1
|
Thurman HA, Gusachenko E, Anderson GA, Shvartsburg AA. Superior Differential Ion Mobility Spectrometry of Pendular Macromolecules Using Low-Frequency Rectangular Waveforms. Anal Chem 2025; 97:8841-8851. [PMID: 40228027 DOI: 10.1021/acs.analchem.4c06841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Ion mobility spectrometry (IMS) can delineate gas-phase ions and probe their geometries. Coupling with electrospray ionization and MS has brought IMS to structural biology, revealing the macromolecular folding and subunit connectivity. However, the orientational averaging of ion-molecule collision cross sections (Ω) in the linear and field asymmetric waveform IMS (FAIMS) diminishes the resolution and structural specificity. In the novel low-field differential (LOD) IMS, a field too weak for ion heating (and thus FAIMS) aligns strong macrodipoles, capturing their magnitudes and directional Ω across the dipole (Ω⊥). However, the bisinusoidal waveforms (from FAIMS) have compromised the resolution, measurement accuracy, and correlation to the ion properties. Large ions amenable to LODIMS have low mobility and diffuse slowly, allowing the waveform frequencies down to ∼10 kHz. The low field and frequency permit generating the ideal rectangular waveforms with a flexible frequency and duty cycle by direct switching (impractical for FAIMS) in a miniature low-power format. This new IMS stage is evaluated for the exemplary large protein albumin (66 kDa) previously studied using the bisinusoidal waveform. The flat voltages and greater form factor initiate the differential IMS effect at lower fields, expand the separation space, and enable the quantification of Ω⊥ values by varying the duty cycle.
Collapse
Affiliation(s)
- Hayden A Thurman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Egor Gusachenko
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Gordon A Anderson
- GAACE, 101904 Wiser Parkway Ste 105, Kennewick, Washington 99338, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
2
|
Shvartsburg AA, Sadowski P, Poad BLJ, Blanksby SJ. Metal Polycation Adduction to Lipids Enables Superior Ion Mobility Separations with Ultrafast Ozone-Induced Dissociation. Anal Chem 2024; 96:15960-15969. [PMID: 39334534 DOI: 10.1021/acs.analchem.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Specific lipid isomers are functionally critical, but their structural rigidity and usually minute geometry differences make separating them harder than other biomolecules. Such separations by ion mobility spectrometry (IMS) were recently enabled by new high-definition methods using dynamic electric fields, but major resolution gains are needed. Another problem of identifying many isomers with no unique fragments in ergodic collision-induced dissociation (CID) was partly addressed by the direct ozone-induced dissociation (OzID) that localizes the double bonds, but a low reaction efficiency has limited the sensitivity, dynamic range, throughput, and compatibility with other tools. Typically lipids are analyzed by MS as singly charged protonated, deprotonated, or ammoniated ions. Here, we explore the differential IMS (FAIMS) separations with OzID for exemplary lipids cationized by polyvalent metals. These multiply charged adducts have much greater FAIMS compensation voltages (UC) than the 1+ ions, with up to 10-fold resolution gain enabling baseline isomer separations even at a moderate resolving power of the SelexION stage. Concomitantly OzID speeds up by many orders of magnitude, producing a high yield of diagnostic fragments already in 1 ms. These capabilities can be ported to the superior high-definition FAIMS and high-pressure OzID systems to take lipidomic analyses to the next level.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Pawel Sadowski
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
3
|
Wörner TP, Thurman HA, Makarov AA, Shvartsburg AA. Expanding Differential Ion Mobility Separations into the MegaDalton Range. Anal Chem 2024; 96:5392-5398. [PMID: 38526848 DOI: 10.1021/acs.analchem.3c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Along with mass spectrometry (MS), ion mobility separations (IMS) are advancing to ever larger biomolecules. The emergence of electrospray ionization (ESI) and native MS enabled the IMS/MS analyses of proteins up to ∼100 kDa in the 1990s and whole protein complexes and viruses up to ∼10 MDa since the 2000s. Differential IMS (FAIMS) is substantially orthogonal to linear IMS based on absolute mobility K and offers exceptional resolution, unique selectivity, and steady filtering readily compatible with slower analytical methods such as electron capture or transfer dissociation (ECD/ETD). However, the associated MS stages had limited FAIMS to ions with m/z < 8000 and masses under ∼300 kDa. Here, we integrate high-definition FAIMS with the Q-Exactive Orbitrap UHMR mass spectrometer that can handle m/z up to 80,000 and MDa-size ions in the native ESI regime. In the initial evaluation, the oligomers of monoclonal antibody adalimumab (148 kDa) are size-selected up to at least the nonamers (1.34 MDa) with m/z values up to ∼17,000. This demonstrates the survival and efficient separation of noncovalent MDa assemblies in the FAIMS process, opening the door to novel analyses of the heaviest macromolecules.
Collapse
Affiliation(s)
- Tobias P Wörner
- Thermo Fisher Scientific, Hanna-Kunath Strasse 11, Bremen 28199, Germany
| | - Hayden A Thurman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexander A Makarov
- Thermo Fisher Scientific, Hanna-Kunath Strasse 11, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
4
|
Haack A, Ieritano C, Hopkins WS. MobCal-MPI 2.0: an accurate and parallelized package for calculating field-dependent collision cross sections and ion mobilities. Analyst 2023. [PMID: 37376881 DOI: 10.1039/d3an00545c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Ion mobility spectrometry (IMS), which can be employed as either a stand-alone instrument or coupled to mass spectrometry, has become an important tool for analytical chemistry. Because of the direct relation between an ion's mobility and its structure, which is intrinsically related to its collision cross section (CCS), IMS techniques can be used in tandem with computational tools to elucidate ion geometric structure. Here, we present MobCal-MPI 2.0, a software package that demonstrates excellent accuracy (RMSE 2.16%) and efficiency in calculating low-field CCSs via the trajectory method (≤30 minutes on 8 cores for ions with ≤70 atoms). MobCal-MPI 2.0 expands on its predecessor by enabling the calculation of high-field mobilities through the implementation of the 2nd order approximation to two-temperature theory (2TT). By further introducing an empirical correction to account for deviations between 2TT and experiment, MobCal-MPI 2.0 can compute accurate high-field mobilities that exhibit a mean deviation of <4% from experimentally measured values. Moreover, the velocities used to sample ion-neutral collisions were updated from a weighted to a linear grid, enabling the near-instantaneous evaluation of mobility/CCS at any effective temperature from a single set of N2 scattering trajectories. Several enhancements made to the code are also discussed, including updates to the statistical analysis of collision event sampling and benchmarking of overall performance.
Collapse
Affiliation(s)
- Alexander Haack
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| | - Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
- Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
- Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories, 999077, Hong Kong
| |
Collapse
|
5
|
Pathak P, Shvartsburg AA. High-Definition Ion Mobility/Mass Spectrometry with Structural Isotopic Shifts for Nominally Isobaric Isotopologues. J Phys Chem A 2023; 127:3914-3923. [PMID: 37083428 DOI: 10.1021/acs.jpca.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
We had reported the isotopic envelopes in differential IMS (FAIMS) separations depending on the ion structure. However, this new approach to distinguish isomers was constrained by the unit-mass resolution commingling all nominally isobaric isotopologues. Here, we directly couple high-definition FAIMS to ultrahigh-resolution (Orbitrap) MS and employ the resulting platform to explore the FAIMS spectra for isotopic fine structure. The peak shifts therein for isotopologues of halogenated anilines with 15N and 13C (split by 6 mDa) in N2/CO2 buffers dramatically differ, more than for the 13C, 37Cl, or 81Br species apart by 1 or 2 Da. The shifts in FAIMS space upon different elemental isotopic substitutions are orthogonal mutually and to the underlying separations, forming fingerprint multidimensional matrices and 3-D trajectories across gas compositions that redundantly delineate all isomers considered. The interlocking instrumental and methodological upgrades in this work take the structural isotopic shift approach to the next level.
Collapse
Affiliation(s)
- Pratima Pathak
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
6
|
Haack A, Hopkins WS. Kinetics in DMS: Modeling Clustering and Declustering Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2250-2262. [PMID: 36331115 DOI: 10.1021/jasms.2c00224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Differential mobility spectrometry (DMS) uses high-frequency oscillating electrical fields to harness the differential mobility of ions for separating complex sample mixtures prior to detection. To increase the resolving power, a dynamic microsolvation environment is often created by introducing solvent vapors. Here, relatively large clusters are formed at low-field conditions which then evaporate to form smaller clusters at high-field conditions. The kinetics of these processes as the electrical field strength oscillates are not well studied. Here, we develop a computational framework to investigate how the different reactions (cluster association, cluster dissociation, and fast conformational changes) behave at different field strengths. We aim to better understand these processes, their effect on experimental outcomes, and whether DMS model accuracy is improved via incorporating their description. We find that cluster association and dissociation reactions for typical ion-solvent pairs are fast compared to the time scale of the varying separation fields usually used. However, low solvent concentration, small dipole moments, and strong ion-solvent binding can result in reaction rates small enough that a lag is observed in the ion's DMS response. This can yield differences of several volts in the compensation voltages required to correct ion trajectories for optimal transmission. We also find that the proposed kinetic approach yields generally better agreement with experiment than using a modified Boltzmann weighting scheme. Thus, this work provides insights into the chemical dynamics occurring within the DMS cell while also increasing the accuracy of dispersion plot predictions.
Collapse
Affiliation(s)
- Alexander Haack
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ONN2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ONN2L 3G1, Canada
- Watermine Innovation, Waterloo, OntarioN0B 2T0, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories999077, Hong Kong
| |
Collapse
|
7
|
Ieritano C, Hopkins WS. The hitchhiker's guide to dynamic ion-solvent clustering: applications in differential ion mobility spectrometry. Phys Chem Chem Phys 2022; 24:20594-20615. [PMID: 36000315 DOI: 10.1039/d2cp02540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article highlights the fundamentals of ion-solvent clustering processes that are pertinent to understanding an ion's behaviour during differential mobility spectrometry (DMS) experiments. We contrast DMS with static-field ion mobility, where separation is affected by mobility differences under the high-field and low-field conditions of an asymmetric oscillating electric field. Although commonly used in mass spectrometric (MS) workflows to enhance signal-to-noise ratios and remove isobaric contaminants, the chemistry and physics that underpins the phenomenon of differential mobility has yet to be fully fleshed out. Moreover, we are just now making progress towards understanding how the DMS separation waveform creates a dynamic clustering environment when the carrier gas is seeded with the vapour of a volatile solvent molecule (e.g., methanol). Interestingly, one can correlate the dynamic clustering behaviour observed in DMS experiments with gas-phase and solution-phase molecular properties such as hydrophobicity, acidity, and solubility. However, to create a generalized, global model for property determination using DMS data one must employ machine learning. In this article, we provide a first-principles description of differential ion mobility in a dynamic clustering environment. We then discuss the correlation between dynamic clustering propensity and analyte physicochemical properties and demonstrate that analytes exhibiting similar ion-solvent interactions (e.g., charge-dipole) follow well-defined trends with respect to DMS clustering behaviour. Finally, we describe how supervised machine learning can be used to create predictive models of molecular properties using DMS data. We additionally highlight open questions in the field and provide our perspective on future directions that can be explored.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Watermine Innovation, Waterloo, Ontario, N0B 2T0, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, New Territories, 999077, Hong Kong
| |
Collapse
|
8
|
Pathak P, Shvartsburg AA. Assessing the Dipole Moments and Directional Cross Sections of Proteins and Complexes by Differential Ion Mobility Spectrometry. Anal Chem 2022; 94:7041-7049. [PMID: 35500292 DOI: 10.1021/acs.analchem.2c00343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ion mobility spectrometry (IMS) has become a mainstream approach to fractionate complex mixtures, separate isomers, and assign the molecular geometries. All modalities were grouped into linear IMS (based on the absolute ion mobility, K) and field asymmetric waveform IMS (FAIMS) relying on the evolution of K at a high normalized electric field (E/N) that induces strong ion heating. In the recently demonstrated low-field differential (LOD) IMS, the field is too weak for significant heating but locks the macromolecular dipoles to produce novel separations controlled by the relevant directional collision cross sections (CCSs). Here, we show LODIMS for mass-selected species, exploring the dipole alignment across charge states for the monomers and dimers of an exemplary protein, the alcohol dehydrogenase. Distinct conformational families for aligned species are revealed with directional CCS estimated from the field-dependent trend lines. We set up a model to extract the fractions of pendular conformers as a function of field intensity and translate them into dipole moment distributions. These developments make a critical step toward establishing LODIMS as a new tool for top-down proteomics and integrative structural biology.
Collapse
Affiliation(s)
- Pratima Pathak
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
9
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
10
|
Pham KN, Fernandez-Lima F. Structural Characterization of Human Histone H4.1 by Tandem Nonlinear and Linear Ion Mobility Spectrometry Complemented with Molecular Dynamics Simulations. ACS OMEGA 2021; 6:29567-29576. [PMID: 34778628 PMCID: PMC8582071 DOI: 10.1021/acsomega.1c03744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Extracellular histone H4 is an attractive drug target owing to its roles in organ failure in sepsis and other diseases. To identify inhibitors using in silico methods, information on histone H4 structural dynamics and three-dimensional (3D) structural coordinates is required. Here, DNA-free histone H4 type 1 (H4.1) was characterized by utilizing tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry (MS) complemented with molecular dynamics (MD) simulations. The gas-phase structures of H4.1 are dependent on the starting solution conditions, evidenced by differences in charge state distributions, mobility distributions, and collision-induced unfolding (CIU) pathways. The experimental results show that H4.1 adopts diverse conformational types from compact (C) to partially folded (P) and subsequently elongated (E) structures. Molecular dynamics simulations provided candidate structures for the histone H4.1 monomer in solution and for the gas-phase structures observed using FAIMS-IMS-TOF MS as a function of the charge state and mobility distribution. A combination of the FAIMS-TIMS experimental results with theoretical dipole calculations reveals the important role of charge distribution in the dipole alignment of H4.1 elongated structures at high electric fields. A comparison of the secondary and primary structures of DNA-free H2A.1 and H4.1 is made based on the experimental IMS-MS and MD findings.
Collapse
Affiliation(s)
- Khoa N. Pham
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Science Institute, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
11
|
Andrzejewski R, Entwistle A, Giles R, Shvartsburg AA. Ion Mobility Spectrometry of Superheated Macromolecules at Electric Fields up to 500 Td. Anal Chem 2021; 93:12049-12058. [PMID: 34423987 DOI: 10.1021/acs.analchem.1c02299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception in 1980s, differential or field asymmetric waveform ion mobility spectrometry (FAIMS) has been implemented at or near ambient gas pressure. We recently developed FAIMS at 15-30 Torr with mass spectrometry and utilized it to analyze amino acids, isomeric peptides, and protein conformers. The separations broadly mirrored those at atmospheric pressure, save for larger proteins that (as predicted) exhibited dipole alignment at ambient but not low pressure. Here we reduce the pressure down to 4.7 Torr, allowing normalized electric fields up to 543 Td-double the maximum in prior FAIMS or IMS studies of polyatomic ions. Despite the collisional heating to ∼1000 °C at the waveform peaks, the proteins of size from ubiquitin to albumin survived intact. The dissociation of macromolecules in FAIMS appears governed by the average ion temperature over the waveform cycle, unlike the isomerization controlled by the peak temperature. The global separation trends in this "superhot" regime extend those at moderately low pressures, with distinct conformers and no alignment as theorized. Although the scaling of the compensation voltage with the field fell below cubic at lower fields, the resolving power increased and the resolution of different proteins or charge states substantially improved.
Collapse
Affiliation(s)
- Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
12
|
Sinelnikova A, Mandl T, Agelii H, Grånäs O, Marklund EG, Caleman C, De Santis E. Protein orientation in time-dependent electric fields: orientation before destruction. Biophys J 2021; 120:3709-3717. [PMID: 34303701 PMCID: PMC8456286 DOI: 10.1016/j.bpj.2021.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Proteins often have nonzero electric dipole moments, making them interact with external electric fields and offering a means for controlling their orientation. One application that is known to benefit from orientation control is single-particle imaging with x-ray free-electron lasers, in which diffraction is recorded from proteins in the gas phase to determine their structures. To this point, theoretical investigations into this phenomenon have assumed that the field experienced by the proteins is constant or a perfect step function, whereas any real-world pulse will be smooth. Here, we explore the possibility of orienting gas-phase proteins using time-dependent electric fields. We performed ab initio simulations to estimate the field strength required to break protein bonds, with 45 V/nm as a breaking point value. We then simulated ubiquitin in time-dependent electric fields using classical molecular dynamics. The minimal field strength required for orientation within 10 ns was on the order of 0.5 V/nm. Although high fields can be destructive for the structure, the structures in our simulations were preserved until orientation was achieved regardless of field strength, a principle we denote “orientation before destruction.”
Collapse
Affiliation(s)
- Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Thomas Mandl
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; University of Applied Sciences Technikum Wien, Wien, Austria
| | - Harald Agelii
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Erik G Marklund
- Department of Chemistry BMC, Uppsala University, Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - Emiliano De Santis
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; Department of Chemistry BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Pham KN, Mamun Y, Fernandez-Lima F. Structural Heterogeneity of Human Histone H2A.1. J Phys Chem B 2021; 125:4977-4986. [PMID: 33974801 PMCID: PMC8568062 DOI: 10.1021/acs.jpcb.1c00335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.
Collapse
Affiliation(s)
- Khoa N Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yasir Mamun
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
14
|
Fulcher JM, Makaju A, Moore RJ, Zhou M, Bennett DA, De Jager PL, Qian WJ, Paša-Tolić L, Petyuk VA. Enhancing Top-Down Proteomics of Brain Tissue with FAIMS. J Proteome Res 2021; 20:2780-2795. [PMID: 33856812 PMCID: PMC8672206 DOI: 10.1021/acs.jproteome.1c00049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteomic investigations of Alzheimer's and Parkinson's disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein's "intact" state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer's disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at -50, -40, and -30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1-42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.
Collapse
Affiliation(s)
- James M Fulcher
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aman Makaju
- Life Sciences Mass Spectrometry Unit, Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Philip L De Jager
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Medical Center, New York, New York 10032, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
15
|
Pathak P, Shvartsburg AA. Low-Field Differential Ion Mobility Spectrometry of Dipole-Aligned Macromolecules. Anal Chem 2020; 92:13855-13863. [DOI: 10.1021/acs.analchem.0c02551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pratima Pathak
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
16
|
Schlottmann F, Kirk AT, Allers M, Bohnhorst A, Zimmermann S. High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS) at 40 mbar. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1536-1543. [PMID: 32432872 DOI: 10.1021/jasms.0c00098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) are usually operated at an absolute pressure of 20 mbar reaching high reduced electric field strengths of up to 125 Td for controlled reaction kinetics. This significantly increases the linear range and limits chemical cross sensitivities. Furthermore, HiKE-IMS enables the ionization of compounds normally not detectable in ambient pressure IMS, such as benzene, due to new reaction pathways and the inhibition of clustering reactions. In addition, HiKE-IMS allows the observation of additional orthogonal parameters related to an increased ion temperature such as fragmentation and field-dependent ion mobility, which may help to separate compounds that have similar ion mobility under low field conditions. Aiming for a hand-held HiKE-IMS to carry its benefits into field applications, reducing size and power consumption of the vacuum system is necessary. In this work, we present a novel HiKE-IMS design entirely manufactured from standard printed circuit boards (PCB) and experimentally investigate the analytical performance in dependence of the operating pressure between 20 mbar and 40 mbar. Hereby, the limit of detection (LoD) for benzene in purified, dry air (1.4 ppmV water) improved from 7 ppbV at 20 mbar down to 1.8 ppbV at 40 mbar. Furthermore, adding 0.9 ppmV toluene, the signal of the benzene B+ peak decreased by only 2% at 40 mbar. Even in the presence of high relative humidity in the sample gas above 90% or toluene concentrations of up to 20 ppmV, the LoD for benzene just increased to 9 ppbV at 40 mbar.
Collapse
Affiliation(s)
- Florian Schlottmann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Ansgar T Kirk
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Maria Allers
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Alexander Bohnhorst
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| |
Collapse
|
17
|
Wei MS, Kemperman RHJ, Palumbo MA, Yost RA. Separation of Structurally Similar Anabolic Steroids as Cation Adducts in FAIMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:355-365. [PMID: 32031405 DOI: 10.1021/jasms.9b00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel synthetic anabolic androgenic steroids have been developed not only to dodge current antidoping tests at the professional sports level, but also for consumption by noncompetitive bodybuilders. These novel anabolic steroids are commonly referred to as "designer steroids" and pose a significant risk to users because of the lack of testing for toxicity and safety in animals or humans. Manufacturers of designer steroids dodge regulation by distributing them as nutritional or dietary supplements. Improving the throughput and accuracy of screening tests would help regulators to stay on top of illicit anabolic steroids. High-field asymmetric-waveform ion mobility spectrometry (FAIMS) utilizes an alternating asymmetric electric field to separate ions by their different mobilities at high- and low-fields as they travel through the separation space. When coupled to mass spectrometry (MS), FAIMS enhances the separation of analytes from other interfering compounds with little to no increase in analysis time. Here we investigate the effects of adding various cation species to sample solutions for the separation of structurally similar or isomeric anabolic androgenic steroids. FAIMS-MS spectra for these cation-modified samples show an increased number of compensation field (CF) peaks, some of which are confirmed to be unique for one steroid isomer over another. The CF peaks observed upon addition of cation species correspond to both monomer steroid-cation adduct ions and larger multimer ion complexes. Notably, the number of CF peaks and their CF shifts do not appear to have a straightforward relationship with cation size or electronegativity. Future directions aim at investigating the structures for these analyte-cation adduct ions for building a predictive model for their FAIMS separations.
Collapse
Affiliation(s)
- Michael S Wei
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Robin H J Kemperman
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Michelle A Palumbo
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Richard A Yost
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
18
|
Pathak P, Baird MA, Shvartsburg AA. Structurally Informative Isotopic Shifts in Ion Mobility Spectra for Heavier Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:137-145. [PMID: 32881519 DOI: 10.1021/jasms.9b00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The isotopic molecular envelopes due to stable isotopes for most elements were a staple of mass spectrometry since its origins, often leveraged to identify and quantify compounds. However, all isomers share one MS envelope. As the molecular motion in media also depends on the isotopic composition, separations such as liquid chromatography (LC) and ion mobility spectrometry (IMS) must also feature isotopic envelopes. These were largely not observed because of limited resolution, except for the (structurally uninformative) shifts in LC upon H/D exchange. We recently found the isotopic shifts in FAIMS for small haloanilines (∼130-170 Da) to hinge on the halogen position, opening a novel route to isomer characterization. Here, we extend the capability to heavier species: dibromoanilines (DBAs, ∼250 Da) and tribromoanilines (TBAs, ∼330 Da). The 13C shifts for DBAs and TBAs vary across isomers, some changing sign. While 81Br shifts are less specific, the 2-D 13C/81Br shifts unequivocally differentiate all isomers. The trends for DBAs track those for dichloroanilines, with the 13C shift order preserved for most isomers. The peak broadening due to merged isotopomers is also isomer-specific. The absolute shifts for TBAs are smaller than those for lighter haloanilines, but differentiate isomers as well because of compressed uncertainties. These results showcase the feasibility of broadly distinguishing isomers in the more topical ∼200-300 Da range using the isotopic shifts in IMS spectra.
Collapse
Affiliation(s)
- Pratima Pathak
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Matthew A Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
19
|
Melani RD, Srzentić K, Gerbasi VR, McGee JP, Huguet R, Fornelli L, Kelleher NL. Direct measurement of light and heavy antibody chains using ion mobility and middle-down mass spectrometry. MAbs 2019; 11:1351-1357. [PMID: 31607219 PMCID: PMC6816405 DOI: 10.1080/19420862.2019.1668226] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The analysis of monoclonal antibodies (mAbs) by a middle-down mass spectrometry (MS) approach is a growing field that attracts the attention of many researchers and biopharmaceutical companies. Usually, liquid fractionation techniques are used to separate mAbs polypeptides chains before MS analysis. Gas-phase fractionation techniques such as high-field asymmetric waveform ion mobility spectrometry (FAIMS) can replace liquid-based separations and reduce both analysis time and cost. Here, we present a rapid FAIMS tandem MS method capable of characterizing the polypeptide sequence of mAbs light and heavy chains in an unprecedented, easy, and fast fashion. This new method uses commercially available instruments and takes ~24 min, which is 40-60% faster than regular liquid chromatography-MS/MS analysis, to acquire fragmentation data using different dissociation methods.
Collapse
Affiliation(s)
- Rafael D Melani
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | | | - Vincent R Gerbasi
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | - John P McGee
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | | | - Luca Fornelli
- Department of Biology, University of Oklahoma , Norman , OK , USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| |
Collapse
|
20
|
Shvartsburg AA, Andrzejewski R, Entwistle A, Giles R. Ion Mobility Spectrometry of Macromolecules with Dipole Alignment Switchable by Varying the Gas Pressure. Anal Chem 2019; 91:8176-8183. [DOI: 10.1021/acs.analchem.9b00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| |
Collapse
|
21
|
Wei MS, Kemperman RHJ, Yost RA. Effects of Solvent Vapor Modifiers for the Separation of Opioid Isomers in Micromachined FAIMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:731-742. [PMID: 30877655 DOI: 10.1007/s13361-019-02175-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Opioid addiction is an escalating problem that is compounded by the introduction of synthetic opiate analogues such as fentanyl. Screening methods for these compound classes are challenged by the availability of synthetically manufactured analogues, including isomers of existing substances. High-field asymmetric-waveform ion mobility spectrometry (FAIMS) utilizes an alternating asymmetric electric field to separate ions by their different mobilities at high and low fields as they travel through the separation space. When coupled to mass spectrometry (MS), FAIMS enhances the separation of analytes from other interfering compounds with little to no increase in analysis time. Addition of solvent vapor into the FAIMS carrier gas has been demonstrated to enable and improve the separation of isomers. Here we investigate the effects of several solvents for the separation of four opioids. FAIMS-MS spectra with added solvent vapors show dramatic compensation field (CF) shifts for opioid [M+H]+ ions when compared to spectra acquired using dry nitrogen. Addition of vapor from aprotic solvents, such as acetonitrile and acetone, produces significantly improved resolution between the tested opioids, with baseline resolution achieved between certain opioid isomers. For protic solvents, notable CF shift differences were observed in FAIMS separations between addition of water vapor and vapors from small alcohols. Graphical Abstract.
Collapse
Affiliation(s)
- Michael S Wei
- Department of Chemistry, University of Florida, 214 Leigh Hall, 117200, Gainesville, FL, 32611, USA
| | - Robin H J Kemperman
- Department of Chemistry, University of Florida, 214 Leigh Hall, 117200, Gainesville, FL, 32611, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 214 Leigh Hall, 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
22
|
Winter DL, Wilkins MR, Donald WA. Differential Ion Mobility–Mass Spectrometry for Detailed Analysis of the Proteome. Trends Biotechnol 2019; 37:198-213. [DOI: 10.1016/j.tibtech.2018.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
|
23
|
Hopkins WS. Dynamic Clustering and Ion Microsolvation. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Pathak P, Baird MA, Shvartsburg AA. Identification of Isomers by Multidimensional Isotopic Shifts in High-Field Ion Mobility Spectra. Anal Chem 2018; 90:9410-9417. [DOI: 10.1021/acs.analchem.8b02057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pratima Pathak
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
25
|
Marklund EG, Ekeberg T, Moog M, Benesch JLP, Caleman C. Controlling Protein Orientation in Vacuum Using Electric Fields. J Phys Chem Lett 2017; 8:4540-4544. [PMID: 28862456 DOI: 10.1021/acs.jpclett.7b02005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single-particle imaging using X-ray free-electron lasers is an emerging technique that could provide high-resolution structures of macromolecules in the gas phase. One of the largest difficulties in realizing this goal is the unknown orientation of the individual sample molecules at the time of exposure. Preorientation of the molecules has been identified as a possible solution to this problem. Using molecular dynamics simulations, we identify a range of electric field strengths where proteins become oriented without losing their structure. For a number of experimentally relevant cases we show that structure determination is possible only when orientation information is included in the orientation-recovery process. We conclude that nondestructive field orientation of intact proteins is feasible and that it enables a range of new structural investigations with single-particle imaging.
Collapse
Affiliation(s)
- Erik G Marklund
- Department of Chemistry - BMC, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford GB-OX1 3QZ, United Kingdom
| | - Tomas Ekeberg
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron , DE-22607 Hamburg, Germany
| | - Mathieu Moog
- Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| | - Justin L P Benesch
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford GB-OX1 3QZ, United Kingdom
| | - Carl Caleman
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron , DE-22607 Hamburg, Germany
- Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
26
|
Schneider BB, Nazarov EG, Londry F, Vouros P, Covey TR. Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. MASS SPECTROMETRY REVIEWS 2016; 35:687-737. [PMID: 25962527 DOI: 10.1002/mas.21453] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/26/2014] [Indexed: 05/28/2023]
Abstract
This review of differential mobility spectrometry focuses primarily on mass spectrometry coupling, starting with the history of the development of this technique in the Soviet Union. Fundamental principles of the separation process are covered, in addition to efforts related to design optimization and advancements in computer simulations. The flexibility of differential mobility spectrometry design features is explored in detail, particularly with regards to separation capability, speed, and ion transmission. 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:687-737, 2016.
Collapse
Affiliation(s)
| | | | | | - Paul Vouros
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, MA 02115
| | | |
Collapse
|
27
|
Zhu S, Campbell JL, Chernushevich I, Le Blanc JCY, Wilson DJ. Differential Mobility Spectrometry-Hydrogen Deuterium Exchange (DMS-HDX) as a Probe of Protein Conformation in Solution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:991-999. [PMID: 26965162 DOI: 10.1007/s13361-016-1364-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Differential mobility spectrometry (DMS) is an ion mobility technique that has been adopted chiefly as a pre-filter for small- to medium-sized analytes (<1 000 Da). With the exception of a handful of studies that employ an analogue of DMS-field asymmetric waveform ion mobility spectroscopy (FAIMS)-the application of DMS to intact biomacromolecules remains largely unexplored. In this work, we employ DMS combined with gas-phase hydrogen deuterium exchange (DMS-HDX) to probe the gas-phase conformations generated from proteins that were initially folded, partially-folded, and unfolded in solution. Our findings indicate that proteins with distinct structural features in solution exhibit unique deuterium uptake profiles as function of their optimal transmission through the DMS. Ultimately we propose that DMS-HDX can, if properly implemented, provide rapid measurements of liquid-phase protein structural stability that could be of use in biopharmaceuticals development. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Shaolong Zhu
- Chemistry Department, York University, Toronto, ON, M3J 1P3, Canada
| | | | | | | | - Derek J Wilson
- Chemistry Department, York University, Toronto, ON, M3J 1P3, Canada.
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
28
|
Cooper HJ. To What Extent is FAIMS Beneficial in the Analysis of Proteins? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:566-77. [PMID: 26843211 PMCID: PMC4792363 DOI: 10.1007/s13361-015-1326-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 05/11/2023]
Abstract
High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, is emerging as a tool for biomolecular analysis. In this article, the benefits and limitations of FAIMS for protein analysis are discussed. The principles and mechanisms of FAIMS separation of ions are described, and the differences between FAIMS and conventional ion mobility spectrometry are detailed. Protein analysis is considered from both the top-down (intact proteins) and the bottom-up (proteolytic peptides) perspective. The roles of FAIMS in the analysis of complex mixtures of multiple intact proteins and in the analysis of multiple conformers of a single protein are assessed. Similarly, the application of FAIMS in proteomics and targeted analysis of peptides are considered.
Collapse
Affiliation(s)
- Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
29
|
Sarsby J, Griffiths RL, Race AM, Bunch J, Randall EC, Creese AJ, Cooper HJ. Liquid Extraction Surface Analysis Mass Spectrometry Coupled with Field Asymmetric Waveform Ion Mobility Spectrometry for Analysis of Intact Proteins from Biological Substrates. Anal Chem 2015; 87:6794-800. [DOI: 10.1021/acs.analchem.5b01151] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Joscelyn Sarsby
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rian L. Griffiths
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alan M. Race
- National Physical
Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Josephine Bunch
- National Physical
Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Elizabeth C. Randall
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew J. Creese
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
30
|
Shvartsburg AA. Ultrahigh-Resolution Differential Ion Mobility Separations of Conformers for Proteins above 10 kDa: Onset of Dipole Alignment? Anal Chem 2014; 86:10608-15. [DOI: 10.1021/ac502389a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexandre A. Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
31
|
Nonose S, Yamashita K, Okamura T, Fukase S, Kawashima M, Sudo A, Isono H. Conformations of disulfide-intact and -reduced lysozyme ions probed by proton-transfer reactions at various temperatures. J Phys Chem B 2014; 118:9651-61. [PMID: 25046209 DOI: 10.1021/jp505621f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-transfer reactions of disulfide-intact and -reduced lysozyme ions (7+ through 14+) to 2,6-dimethylpyridine were examined in the gas phase using tandem mass spectrometry with electrospray ionization. By changing temperature of a collision cell from 280 to 460 K, temperature dependence of reaction rate constants and branching fractions was measured. Absolute reaction rate constants for the protein ions of specific charge states were determined from intensities of parent and product ions in the mass spectra. Remarkable change was observed for the rate constants and distribution of product ions. The rate constants for disulfide-intact ions changed more drastically with change of charge states and temperature than those for disulfide-reduced ions. Observed branching fractions for parent and product ions were represented by calculated reaction rate constants with a scheme of sequential process. The reaction rate constants are closely related to conformation changes with change of temperature, which are profoundly influenced by amputation of disulfide bonds.
Collapse
Affiliation(s)
- Shinji Nonose
- Graduate School of Nanobioscience, Yokohama City University , Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Kailemia MJ, Park M, Kaplan DA, Venot A, Boons GJ, Li L, Linhardt RJ, Amster IJ. High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:258-68. [PMID: 24254578 PMCID: PMC3946938 DOI: 10.1007/s13361-013-0771-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 05/20/2023]
Abstract
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is shown to be capable of resolving isomeric and isobaric glycosaminoglycan negative ions and to have great utility for the analysis of this class of molecules when combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tandem mass spectrometry. Electron detachment dissociation (EDD) and other ion activation methods for tandem mass spectrometry can be used to determine the sites of labile sulfate modifications and for assigning the stereochemistry of hexuronic acid residues of glycosaminoglycans (GAGs). However, mixtures with overlapping mass-to-charge values present a challenge, as their precursor species cannot be resolved by a mass analyzer prior to ion activation. FAIMS is shown to resolve two types of mass-to-charge overlaps. A mixture of chondroitin sulfate A (CSA) oligomers with 4-10 saccharides units produces ions of a single mass-to-charge by electrospray ionization, as the charge state increases in direct proportion to the degree of polymerization for these sulfated carbohydrates. FAIMS is shown to resolve the overlapping charge. A more challenging type of mass-to-charge overlap occurs for mixtures of diastereomers. FAIMS is shown to separate two sets of epimeric GAG tetramers. For the epimer pairs, the complexity of the separation is reduced when the reducing end is alkylated, suggesting that anomers are also resolved by FAIMS. The resolved components were activated by EDD and the fragment ions were analyzed by FTICR-MS. The resulting tandem mass spectra were able to distinguish the two epimers from each other.
Collapse
Affiliation(s)
| | | | | | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA 30602
- Address for correspondence: Department of Chemistry, University of Georgia, Athens, GA 30602, Phone: (706) 542-2001, Fax: (706) 542-9454,
| |
Collapse
|
33
|
Schrader W, Xuan Y, Gaspar A. Studying ultra-complex crude oil mixtures by using high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to an electrospray ionisation-LTQ-orbitrap mass spectrometer. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:43-49. [PMID: 24881454 DOI: 10.1255/ejms.1263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-field asymmetric waveform ion mobility spectrometry (FAIMS) was coupled directly to an LTQ Orbitrap mass spectrometer to analyze a nitrogen-rich crude oil. Analyzing crude oil is extremely difficult because of the complexity, as up to 100,000 different components can be present. Therefore, simplification of crude oil increases the information content because discrimination and suppression effects are reduced. Here, the first results are presented that show that FAIMS can be an important tool for the simplification of complex mixtures. Additionally, the results show that FAIMS is an excellent tool that allows not only a simplification of such complex mixtures, but also shows the separation of isomeric compounds that have the same elemental composition but different structure and conformation.
Collapse
|
34
|
Shvartsburg AA, Smith RD. Separation of protein conformers by differential ion mobility in hydrogen-rich gases. Anal Chem 2013; 85:6967-73. [PMID: 23855890 PMCID: PMC3749073 DOI: 10.1021/ac4015963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins in solution or the gas phase tend to exhibit multiple conformational families, each comprising distinct structures. Separation methods have generally failed to resolve these, with their convolution producing wide peaks. Here, we report full separation of >10 conformers for most ubiquitin charge states by the new approach of differential ion mobility spectrometry (field asymmetric waveform ion mobility spectrometry, FAIMS) employing H2/N2 gas mixtures with up to 85% H2. The resolving power (up to 400) is five times the highest previously achieved (using He/N2 buffers), greatly increasing the separation specificity. The peak widths match the narrowest obtained by FAIMS for any species under the same conditions and scale with the protein charge state (z) and ion residence time (t) as z(-1/2) and t(-1/2), as prescribed for instrumental (diffusional) broadening. This suggests resolution of specific geometries rather than broader ensembles.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
| | | |
Collapse
|
35
|
Schneider BB, Covey TR, Nazarov EG. DMS-MS separations with different transport gas modifiers. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12127-013-0130-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Abstract
Use of elevated electric fields and helium-rich gases has recently enabled differential ion mobility spectrometry (IMS) with a resolving power up to R ∼ 300. Here we applied that technique to a protein (ubiquitin), achieving R up to ∼80 and separating previously unresolved conformers. While still limited by conformational multiplicity, this resolution is some 4 times greater than that previously reported using either conventional (drift-tube or traveling-wave) or differential IMS. The capability for fine resolution of protein conformers may open new avenues for proteoform separations in top-down and intact-protein proteomics.
Collapse
|
37
|
Shvartsburg AA, Smith RD. Protein analyses using differential ion mobility microchips with mass spectrometry. Anal Chem 2012; 84:7297-300. [PMID: 22889348 PMCID: PMC3462738 DOI: 10.1021/ac3018636] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Differential ion mobility spectrometry (FAIMS) integrated with mass spectrometry (MS) is a powerful new tool for biological and environmental analyses. Large proteins occupy regions of FAIMS spectra distinct from peptides, lipids, or other medium-size biomolecules, likely because strong electric fields align huge dipoles common to macroions. Here we confirm this phenomenon in separations of proteins at extreme fields using FAIMS chips coupled to MS and demonstrate their use to detect even minor amounts of large proteins in complex matrixes of smaller proteins and peptides.
Collapse
|
38
|
Shvartsburg AA, Zheng Y, Smith RD, Kelleher NL. Ion mobility separation of variant histone tails extending to the "middle-down" range. Anal Chem 2012; 84:4271-6. [PMID: 22559289 PMCID: PMC3353003 DOI: 10.1021/ac300612y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Differential ion mobility spectrometry (FAIMS) can baseline-resolve multiple variants of post-translationally modified peptides extending to the 3-4 kDa range, which differ in the localization of a PTM as small as acetylation. Essentially orthogonal separations for different charge states expand the total peak capacity with the number of observed states that increases for longer polypeptides. This potentially enables resolving localization variants for yet larger peptides and even intact proteins.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
| | | | | | | |
Collapse
|
39
|
Shvartsburg AA, Isaac G, Leveque N, Smith RD, Metz TO. Separation and classification of lipids using differential ion mobility spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1146-55. [PMID: 21953096 PMCID: PMC3187568 DOI: 10.1007/s13361-011-0114-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 05/04/2023]
Abstract
Correlations between the dimensions of a 2-D separation create trend lines that depend on structural or chemical characteristics of the compound class and thus facilitate classification of unknowns. This broadly applies to conventional ion mobility spectrometry (IMS)/mass spectrometry (MS), where the major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy different trend line domains. However, strong correlation between the IMS and MS separations for ions of same charge has impeded finer distinctions. Differential IMS (or FAIMS) is generally less correlated to MS and thus could separate those domains better. We report the first observation of chemical class separation by trend lines using FAIMS, here for lipids. For lipids, FAIMS is indeed more independent of MS than conventional IMS, and subclasses (such as phospho-, glycero-, or sphingolipids) form distinct, often non-overlapping domains. Even finer categories with different functional groups or degrees of unsaturation are often separated. As expected, resolution improves in He-rich gases: at 70% He, glycerolipid isomers with different fatty acid positions can be resolved. These results open the door for application of FAIMS to lipids, particularly in shotgun lipidomics and targeted analyses of bioactive lipids.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | |
Collapse
|
40
|
Shvartsburg AA, Singer D, Smith RD, Hoffmann R. Ion mobility separation of isomeric phosphopeptides from a protein with variant modification of adjacent residues. Anal Chem 2011; 83:5078-85. [PMID: 21667994 PMCID: PMC3139565 DOI: 10.1021/ac200985s] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion mobility spectrometry (IMS), and particularly differential or field asymmetric waveform IMS (FAIMS), was recently shown capable of separating peptides with variant localization of post-translational modifications. However, that work was limited to a model peptide with Ser phosphorylation on fairly distant alternative sites. Here, we demonstrate that FAIMS (coupled to electrospray/mass spectrometry (ESI/MS)) can broadly baseline-resolve variant phosphopeptides from a biologically modified human protein, including those involving phosphorylation of different residues and adjacent sites that challenge existing tandem mass spectrometry (MS/MS) methods most. Singly and doubly phosphorylated variants can be resolved equally well and identified without dissociation, based on accurate separation properties. The spectra change little over a range of infusion solvent pH; hence, the present approach should be viable in conjunction with chromatographic separations using mobile phase gradients.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | | | | | | |
Collapse
|
41
|
Shvartsburg AA, Creese AJ, Smith RD, Cooper HJ. Separation of peptide isomers with variant modified sites by high-resolution differential ion mobility spectrometry. Anal Chem 2010; 82:8327-34. [PMID: 20843012 PMCID: PMC2973842 DOI: 10.1021/ac101878a] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often coelute in LC and/or produce nonunique fragment ions. The application of ion mobility spectrometry (IMS) was explored, but success has been limited by insufficient resolution. We show that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites. Use of He/N(2) mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate FAIMS capabilities for such separations to extend to other PTMs.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
42
|
Enders JR, McLean JA. Chiral and structural analysis of biomolecules using mass spectrometry and ion mobility-mass spectrometry. Chirality 2010; 21 Suppl 1:E253-64. [PMID: 19927374 DOI: 10.1002/chir.20806] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This report describes the strategies for gas-phase chiral and structural characterization of biomolecules using mass spectrometry (MS) and ion mobility-MS (IM-MS) techniques. Because both MS and IM-MS do not directly provide chiral selectivity, methodologies for adding a chiral selector are discussed in the context of (i) host-guest (H-G) associations, (ii) diastereomeric collision-induced dissociation (CID) methods, (iii) ion-molecule reactions, and (iv) the kinetic method. MS techniques for the analysis of proteins and protein complexes are briefly described. New advances in performing rapid 2D gas-phase separations on the basis of IM-MS are reviewed with a particular emphasis on the different forms of IM instrumentation and how they are used for chiral and/or structural biomolecular studies. This report is not intended to be a comprehensive review of the field, but rather to underscore the contemporary techniques that are commonly or increasingly being used to complement measurements performed by chiroptical methodologies.
Collapse
Affiliation(s)
- Jeffrey R Enders
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
43
|
Prasad S, Tang K, Manura D, Papanastasiou D, Smith RD. Simulation of ion motion in FAIMS through combined use of SIMION and modified SDS. Anal Chem 2010; 81:8749-57. [PMID: 19785446 DOI: 10.1021/ac900880v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A key application of field asymmetric waveform ion mobility spectrometry (FAIMS) has been in selectively transmitting trace analyte ions that are present in a complex ion mixture to a mass spectrometer (MS) for identification and quantification. The overall sensitivity of FAIMS-MS, however, still needs to be significantly improved through the optimization of ion transmission into FAIMS and at the FAIMS-MS interface. Processes that cause ion losses include diffusion, space charge, separation field in the FAIMS and fringe fields around the edges of the FAIMS electrodes. These were studied here by first developing an algorithm using SIMION as its core structure to compute ion trajectory at different ratios of electric field to buffer gas number density (E/N). The E/N was varied from a few Td to approximately 80 Td by using an asymmetric square waveform. The algorithm was then combined with statistical diffusion simulation (SDS) model, columbic repulsion, and a parabolic gas flow profile to realistically simulate current transmission and peak shape. The algorithm was validated using a FAIMS model identical to the Sionex Corporation SVAC model. Ions modeled included low mass ions with K(o) in the range of 2.17 (m = 55) to 1.39 cm(2) x V(-1) x s(-1) (m = 368). Good agreement was achieved between simulated and experimental CV (peak maxima) values, peak width (fwhm), and transmitted ion current I(output). The model was then used to study fringe fields in a simple arrangement where a 0.5 mm (w) gap was created between the FAIMS exit and a capillary inlet (i.d. = 0.5 mm). At an optimum CV (11.8 V), only approximately 17% (1.3 pA) of the total ion current that correlate to CV = 11.8 V, entered the capillary; bulk of the ion loss was caused by the fringe fields. Current transmission into the capillary was improved, however, by applying a 500 V DC bias across w (0.5 mm).
Collapse
Affiliation(s)
- Satendra Prasad
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|
44
|
Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJR. Ion mobility mass spectrometry of proteins and proteinassemblies. Chem Soc Rev 2010; 39:1633-55. [DOI: 10.1039/b914002f] [Citation(s) in RCA: 381] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Shvartsburg AA, Smith RD, Wilks A, Koehl A, Ruiz-Alonso D, Boyle B. Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. Anal Chem 2009; 81:6489-95. [PMID: 19583243 PMCID: PMC2947943 DOI: 10.1021/ac900892u] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The maximum electric field intensity (E) in field asymmetric waveform ion mobility spectrometry (FAIMS) analyses was doubled to E > 60 kV/cm. In earlier devices with >0.5 mm gaps, such strong fields cause electrical breakdown for nearly all gases at ambient pressure. As the Paschen curves are sublinear, thinner gaps permit higher E: here, we established 61 kV/cm in N(2) using microchips with 35 microm gaps. As FAIMS efficiency is exceptionally sensitive to E, such values can in theory accelerate analyses at equal resolution by over an order of magnitude. Here we demonstrate FAIMS filtering in approximately 20 micros or approximately 1% of the previously needed time, with a resolving power of about half that for "macroscopic" units but sufficing for many applications. Microscopic gaps enable concurrent ion processing in multiple (here, 47) channels, which greatly relaxes the charge capacity constraints of planar FAIMS designs. These chips were integrated with a beta-radiation ion source and charge detector. The separation performance is in line with first-principles modeling that accounts for high-field and anisotropic ion diffusion. By extending FAIMS operation into the previously inaccessible field range, the present instrument advances the capabilities for research into ion transport and expands options for separation of hard-to-resolve species.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry. Proc Natl Acad Sci U S A 2009; 106:6495-500. [PMID: 19351899 DOI: 10.1073/pnas.0812318106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polar molecules align in electric fields when the dipole energy (proportional to field intensity E x dipole moment p) exceeds the thermal rotational energy. Small molecules have low p and align only at inordinately high E or upon extreme cooling. Many biomacromolecules and ions are strong permanent dipoles that align at E achievable in gases and room temperature. The collision cross-sections of aligned ions with gas molecules generally differ from orientationally averaged quantities, affecting ion mobilities measured in ion mobility spectrometry (IMS). Field asymmetric waveform IMS (FAIMS) separates ions by the difference between mobilities at high and low E and hence can resolve and identify macroion conformers based on the mobility difference between pendular and free rotor states. The exceptional sensitivity of that difference to ion geometry and charge distribution holds the potential for a powerful method for separation and characterization of macromolecular species. Theory predicts that the pendular alignment of ions in gases at any E requires a minimum p that depends on the ion mobility, gas pressure, and temperature. At ambient conditions used in current FAIMS systems, p for realistic ions must exceed approximately 300-400 Debye. The dipole moments of proteins statistically increase with increasing mass, and such values are typical above approximately 30 kDa. As expected for the dipole-aligned regime, FAIMS analyses of protein ions and complexes of approximately 30-130 kDa show an order-of-magnitude expansion of separation space compared with smaller proteins and other ions.
Collapse
|
48
|
Nikolaev EN, Vedenov AA. Application of effective potential approach to ion dynamics investigation in field asymmetric ion mobility spectrometry conditions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2009; 15:343-348. [PMID: 19423919 DOI: 10.1255/ejms.989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The theory of ion motion in field asymmetric ion mobility spectrometry (FAIMS) conditions has been developed on the bases of an effective field approach and applied to cylindrical and spherical geometries of FAIMS analyzers. The resulting analytical formulae relate compensation voltage to ion characteristics such as non-linear ion mobility coefficient, ion mobility and ion mass and charge. They permit taking into account ion inertia at small pressure of a buffer gas and at high ion mass.
Collapse
Affiliation(s)
- Eugene N Nikolaev
- The Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskij pr.38 k.2, Moscow 119334, Russia.
| | | |
Collapse
|
49
|
Abstract
Ion mobility separations have emerged as a major tool for mass spectrometry of proteins and peptides. The high speed of ion mobility spectrometry (IMS) compared with chromatography enables accelerating proteomic analyses at same separation power or raising the peak capacity at equal throughput. Of interest to structural biology, tractable physics of ion transport in gases permits characterizing the structure of macromolecules by matching measured mobilities to values calculated for candidate geometries. The two known experimental methods are drift-tube IMS based on absolute mobility and field asymmetric waveform IMS (FAIMS) based on differential mobility as a function of electric field. Here, we describe combining them into 2D separations coupled to time-of-flight MS, a development made practical by electrodynamic ion funnel interfaces that effectively convey ions in and out of IMS, including "hourglass" funnels to accumulate ions filtered by FAIMS between pulsed injections into IMS. For peptide separations, the peak capacity of FAIMS/IMS is ~500 and potentially higher, a metric close to that of top capillary LC systems. In structural investigations, FAIMS/IMS allows more protein conformers to be distinguished than either stage alone, and extends the dynamic range of detection by an order of magnitude over 1D IMS. A controlled heating of ions by rf field over a variable time in the funnel trap between FAIMS and IMS stages allows following the evolution of selected isomers in both thermodynamic and kinetic aspects, which opens a new approach to mapping the pathways and energy surfaces of protein folding.
Collapse
|
50
|
Robinson EW, Shvartsburg AA, Tang K, Smith RD. Control of ion distortion in field asymmetric waveform ion mobility spectrometry via variation of dispersion field and gas temperature. Anal Chem 2008; 80:7508-15. [PMID: 18729473 PMCID: PMC2710763 DOI: 10.1021/ac800655d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Field asymmetric waveform ion mobility spectrometry (FAIMS) has emerged as an analytical tool of broad utility, especially in conjunction with mass spectrometry. Of particular promise is the use of FAIMS and 2-D ion mobility methods that combine FAIMS with conventional IMS to resolve and characterize protein and other macromolecular conformers. However, FAIMS operation requires a strong electric field, and ions are inevitably heated by energetic collisions with buffer gas molecules. This may induce ion isomerization or dissociation, which distort the separation properties of FAIMS (and subsequent stages) or reduce instrumental sensitivity. As FAIMS employs a periodic waveform, whether those processes are controlled by ion temperature at maximum or average field intensity has been debated. Here we address this issue by measuring the unfolding of compact ubiquitin ion geometries as a function of waveform amplitude (dispersion field, E(D)) and gas temperature, T. The field heating is quantified by matching the dependences of structural transitions on E(D) and T: increasing E(D) from 12 to 16 or from 16 to 20 kV/cm is equivalent to heating the (N2) gas by approximately 15-25 degrees C. The magnitude of field heating for any E(D) can be estimated using the two-temperature theory, and raising E(D) by 4 kV/cm augments heating by approximately 15-30 degrees C for maximum and approximately 4-8 degrees C for average field in the FAIMS cycle. Hence, isomerization of ions in FAIMS appears to be determined by the excitation at waveform peaks.
Collapse
Affiliation(s)
- Errol W Robinson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|