrt
- IBM Research
Europe - Zurich, Säumerstrasse
4, 8803 Rüschlikon, Switzerland
| | - Denys Naumenko
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
3
|
Botcha NK, Gutha RR, Sadeghi SM, Mukherjee A. Synthesis of water-soluble Ni(II) complexes and their role in photo-induced electron transfer with MPA-CdTe quantum dots. PHOTOSYNTHESIS RESEARCH 2020; 143:143-153. [PMID: 31495904 DOI: 10.1007/s11120-019-00668-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Photocatalytic water splitting using solar energy for hydrogen production offers a promising alternative form of storable and clean energy for the future. To design an artificial photosynthesis system that is cost-effective and scalable, earth abundant elements must be used to develop each of the components of the assembly. To develop artificial photosynthetic systems, we need to couple a catalyst for proton reduction to a photosensitizer and understand the mechanism of photo-induced electron transfer from the photosensitizer to the catalyst that serves as the fundamental step for photocatalysis. Therefore, our work is focused on the study of light driven electron transfer kinetics from the quantum dot systems made with inorganic chalcogenides in the presence of Ni-based reduction catalysts. Herein, we report the synthesis and characterization of four Ni(II) complexes of tetradentate ligands with amine and pyridine functionalities (N2/Py2) and their interactions with CdTe quantum dots stabilized by 3-mercaptopropionic acid. The lifetime of the quantum dots was investigated in the presence of the Ni complexes and absorbance, emission and electrochemical measurements were performed to gain a deeper understanding of the photo-induced electron transfer process.
Collapse
Affiliation(s)
- Niharika Krishna Botcha
- Department of Chemistry, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Rithvik R Gutha
- Department of Physics and Astronomy, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Seyed M Sadeghi
- Department of Physics and Astronomy, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Anusree Mukherjee
- Department of Chemistry, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA.
| |
Collapse
|
4
|
Krieg F, Ong QK, Burian M, Rainò G, Naumenko D, Amenitsch H, Süess A, Grotevent MJ, Krumeich F, Bodnarchuk MI, Shorubalko I, Stellacci F, Kovalenko MV. Stable Ultraconcentrated and Ultradilute Colloids of CsPbX 3 (X = Cl, Br) Nanocrystals Using Natural Lecithin as a Capping Ligand. J Am Chem Soc 2019; 141:19839-19849. [PMID: 31763836 PMCID: PMC6923794 DOI: 10.1021/jacs.9b09969] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Attaining thermodynamic stability of colloids in a broad
range
of concentrations has long been a major thrust in the field of colloidal
ligand-capped semiconductor nanocrystals (NCs). This challenge is
particularly pressing for the novel NCs of cesium lead halide perovskites
(CsPbX3; X = Cl, Br) owing to their highly dynamic and
labile surfaces. Herein, we demonstrate that soy lecithin, a mass-produced
natural phospholipid, serves as a tightly binding surface-capping
ligand suited for a high-reaction yield synthesis of CsPbX3 NCs (6–10 nm) and allowing for long-term retention of the
colloidal and structural integrity of CsPbX3 NCs in a broad
range of concentrations—from a few ng/mL to >400 mg/mL (inorganic
core mass). The high colloidal stability achieved with this long-chain
zwitterionic ligand can be rationalized with the Alexander–De
Gennes model that considers the increased particle–particle
repulsion due to branched chains and ligand polydispersity. The versatility
and immense practical utility of such colloids is showcased by the
single NC spectroscopy on ultradilute samples and, conversely, by
obtaining micrometer-thick, optically homogeneous dense NC films in
a single spin-coating step from ultraconcentrated colloids.
Collapse
Affiliation(s)
- Franziska Krieg
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Quy K Ong
- Institute of Materials , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland
| | - Max Burian
- Swiss Light Source , Paul Scherrer Institut , 5232 Villigen PSI , Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Denys Naumenko
- Institute of Inorganic Chemistry , Graz University of Technology , Stremayrgasse 9/V , 8010 Graz , Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry , Graz University of Technology , Stremayrgasse 9/V , 8010 Graz , Austria
| | - Adrian Süess
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Matthias J Grotevent
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Frank Krumeich
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | - Maryna I Bodnarchuk
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| | | | - Francesco Stellacci
- Institute of Materials , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne , Switzerland
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
| |
Collapse
|
5
|
Yin J, Cogan NMB, Burke R, Hou Z, Sowers KL, Krauss TD. Size dependence of photocatalytic hydrogen generation for CdTe quantum dots. J Chem Phys 2019; 151:174707. [DOI: 10.1063/1.5125000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jiajia Yin
- Institute of Optics and Electronics Chinese Academy Science, Chengdu, Sichuan 610209, China
| | - Nicole M. B. Cogan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Rebeckah Burke
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Zhentao Hou
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Kelly L. Sowers
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Todd D. Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
6
|
Interaction between nitroxyl radicals and CdTe quantum dots: Determination of fluorescence-quenching mechanisms in aqueous solution. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Fu L, Zhang B, Long X, Fu K, Gao X, Zou G. Promising Electrochemiluminescence from CuInS2/ZnS Nanocrystals/Hydrazine via Internal Cu(I)/Cu(II) Couple Cycling. Anal Chem 2019; 91:10221-10226. [DOI: 10.1021/acs.analchem.9b02320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyan Long
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Kena Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
8
|
Ingole PP. A consolidated account of electrochemical determination of band structure parameters in II-VI semiconductor quantum dots: a tutorial review. Phys Chem Chem Phys 2019; 21:4695-4716. [PMID: 30775741 DOI: 10.1039/c8cp06847j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Probing absolute electronic energy levels in semiconductor quantum dots (Q-dots) is crucial for engineering their electronic band structure and hence for precise design of composite nano-structure based devices. The use of electrochemistry has allowed us to investigate size, shape and composition dependent band structure parameters viz. the conduction band edge, valence band edge & quasi-particle gap and to establish novel charge induced phenomena in colloidal semiconductor Q-dots. The electrochemical behavior is also of special importance for the prediction of the stability of Q-dots in biological environments as well as for precise design of composite nanohetero-structures for opto-electronic (light emitting diodes) and photovoltaic (solar cells) applications. Several researchers have contributed to probing and predicting the positions of absolute energy levels of band edges and surface states as well as to the establishment of a potential window of stability for a wide variety of Q-dots both in aqueous media and in organic solution. The crucial point about these studies is that unlike spectroscopic methods, no unified approach has been followed and a variety of methods and protocols have been developed to carry out these measurements either on diffusing or thin films of Q-dots in different electrolyte media viz. aqueous, organic and ionic liquids, each having their own advantages over the others. However, a consolidated account of these methods and protocols is not available in the literature. The aim of this tutorial review is therefore to consolidate and compare the studies related to the determination of the band structure of II-VI semiconductor Q-dots through electrochemical measurements. A brief introduction to electrochemical techniques, especially cyclic voltammetry, is given, followed by a summary of experimental methods developed for these measurements. Finally, a concise protocol that can be easily applied universally and is attractive for other users dealing with semiconductor Q-dot based devices is discussed.
Collapse
|
9
|
Chen L, Chen WL, Wang XL, Li YG, Su ZM, Wang EB. Polyoxometalates in dye-sensitized solar cells. Chem Soc Rev 2019; 48:260-284. [PMID: 30451261 DOI: 10.1039/c8cs00559a] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dye-sensitized solar cells (DSSCs) are the third generation of photovoltaic cells developed by Grätzel and O'Regan. They have the characteristics of low cost, simple manufacturing process, tunable optical properties, and higher photoelectric conversion efficiency (PCE). With an ever increasing energy crisis, there is an urgent need to develop highly efficient, environmentally benign, and energy-saving cell materials. Polyoxometalates (POMs), a kind of molecular inorganic quasi-semiconductor, are promising candidates for use in different parts of DSSCs due to their excellent photosensitivity, redox, and catalytic properties, as well as their relative stability. Following a brief introduction to the development of DSSCs and the potential virtues of POMs in DSSCs, we attempt to make some generalizations about the energy level regulation of POMs that is the underlying theoretical basis for their application in DSSCs, and then we summarize the research progress of POMs in DSSCs in recent years. This is organized in terms of the properties of POMs, namely, electron acceptor, photosensitivity, redox and catalysis, based on the accumulation of our research into POMs over many years. Meanwhile, in view of the fact that the properties of POMs depend primarily on their electronic structural diversity, we keep this point in mind throughout the article with a view to revealing their structure-property relationships. Finally we provide a short summary and remarks on the future outlook. This review may be of interest to synthetic chemists devoted to designing POMs with specific structures, and researchers engaged in the extension of POMs to photoelectric materials.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
van der Stam W, de Graaf M, Gudjonsdottir S, Geuchies JJ, Dijkema JJ, Kirkwood N, Evers WH, Longo A, Houtepen AJ. Tuning and Probing the Distribution of Cu + and Cu 2+ Trap States Responsible for Broad-Band Photoluminescence in CuInS 2 Nanocrystals. ACS NANO 2018; 12:11244-11253. [PMID: 30372029 PMCID: PMC6262458 DOI: 10.1021/acsnano.8b05843] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The processes that govern radiative recombination in ternary CuInS2 (CIS) nanocrystals (NCs) have been heavily debated, but recently, several research groups have come to the same conclusion that a photoexcited electron recombines with a localized hole on a Cu-related trap state. Furthermore, it has been observed that single CIS NCs display narrower photoluminescence (PL) line widths than the ensemble, which led to the conclusion that within the ensemble there is a distribution of Cu-related trap states responsible for PL. In this work, we probe this trap-state distribution with in situ photoluminescence spectroelectrochemistry. We find that Cu2+ states result in individual "dark" nanocrystals, whereas Cu+ states result in "bright" NCs. Furthermore, we show that we can tune the PL position, intensity, and line width in a cyclic fashion by injecting or removing electrons from the trap-state distribution, thereby converting a subset of "dark" Cu2+ containing NCs into "bright" Cu+ containing NCs and vice versa. The electrochemical injection of electrons results in brightening, broadening, and a red shift of the PL, in line with the activation of a broad distribution of "dark" NCs (Cu2+ states) into "bright" NCs (Cu+ states) and a rise of the Fermi level within the ensemble trap-state distribution. The opposite trend is observed for electrochemical oxidation of Cu+ states into Cu2+. Our work shows that there is a direct correlation between the line width of the ensemble Cu+/Cu2+ trap-state distribution and the characteristic broad-band PL feature of CIS NCs and between Cu2+ cations in the photoexcited state (bright) and in the electrochemically oxidized ground state (dark).
Collapse
Affiliation(s)
- Ward van der Stam
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| | - Max de Graaf
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Solrun Gudjonsdottir
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jaco J. Geuchies
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jurgen J. Dijkema
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Nicholas Kirkwood
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wiel H. Evers
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alessandro Longo
- Netherlands
Organization for Scientific Research (NWO), Dutch-Belgian Beamline,
ESRF, The European Synchrotron, CS40220, 38043, 71 Avenue des Martyrs, 38000 Grenoble, France
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
11
|
Yazdani S, Pettes MT. Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches. NANOTECHNOLOGY 2018; 29:432001. [PMID: 30052199 DOI: 10.1088/1361-6528/aad673] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This review is concerned with the leading methods of bottom-up material preparation for thermal-to-electrical energy interconversion. The advantages, capabilities, and challenges from a material synthesis perspective are surveyed and the methods are discussed with respect to their potential for improvement (or possibly deterioration) of application-relevant transport properties. Solution chemistry-based synthesis approaches are re-assessed from the perspective of thermoelectric applications based on reported procedures for nanowire, quantum dot, mesoporous, hydro/solvothermal, and microwave-assisted syntheses as these techniques can effectively be exploited for industrial mass production. In terms of energy conversion efficiency, the benefit of self-assembly can occur from three paths: suppressing thermal conductivity, increasing thermopower, and boosting electrical conductivity. An ideal thermoelectric material gains from all three improvements simultaneously. Most bottom-up materials have been shown to exhibit very low values of thermal conductivity compared to their top-down (solid-state) counterparts, although the main challenge lies in improving their poor electrical properties. Recent developments in the field discussed in this review reveal that the traditional view of bottom-up thermoelectrics as inferior materials suffering from poor performance is not appropriate. Thermopower enhancement due to size and energy filtering effects, electrical conductivity enhancement, and thermal conductivity reduction mechanisms inherent in bottom-up nanoscale self-assembly syntheses are indicative of the impact that these techniques will play in future thermoelectric applications.
Collapse
Affiliation(s)
- Sajad Yazdani
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States of America
| | | |
Collapse
|
12
|
Tabish TA, Scotton CJ, J Ferguson DC, Lin L, der Veen AV, Lowry S, Ali M, Jabeen F, Ali M, Winyard PG, Zhang S. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine (Lond) 2018; 13:1923-1937. [DOI: 10.2217/nnm-2018-0018] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Achieving reliably high production of reactive oxygen species (ROS) in photodynamic therapy (PDT) remains challenging. Graphene quantum dots (GQDs) hold great promise for PDT. However, the photochemical processes leading to GQD-derived ROS generation have not yet been fully elucidated. Materials & methods: Physicochemical characteristics of GQDs were comprehensively investigated, including electron paramagnetic resonance analysis of singlet oxygen production. Dark toxicity was assessed in vitro and in vivo. Results: GQDs demonstrated excellent photoluminescent features, corrosion resistance, high water solubility, high photo/pH-stability, in vitro and in vivo biocompatibility and very efficient singlet oxygen/ROS generation. Conclusion: The enhanced ROS generation, combined with good biocompatibility and minimal toxicity in vitro and in vivo support the potential of GQDs for future PDT application.
Collapse
Affiliation(s)
- Tanveer A Tabish
- Centre for Graphene Science, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QF UK
| | - Chris J Scotton
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Daniel C J Ferguson
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Liangxu Lin
- Centre for Graphene Science, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QF UK
| | - Anienke van der Veen
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Sophie Lowry
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Muhammad Ali
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Ali
- Faculty of Animal Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Paul G Winyard
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, St Luke's Campus, Exeter, EX1 2LU, UK
| | - Shaowei Zhang
- Centre for Graphene Science, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QF UK
| |
Collapse
|
13
|
Kim H, Tiwari AP, Hwang E, Cho Y, Hwang H, Bak S, Hong Y, Lee H. FeIn 2S 4 Nanocrystals: A Ternary Metal Chalcogenide Material for Ambipolar Field-Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800068. [PMID: 30027040 PMCID: PMC6051185 DOI: 10.1002/advs.201800068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/20/2018] [Indexed: 05/29/2023]
Abstract
An ambipolar channel layer material is required to realize the potential benefits of ambipolar complementary metal-oxide-semiconductor field-effect transistors, namely their compact and efficient nature, reduced reverse power dissipation, and possible applicability to highly integrated circuits. Here, a ternary metal chalcogenide nanocrystal material, FeIn2S4, is introduced as a solution-processable ambipolar channel material for field-effect transistors (FETs). The highest occupied molecular orbital and the lowest unoccupied molecular orbital of the FeIn2S4 nanocrystals are determined to be -5.2 and -3.75 eV, respectively, based upon cyclic voltammetry, X-ray photoelectron spectroscopy, and diffraction reflectance spectroscopy analyses. An ambipolar FeIn2S4 FET is successfully fabricated with Au electrodes (EF = -5.1 eV), showing both electron mobility (14.96 cm2 V-1 s-1) and hole mobility (9.15 cm2 V-1 s-1) in a single channel layer, with an on/off current ratio of 105. This suggests that FeIn2S4 nanocrystals may be a promising alternative semiconducting material for next-generation integrated circuit development.
Collapse
Affiliation(s)
- Hyunjung Kim
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Sungkyunkwan University Advanced Institute of Nano TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Anand P. Tiwari
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Eunhee Hwang
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yunhee Cho
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Heemin Hwang
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Sora Bak
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yeseul Hong
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Hyoyoung Lee
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Sungkyunkwan University Advanced Institute of Nano TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
14
|
He Y, Hou S, Yang L, Zhang F, Zou G. Adjustable Electrochemiluminescence from Highly Passivated CdTe/CdS Nanocrystals by Simple Surface Decoration with Counterions. Chemistry 2018; 24:9592-9597. [DOI: 10.1002/chem.201800953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Yupeng He
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 China
| | - Shifeng Hou
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 China
- National Engineering and Technology Research Center for Colloidal Materials; Shandong University; Jinan 250100 China
| | - Liqiong Yang
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 China
| | - Fang Zhang
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 China
| |
Collapse
|
15
|
Sikder M, Lead JR, Chandler GT, Baalousha M. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:597-607. [PMID: 28411867 DOI: 10.1016/j.scitotenv.2017.04.055] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Detection and quantification of engineered nanoparticles (NPs) in environmental systems is challenging and requires sophisticated analytical equipment. Furthermore, dissolution is an important environmental transformation process for silver nanoparticles (AgNPs) which affects the size, speciation and concentration of AgNPs in natural water systems. Herein, we present a simple approach for the detection, quantification and measurement of dissolution of PVP-coated AgNPs (PVP-AgNPs) based on monitoring their optical properties (extinction spectra) using UV-vis spectroscopy. The dependence of PVP-AgNPs extinction coefficient (ɛ) and maximum absorbance wavelength (λmax) on NP size was experimentally determined. The concentration, size, and extinction spectra of PVP-AgNPs were characterized during dissolution in 30ppt synthetic seawater. AgNPs concentration was determined as the difference between the total and dissolved Ag concentrations measured by inductively coupled plasma-mass spectroscopy (ICP-MS); extinction spectra of PVP-AgNPs were monitored by UV-vis; and size evolution was monitored by atomic force microscopy (AFM) over a period of 96h. Empirical equations for the dependence of maximum absorbance wavelength (λmax) and extinction coefficient (ɛ) on NP size were derived. These empirical formulas were then used to calculate the size and concentration of PVP-AgNPs, and dissolved Ag concentration released from PVP-AgNPs in synthetic seawater at variable particle concentrations (i.e. 25-1500μgL-1) and in natural seawater at particle concentration of 100μgL-1. These results suggest that UV-vis can be used as an easy and quick approach for detection and quantification (size and concentration) of sterically stabilized PVP-AgNPs from their extinction spectra. This approach can also be used to monitor the release of Ag from PVP-AgNPs and the concurrent NP size change. Finally, in seawater, AgNPs dissolve faster and to a higher extent with the decrease in NP concentration toward environmentally relevant concentrations.
Collapse
Affiliation(s)
- Mithun Sikder
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia, SC 29208, United States
| | - Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia, SC 29208, United States
| | - G Thomas Chandler
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia, SC 29208, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
16
|
Singh AN, Devnani H, Jha S, Ingole PP. Fermi level equilibration of Ag and Au plasmonic metal nanoparticles supported on graphene oxide. Phys Chem Chem Phys 2018; 20:26719-26733. [DOI: 10.1039/c8cp05170d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For the first time, the process of Fermi level equilibration has been studied and compared for plasmonic metal nanoparticles (PMNPs) supported on conducting substrates i.e. graphene oxide (GO) sheets.
Collapse
Affiliation(s)
- Abhay N. Singh
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Harsha Devnani
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Shwetambara Jha
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Pravin P. Ingole
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| |
Collapse
|
17
|
Istif E, Kagkoura A, Hernandez-Ferrer J, Stergiou A, Skaltsas T, Arenal R, Benito AM, Maser WK, Tagmatarchis N. Self-Assembled Core-Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor-Acceptor Light-Harvesting Systems. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44695-44703. [PMID: 29214807 DOI: 10.1021/acsami.7b13506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HTNPs) of 100 nm as core and semiconducting CdTe quantum dots (CdTeQDs) as shell with a thickness of a few tens of nanometers was accomplished by employing a reprecipitation approach. The structure, morphology, and composition of CdTeQDs/P3HTNPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light-scattering studies. Intimate interface contact between the CdTeQDs shell and the P3HTNPs core leads to the stabilization of the CdTeQDs/P3HTNPs nanoensemble as probed by the steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTeQDs at 555 nm, accompanied by simultaneous increase in emission of P3HTNPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTeQDs/P3HTNPs further proves the formation of a stabilized core-shell system in the solid state. Photoelectrochemical assays on CdTeQDs/P3HTNPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a 3 times increased photocurrent compared to CdTeQDs. The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTeQDs shell forces the P3HTNPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.
Collapse
Affiliation(s)
- Emin Istif
- Instituto de Carboquimica ICB-CSIC , C/Miguel Luesma Castan 4, 50018 Zaragoza, Spain
| | - Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | | | - Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Theodosis Skaltsas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza , 50018 Zaragoza, Spain
- ARAID Foundation , 50018 Zaragoza, Spain
| | - Ana M Benito
- Instituto de Carboquimica ICB-CSIC , C/Miguel Luesma Castan 4, 50018 Zaragoza, Spain
| | - Wolfgang K Maser
- Instituto de Carboquimica ICB-CSIC , C/Miguel Luesma Castan 4, 50018 Zaragoza, Spain
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
18
|
Self-electrochemiluminescent CdTe quantum dots: one-pot synthesis, characterization, and electrochemical properties. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3845-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Chen M, Guyot-Sionnest P. Reversible Electrochemistry of Mercury Chalcogenide Colloidal Quantum Dot Films. ACS NANO 2017; 11:4165-4173. [PMID: 28314094 DOI: 10.1021/acsnano.7b01014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The absolute positions of the energy levels of colloidal quantum dots of Hg(S, Se, Te), which are of interest as mid-infrared materials, are determined by electrochemistry. The bulk valence bands are at -5.85, -5.50, and -4.77 eV (±0.05 eV) for zinc-blend HgS, HgSe, HgTe, respectively, in the same order as the anions p-orbital energies. The conduction bands are conversely at -5.20, -5.50, and -4.77 eV. The stable ambient n-doping of Hg(S, Se) quantum dots compared to HgTe arises because the conduction band is sufficiently lower than the measured environment Fermi level of ∼ -4.7 eV to allow for n-doping for HgS and HgSe quantum dots even with significant electron confinement. The position of the Fermi level and the quantum dots states are reported for a specific surface treatment with ethanedithiol and electrolyte environment. The positions are however sensitive to different surface treatments, providing an avenue to control doping. Electrochemical gating is further used to determine the carrier mobility in the films of the three different systems as a function of CQD size. HgSe and HgS show increasing mobility with increasing particle sizes while HgTe shows a nonmonotonous behavior, which is attributed to some degree of aggregation of HgTe QDs.
Collapse
Affiliation(s)
- Menglu Chen
- James Franck Institute, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Philippe Guyot-Sionnest
- James Franck Institute, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Cd1-xMgxTe semiconductor nanocrystal alloys: Synthesis, preparation of nanocomposites with graphene-based materials, and electrochemical detection of lidocaine and epinephrine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2165-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Jang Y, Shapiro A, Isarov M, Rubin-Brusilovski A, Safran A, Budniak AK, Horani F, Dehnel J, Sashchiuk A, Lifshitz E. Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem Commun (Camb) 2017; 53:1002-1024. [DOI: 10.1039/c6cc08742f] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Core/shell heterostructures provide controlled optical properties, tuneable electronic structure, and chemical stability due to an appropriate interface design.
Collapse
|
22
|
Abdelbar MF, Fayed TA, Meaz TM, Ebeid EZM. Photo-induced interaction of thioglycolic acid (TGA)-capped CdTe quantum dots with cyanine dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 168:1-11. [PMID: 27267278 DOI: 10.1016/j.saa.2016.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/19/2015] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
The photo-induced interaction of three different sizes of thioglycolic acid (TGA)-capped CdTe quantum dots (CdTe QDs) with two monomethine cyanine dyes belonging to the thiazole orange (TO) family has been studied. Positively charged cyanines interact with QDs surface which is negatively charged due to capping agent carboxylate ions. The energy transfer parameters including Stern-Volmer constant, Ksv, number of binding sites, n, quenching sphere radius, r, the critical energy transfer distance, R0, and energy transfer efficiencies, E have been calculated. The effect of structure and the number of aggregating molecules have been studied as a function of CdTe QDs particle size. Combining organic and inorganic semiconductors leads to increase of the effective absorption cross section of the QDs which can be utilized in novel nanoscale designs for light-emitting, photovoltaic and sensor applications. A synthesized triplet emission of the studied dyes was observed using CdTe QDs as donors and this is expected to play a potential role in molecular oxygen sensitization and in photodynamic therapy (PDT) applications.
Collapse
Affiliation(s)
- Mostafa F Abdelbar
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek A Fayed
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Talaat M Meaz
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - El-Zeiny M Ebeid
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt; Misr University for Science and Technology (MUST), 6th of October City, Egypt
| |
Collapse
|
23
|
Multicolor electrochemiluminescence of cadmium sulfide quantum dots to detect dopamine. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Harris RD, Bettis Homan S, Kodaimati M, He C, Nepomnyashchii AB, Swenson NK, Lian S, Calzada R, Weiss EA. Electronic Processes within Quantum Dot-Molecule Complexes. Chem Rev 2016; 116:12865-12919. [PMID: 27499491 DOI: 10.1021/acs.chemrev.6b00102] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subject of this review is the colloidal quantum dot (QD) and specifically the interaction of the QD with proximate molecules. It covers various functions of these molecules, including (i) ligands for the QDs, coupled electronically or vibrationally to localized surface states or to the delocalized states of the QD core, (ii) energy or electron donors or acceptors for the QDs, and (iii) structural components of QD assemblies that dictate QD-QD or QD-molecule interactions. Research on interactions of ligands with colloidal QDs has revealed that ligands determine not only the excited state dynamics of the QD but also, in some cases, its ground state electronic structure. Specifically, the article discusses (i) measurement of the electronic structure of colloidal QDs and the influence of their surface chemistry, in particular, dipolar ligands and exciton-delocalizing ligands, on their electronic energies; (ii) the role of molecules in interfacial electron and energy transfer processes involving QDs, including electron-to-vibrational energy transfer and the use of the ligand shell of a QD as a semipermeable membrane that gates its redox activity; and (iii) a particular application of colloidal QDs, photoredox catalysis, which exploits the combination of the electronic structure of the QD core and the chemistry at its surface to use the energy of the QD excited state to drive chemical reactions.
Collapse
Affiliation(s)
- Rachel D Harris
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Stephanie Bettis Homan
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Mohamad Kodaimati
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Chen He
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | - Nathaniel K Swenson
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Shichen Lian
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Raul Calzada
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Guo Y, Ge X, Guan J, Wu L, Zhao F, Li H, Mu X, Jiang Y, Chen A. A novel method for fabricating hybrid biobased nanocomposites film with stable fluorescence containing CdTe quantum dots and montmorillonite-chitosan nanosheets. Carbohydr Polym 2016; 145:13-9. [PMID: 27106146 DOI: 10.1016/j.carbpol.2016.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/11/2022]
Abstract
A method was presented for fabricating the fluorescent nanocomposites containing CdTe quantum dots (QDs) and montmorillonite (MMT)-chitosan (CS). MMT-CS/CdTe QDs nanocomposites were prepared via a simple, versatile and robust approach combination of covalent and electrostatic assembly methods (Scheme 1). The negatively charged MMT was initially modified with positively charged CS through electrostatic assembly, followed by incorporation of CdTe-QDs into the MMT-CS nanosheets by covalent connections between the amino groups of CS and the carboxylic acid groups of thioglycollic acid (TGA). The X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and the FTIR were used to prove the QDs have intercalated into the MMT-CS matrix. The fluorescence emission spectra showed that the MMT-CS/CdTe QDs nanocomposites had the best fluorescence intensity compared with the bare CdTe QDs and CS-QDs.
Collapse
Affiliation(s)
- Yawen Guo
- Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xuesong Ge
- Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jing Guan
- Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lin Wu
- Qingdao Technical College, Qingdao, Shandong Province 266000, China
| | - Fuhua Zhao
- Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hui Li
- Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xindong Mu
- Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yijun Jiang
- Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Aibing Chen
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
26
|
Saji P, Ganguli AK, Bhat MA, Ingole PP. Probing the Crystal Structure, Composition-Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures. Chemphyschem 2016; 17:1195-203. [DOI: 10.1002/cphc.201501054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Pintu Saji
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110016 India
| | - Ashok K. Ganguli
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110016 India
- Institute of Nano Science & Technology, Mohali; Punjab 160062 India
| | - Mohsin A. Bhat
- Department of Chemistry; University of Kashmir; Srinagar 190006 India
| | - Pravin P. Ingole
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110016 India
| |
Collapse
|
27
|
Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Mikrochim Acta 2016. [DOI: 10.1007/s00604-015-1693-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Osipovich NP, Poznyak SK, Lesnyak V, Gaponik N. Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots. Phys Chem Chem Phys 2016; 18:10355-61. [DOI: 10.1039/c6cp01085g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyclic voltammetry revealed processes responsible for the pH effect on the chemical stability of aqueous thiol-capped CdTe quantum dots.
Collapse
Affiliation(s)
- Nikolai P. Osipovich
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220030 Minsk
- Belarus
| | - Sergei K. Poznyak
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220030 Minsk
- Belarus
| | | | | |
Collapse
|
29
|
Ingole PP, Lesnyak V, Tatikondewar L, Leubner S, Gaponik N, Kshirsagar A, Eychmüller A. Probing Absolute Electronic Energy Levels in Hg-Doped CdTe Semiconductor Nanocrystals by Electrochemistry and Density Functional Theory. Chemphyschem 2015; 17:244-52. [DOI: 10.1002/cphc.201501026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Pravin P. Ingole
- Physical Chemistry/Electrochemistry; TU Dresden; Bergstrasse 66b 01062 Dresden Germany
- Department of Chemistry; IIT Delhi; New Delhi 110016 India
| | - Vladimir Lesnyak
- Physical Chemistry/Electrochemistry; TU Dresden; Bergstrasse 66b 01062 Dresden Germany
| | | | - Susanne Leubner
- Physical Chemistry/Electrochemistry; TU Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Nikolai Gaponik
- Physical Chemistry/Electrochemistry; TU Dresden; Bergstrasse 66b 01062 Dresden Germany
| | - Anjali Kshirsagar
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Alexander Eychmüller
- Physical Chemistry/Electrochemistry; TU Dresden; Bergstrasse 66b 01062 Dresden Germany
| |
Collapse
|
30
|
Zhukovskyi M, Tongying P, Yashan H, Wang Y, Kuno M. Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01812] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maksym Zhukovskyi
- Department of Chemistry and
Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Pornthip Tongying
- Department of Chemistry and
Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Halyna Yashan
- Department of Chemistry and
Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Yuanxing Wang
- Department of Chemistry and
Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Masaru Kuno
- Department of Chemistry and
Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Fan K, Liao C, Xu R, Zhang H, Cui Y, Zhang J. Effect of shell thickness on electrochemical property of wurtzite CdSe/CdS core/shell nanocrystals. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Zhao WW, Wang J, Zhu YC, Xu JJ, Chen HY. Quantum Dots: Electrochemiluminescent and Photoelectrochemical Bioanalysis. Anal Chem 2015; 87:9520-31. [DOI: 10.1021/acs.analchem.5b00497] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
| | - Jing Wang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
| | - Yuan-Cheng Zhu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Shandong Normal University, Jinan 250014, Shandong P.R. China
| |
Collapse
|
33
|
Califano M. Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots. ACS NANO 2015; 9:2960-2967. [PMID: 25716138 DOI: 10.1021/nn5070327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent experimental studies have identified at least two nonradiative components in the fluorescence decay of solutions of CdTe colloidal quantum dots (CQDs). The lifetimes reported by different groups, however, differed by orders of magnitude, raising the question of whether different types of traps were at play in the different samples and experimental conditions and even whether different types of charge carriers were involved in the different trapping processes. Considering that the use of these nanomaterials in biology, optoelectronics, photonics, and photovoltaics is becoming widespread, such a gap in our understanding of carrier dynamics in these systems needs addressing. This is what we do here. Using the state-of-the-art atomistic semiempirical pseudopotential method, we calculate trapping times and nonradiative population decay curves for different CQD sizes considering up to 268 surface traps. We show that the seemingly discrepant experimental results are consistent with the trapping of the hole at unsaturated Te bonds on the dot surface in the presence of different dielectric environments. In particular, the observed increase in the trapping times following air exposure is attributed to the formation of an oxide shell on the dot surface, which increases the dielectric constant of the dot environment. Two types of traps are identified, depending on whether the unsaturated bond is single (type I) or part of a pair of dangling bonds on the same Te atom (type II). The energy landscape relative to transitions to these traps is found to be markedly different in the two cases. As a consequence, the trapping times associated with the different types of traps exhibit a strikingly contrasting sensitivity to variations in the dot environment. Based on these characteristics, we predict the presence of a sub-nanosecond component in all photoluminescence decay curves of CdTe CQDs in the size range considered here if both trap types are present. The absence of such a component is attributed to the suppression of type I traps.
Collapse
Affiliation(s)
- Marco Califano
- Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
34
|
Grzyb J, Kalwarczyk E, Worch R. Photoreduction of natural redox proteins by CdTe quantum dots is size-tunable and conjugation-independent. RSC Adv 2015. [DOI: 10.1039/c5ra02900g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colloidal CdTe quantum dots may photoreduce both heme and iron–sulfur cluster containing proteins. Reduction level may be tuned by choosing different size of nanocrystals.
Collapse
|
35
|
Jagtap AM, Khatei J, Koteswara Rao KSR. Exciton–phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots. Phys Chem Chem Phys 2015; 17:27579-87. [DOI: 10.1039/c5cp04654h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The strength of the exciton–LO-phonon coupling, as reflected in the Huang–Rhys parameter ‘S’, is found to increase from 1.13 to 1.51 with a reduction in CdTe QD size from 4.8 to 3.0 nm.
Collapse
Affiliation(s)
| | - Jayakrishna Khatei
- Department of Physics
- Indian Institute of Science
- Bangalore – 560012
- India
- Solid State Institute and Schulich Faculty of Chemistry
| | | |
Collapse
|
36
|
Iagatti A, Tarpani L, Fiacchi E, Bussotti L, Marcelli A, Foggi P, Latterini L. A steady-state and time-resolved photophysical study of CdTe quantum dots in water. Photochem Photobiol Sci 2014; 14:397-406. [PMID: 25428704 DOI: 10.1039/c4pp00300d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exciton generation and recombination dynamics in semiconductor nanocrystals are very sensitive to small variations in dimensions, shape and surface capping. In the present work CdTe quantum dots are synthesized in water using 3-mercaptopropionic acid and 1-thioglycerol as stabilizers. Nanocrystals with an average dimension of 4.0 ± 1.0 and 3.7 ± 0.9 nm were obtained, when 3-mercaptopropionic acid or 1-thioglycerol, respectively, was used as a capping agent. The steady-state characterization shows that the two types of colloids have different luminescence behavior. In order to investigate the electronic structure and the dynamics of the exciton state, a combined study in the time domain has been carried out by using fluorescence time-correlated single photon counting and femtosecond transient absorption techniques. The electron-hole radiative recombination follows the non-exponential decay law for both colloids, which results in different average decay time values (of the order of tens of nanoseconds) for the two samples. The data demonstrate that the process is slower for 1-thioglycerol-stabilized colloids. The ultrafast transient absorption measurements are performed at two different excitation wavelengths (at the band gap and at higher energies). The spectra are dominated in both types of samples by the negative band-gap bleaching signals although transient positive absorption bands due to the electrons in the conduction band are observable. The analysis of the signals is affected by the different interactions with the defect states, due to ligand capping capacities. In particular, the data indicate that in 1-thioglycerol-stabilized colloids the non-radiative recombination processes are kinetically more competitive than the radiative recombination. Therefore the comparison of the data obtained from the two samples is interpreted in terms of the effects of the capping agents on the electronic relaxation of the colloids.
Collapse
Affiliation(s)
- Alessandro Iagatti
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze, via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Wu P, Hou X, Xu JJ, Chen HY. Electrochemically Generated versus Photoexcited Luminescence from Semiconductor Nanomaterials: Bridging the Valley between Two Worlds. Chem Rev 2014; 114:11027-59. [DOI: 10.1021/cr400710z] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
38
|
Liu J, Yang W, Li Y, Fan L, Li Y. Electrochemical studies of the effects of the size, ligand and composition on the band structures of CdSe, CdTe and their alloy nanocrystals. Phys Chem Chem Phys 2014; 16:4778-88. [PMID: 24468655 DOI: 10.1039/c3cp55226h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we have elucidated the fundamental principle of employing CV to investigate the band structures of semiconductor nanocrystals (SNCs), and have also built up an optimal protocol for performing such investigation. By utilizing this protocol, we are able to obtain well-defined and characteristic electrochemical redox signals of SNCs, which allows us to intensively explore the influences of the particle size, the surface ligand and particle composition on the band structures of CdSe, CdTe and their alloy nanocrystals. The size-, ligand- and composition-dependent band structures of CdSe and CdTe nanocrystals (NCs) have therefore been mapped out, respectively, which are generally consistent with the previous theoretical and experimental reports. We believe that the optimal protocol and the original results regarding electrochemical characterization of SNCs demonstrated in this paper will definitely benefit the better understanding, modulation and application of the unique electronic and optical properties of SNCs.
Collapse
Affiliation(s)
- Jinjin Liu
- Department of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | | | | | | | | |
Collapse
|
39
|
Size-controlled sensitivity and selectivity for the fluorometric detection of Ag+ by homocysteine capped CdTe quantum dots. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1276-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Zhang J, Li B. Enhanced chemiluminescence of CdTe quantum dots-H₂O₂ by horseradish peroxidase-mimicking DNAzyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 125:228-233. [PMID: 24556131 DOI: 10.1016/j.saa.2014.01.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
In this study, it was found that horseradish peroxidase (HRP)-mimicking DNAzyme could effectively enhance the CL emission of CdTe quantum dots (QDs)-H2O2 system, whereas HRP could not enhance the CL intensity. The CL enhancement mechanism was investigated, and the CL enhancement was supposed to originate from the catalysis of HRP-mimicking DNAzyme on the CL reaction between CdTe QDs and H2O2. Meantime, compared with CdTe QDs-H2O2 CL system, H2O2 concentration was markedly decreased in QDs-H2O2-HRP-mimicking DNAzyme CL system, improving the stability of QDs-H2O2 CL system. The QDs-based CL system was used to detect sensitively CdTe QDs and HRP-mimicking DNAzyme (as biologic labels). This work gives a path for enhancing CL efficiency of QDs system, and will be helpful to promote the step of QDs application in various fields such as bioassay and trace detection of analyte.
Collapse
Affiliation(s)
- Junli Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
41
|
Zhang S, Chen R, Malhotra G, Critchley K, Vakurov A, Nelson A. Electrochemical modelling of QD-phospholipid interactions. J Colloid Interface Sci 2014; 420:9-14. [DOI: 10.1016/j.jcis.2013.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/25/2022]
|
42
|
|
43
|
Wang X, Kou DX, Zhou WH, Zhou ZJ, Wu SX, Cao X. Cu2ZnSnSe4 nanocrystals capped with S(2-) by ligand exchange: utilizing energy level alignment for efficiently reducing carrier rec ombination. NANOSCALE RESEARCH LETTERS 2014; 9:262. [PMID: 24994951 PMCID: PMC4072846 DOI: 10.1186/1556-276x-9-262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/08/2014] [Indexed: 05/17/2023]
Abstract
In this work, we employed a convenient one-step synthesis method for synthesizing Cu2ZnSnSe4 (CZTSe) nanocrystals (NCs) in an excess selenium environment. This excess selenium situation enhanced the reaction of metal acetylacetonates with selenium, resulting in the burst nucleation of NCs at relatively low temperatures. The phase morphology and surface and optoelectronic properties of NCs before and after ligand exchange were discussed in depth. It was found that pure tetragonal-phase structure CZTSe NCs with approximately 1.7-eV bandgap could be synthesized. The removal of large organic molecules on CZTSe NCs after ligand exchange by S(2-) decreased the resistivity. The bandgap of the films after ligand exchange by 550°C selenization was also decreased due to better crystallinity. For potential application in CZTSe solar cells, we constructed an energy level diagram to explain the mutual effect between the absorption layer and CdS layer. Using cyclic voltammetry (CV) measurement, we found that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of CZTSe films shifted down after ligand exchange. After energy level alignment at the CdS/CZTSe interface, a type I band alignment structure was more conveniently formed after ligand exchange. This structure acted as the barrier against injection electrons from ZnO to the CZTSe layer, and recombination would subsequently be depressed.
Collapse
Affiliation(s)
- Xia Wang
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Dong-Xing Kou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Wen-Hui Zhou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Zheng-Ji Zhou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Si-Xin Wu
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Xuan Cao
- Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266061, China
| |
Collapse
|
44
|
Xu P, Li J, Shi L, Selke M, Chen B, Wang X. Synergetic effect of functional cadmium-tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition. Int J Nanomedicine 2013; 8:3729-36. [PMID: 24109183 PMCID: PMC3792847 DOI: 10.2147/ijn.s51622] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium–tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Han S, Wang J, Jia S. Determination of formaldehyde based on the enhancement of the chemiluminescence produced by CdTe quantum dots and hydrogen peroxide. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1083-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Huang W, Li L, Hui G, Chen D, Zhong A. Fluorescent polymer with CdTe quantum dots and 1,8-naphthahmide fluorescent polymer: Synthesis, characterization, and FRET. J Appl Polym Sci 2013. [DOI: 10.1002/app.38801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Vakurov A, Guillermo Mokry, Drummond-Brydson R, Wallace R, Svendsen C, Nelson A. ZnO nanoparticle interactions with phospholipid monolayers. J Colloid Interface Sci 2013; 404:161-8. [DOI: 10.1016/j.jcis.2013.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 11/30/2022]
|
48
|
Kim S, Kang M, Kim S, Heo JH, Noh JH, Im SH, Seok SI, Kim SW. Fabrication of CuInTe2 and CuInTe(2-x)Se(x) ternary gradient quantum dots and their application to solar cells. ACS NANO 2013; 7:4756-63. [PMID: 23656273 DOI: 10.1021/nn401274e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the first synthesis of colloidal CuInTe2, CuInTe2-xSex gradient alloyed quantum dots (QDs) through a simple hot injection method. We confirmed the composition of synthesized QDs to cationic rich phase of CuIn1.5Te2.5 and Cu0.23In0.36Te0.19Se0.22 with XPS and ICP analysis, and we have also found that the gradient alloyed Cu0.23In0.36Te0.19Se0.22 QDs exhibit greatly improved stability over the CuIn1.5Te2.5 QDs. The solution-processed solar cell based on the gradient alloyed Cu0.23In0.36Te0.19Se0.22 QDs exhibited 17.4 mA/cm(2) of short circuit current density (Jsc), 0.40 V of open circuit voltage (Voc), 44.1% of fill factor (FF), and 3.1% of overall power conversion efficiency at 100 mW/cm(2) AM 1.5G illumination.
Collapse
Affiliation(s)
- Sungwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao J, Holmes MA, Osterloh FE. Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS NANO 2013; 7:4316-25. [PMID: 23590186 DOI: 10.1021/nn400826h] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability to adjust the mechanical, optical, magnetic, electric, and chemical properties of materials via the quantum confinement effect is well-understood. Here, we provide the first quantitative analysis of quantum-size-controlled photocatalytic H2 evolution at the semiconductor-solution interface. Specifically, it is found that the hydrogen evolution rate from illuminated suspended CdSe quantum dots in aqueous sodium sulfite solution depends on nanocrystal size. Photoelectrochemical measurements on CdSe nanocrystal films reveal that the observed reactivity is controlled by the free energy change of the system, as determined by the proton reduction potential and the quasi-Fermi energy of the dots. The corresponding free energy change can be fitted to the photocatalytic activity using a modified Butler-Volmer equation for reaction kinetics. These findings establish a quantitative experimental basis for quantum-confinement-controlled proton reduction with semiconductor nanocrystals. Electrochemical data further indicate that proton reduction occurs at cadmium sites on the dots, and that charge separation in these nanocrystals is controlled by surface effects, not by space charge layers.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | | | | |
Collapse
|
50
|
Dolai S, Dass A, Sardar R. Photophysical and redox properties of molecule-like CdSe nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6187-6193. [PMID: 23621327 DOI: 10.1021/la401437r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Advancing our understanding of the photophysical and electrochemical properties of semiconductor nanoclusters with a molecule-like HOMO-LUMO energy level will help lead to their application in photovoltaic devices and photocatalysts. Here we describe an approach to the synthesis and isolation of molecule-like CdSe nanoclusters, which displayed sharp transitions at 347 nm (3.57 eV) and 362 nm (3.43 eV) in the optical spectrum with a lower energy band extinction coefficient of ~121,000 M(-1) cm(-1). Mass spectrometry showed a single nanocluster molecular weight of 8502. From this mass and various spectroscopic analyses, the nanoclusters are determined to be of the single molecular composition Cd34Se20(SPh)28, which is a new nonstiochiometric nanocluster. Their reversible electrochemical band gap determined in Bu4NPF6/CH3CN was found to be 4.0 V. There was a 0.57 eV Coulombic interaction energy of the electron-hole pair involved. The scan rate dependent electrochemistry suggested diffusion-limited transport of nanoclusters to the electrode. The nanocluster diffusion coefficient (D = 5.4 × 10 (-4) cm(2)/s) in acetonitrile solution was determined from cyclic voltammetry, which suggested Cd34Se20(SPh)28 acts as a multielectron donor or acceptor. We also present a working model of the energy level structure of the newly discovered nanocluster based on its photophysical and redox properties.
Collapse
Affiliation(s)
- Sukanta Dolai
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | | | | |
Collapse
|