1
|
Tunçer Çağlayan S, Gurbanov R. Modulation of bacterial membranes and cellular macromolecules by dimethyl sulfoxide: A dose-dependent study providing novel insights. Int J Biol Macromol 2024; 267:131581. [PMID: 38615866 DOI: 10.1016/j.ijbiomac.2024.131581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Using Escherichia coli as a model, this manuscript delves into the intricate interactions between dimethyl sulfoxide (DMSO) and membranes, cellular macromolecules, and the effects on various aspects of bacterial physiology. Given DMSO's wide-ranging use as a solvent in microbiology, we investigate the impacts of both non-growth inhibitory (1.0 % and 2.5 % v/v) and slightly growth-inhibitory (5.0 % v/v) concentrations of DMSO. The results demonstrate that DMSO causes alterations in bacterial membrane potential, influences the electrochemical characteristics of the cell surface, and exerts substantial effects on the composition and structure of cellular biomolecules. Genome-wide gene expression data from DMSO-treated E. coli was used to further investigate and bolster the results. The findings of this study provide valuable insights into the complex relationship between DMSO and biological systems, with potential implications in drug delivery and cellular manipulation. However, it is essential to exercise caution when utilizing DMSO to enhance the solubility and delivery of bioactive compounds, as even at low concentrations, DMSO exerts non-inert effects on cellular macromolecules and processes.
Collapse
Affiliation(s)
- Sinem Tunçer Çağlayan
- Vocational School of Health Services, Department of Medical Services and Techniques, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey.
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey
| |
Collapse
|
2
|
Kumari P, Kashyap HK. DMSO induced dehydration of heterogeneous lipid bilayers and its impact on their structures. J Chem Phys 2019; 151:215103. [DOI: 10.1063/1.5127852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Herrera-Valdez MA. A thermodynamic description for physiological transmembrane transport. F1000Res 2018; 7:1468. [PMID: 30542618 PMCID: PMC6259595 DOI: 10.12688/f1000research.16169.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
A general formulation for both passive and active transmembrane transport is derived from basic thermodynamical principles. The derivation takes into account the energy required for the motion of molecules across membranes and includes the possibility of modeling asymmetric flow. Transmembrane currents can then be described by the general model in the case of electrogenic flow. As it is desirable in new models, it is possible to derive other well-known expressions for transmembrane currents as particular cases of the general formulation. For instance, the conductance-based formulation for current turns out to be a linear approximation of the general formula for current. Also, under suitable assumptions, other formulas for current based on electrodiffusion, like the constant field approximation by Goldman, can be recovered from the general formulation. The applicability of the general formulations is illustrated first with fits to existing data, and after, with models of transmembrane potential dynamics for pacemaking cardiocytes and neurons. The general formulations presented here provide a common ground for the biophysical study of physiological phenomena that depend on transmembrane transport.
Collapse
Affiliation(s)
- Marco Arieli Herrera-Valdez
- Department of Mathematics, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CDMX, 04510, Mexico
| |
Collapse
|
4
|
Kirsch SA, Böckmann RA. Membrane pore formation in atomistic and coarse-grained simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:2266-2277. [PMID: 26748016 DOI: 10.1016/j.bbamem.2015.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022]
Abstract
Biological cells and their organelles are protected by ultra thin membranes. These membranes accomplish a broad variety of important tasks like separating the cell content from the outer environment, they are the site for cell-cell interactions and many enzymatic reactions, and control the in- and efflux of metabolites. For certain physiological functions e.g. in the fusion of membranes and also in a number of biotechnological applications like gene transfection the membrane integrity needs to be compromised to allow for instance for the exchange of polar molecules across the membrane barrier. Mechanisms enabling the transport of molecules across the membrane involve membrane proteins that form specific pores or act as transporters, but also so-called lipid pores induced by external fields, stress, or peptides. Recent progress in the simulation field enabled to closely mimic pore formation as supposed to occur in vivo or in vitro. Here, we review different simulation-based approaches in the study of membrane pores with a focus on lipid pore properties such as their size and energetics, poration mechanisms based on the application of external fields, charge imbalances, or surface tension, and on pores that are induced by small molecules, peptides, and lipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Sonja A Kirsch
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Hughes ZE, Mancera RL. Molecular mechanism of the synergistic effects of vitrification solutions on the stability of phospholipid bilayers. Biophys J 2015; 106:2617-24. [PMID: 24940779 DOI: 10.1016/j.bpj.2014.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/03/2014] [Accepted: 05/09/2014] [Indexed: 11/15/2022] Open
Abstract
The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions.
Collapse
Affiliation(s)
- Zak E Hughes
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Australia
| | - Ricardo L Mancera
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Australia.
| |
Collapse
|
6
|
Tse ECM, Barile CJ, Gewargis JP, Li Y, Zimmerman SC, Gewirth AA. Anion Transport through Lipids in a Hybrid Bilayer Membrane. Anal Chem 2015; 87:2403-9. [DOI: 10.1021/ac5043544] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Edmund C. M. Tse
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Christopher J. Barile
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - John P. Gewargis
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ying Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Andrew A. Gewirth
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- International
Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
7
|
Aalipour A, Xu AM, Leal-Ortiz S, Garner CC, Melosh NA. Plasma membrane and actin cytoskeleton as synergistic barriers to nanowire cell penetration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12362-7. [PMID: 25244597 DOI: 10.1021/la502273f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanowires are a rapidly emerging platform for manipulation of and material delivery directly into the cell cytosol. These high aspect ratio structures can breach the lipid membrane; however, the yield of penetrant structures is low, and the mechanism is largely unknown. In particular, some nanostructures appear to defeat the membrane transiently, while others can retain long-term access. Here, we examine if local dissolution of the lipid membrane, actin cytoskeleton, or both can enhance nanowire penetration. It is possible that, during cell contact, membrane rupture occurs; however, if the nanostructures do not penetrate the cytoskeleton, the membrane may reclose over a relatively short time frame. We show with quantitative analysis of the number of penetrating nanowires that the lipid bilayer and actin cytoskeleton are synergistic barriers to nanowire cell access, yet chemical poration through both is still insufficient to increase long-term access for adhered cells.
Collapse
Affiliation(s)
- Amin Aalipour
- Department of Materials Science and Engineering, Stanford University , 476 Lomita Mall, Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
8
|
Dando R, Pereira E, Kurian M, Barro-Soria R, Chaudhari N, Roper SD. A permeability barrier surrounds taste buds in lingual epithelia. Am J Physiol Cell Physiol 2014; 308:C21-32. [PMID: 25209263 DOI: 10.1152/ajpcell.00157.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste.
Collapse
Affiliation(s)
- Robin Dando
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; and
| | - Elizabeth Pereira
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; and
| | - Mani Kurian
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; and
| | - Rene Barro-Soria
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; and
| | - Nirupa Chaudhari
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; and Program in Neuroscience, University of Miami, Miami, Florida
| | - Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; and Program in Neuroscience, University of Miami, Miami, Florida
| |
Collapse
|
9
|
Bennett WFD, Sapay N, Tieleman DP. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys J 2014; 106:210-9. [PMID: 24411253 DOI: 10.1016/j.bpj.2013.11.4486] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022] Open
Abstract
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes.
Collapse
Affiliation(s)
- W F Drew Bennett
- University of Calgary, Department of Biological Sciences and Centre for Molecular Simulation, Calgary, Alberta, Canada
| | - Nicolas Sapay
- University of Calgary, Department of Biological Sciences and Centre for Molecular Simulation, Calgary, Alberta, Canada
| | - D Peter Tieleman
- University of Calgary, Department of Biological Sciences and Centre for Molecular Simulation, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Luminal DMSO: effects on detrusor and urothelial/lamina propria function. BIOMED RESEARCH INTERNATIONAL 2014; 2014:347616. [PMID: 24949435 PMCID: PMC4052167 DOI: 10.1155/2014/347616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/19/2014] [Indexed: 12/03/2022]
Abstract
DMSO is used as a treatment for interstitial cystitis and this study examined the effects of luminal DMSO treatment on bladder function and histology. Porcine bladder was incubated without (controls) or with DMSO (50%) applied to the luminal surface and the release of ATP, acetylcholine, and LDH assessed during incubation and in tissues strips after DMSO incubation. Luminally applied DMSO caused ATP, Ach, and LDH release from the urothelial surface during treatment, with loss of urothelial layers also evident histologically. In strips of urothelium/lamina propria from DMSO pretreated bladders the release of both ATP and Ach was depressed, while contractile responses to carbachol were enhanced. Detrusor muscle contractile responses to carbachol were not affected by DMSO pretreatment, but neurogenic responses to electrical field stimulation were enhanced. The presence of an intact urothelium/lamina propria inhibited detrusor contraction to carbachol by 53% and this inhibition was significantly reduced in DMSO pretreated tissues. Detection of LDH in the treatment medium suggests that DMSO permeabilised urothelial membranes causing leakage of cytosolic contents including ATP and Ach rather than enhancing release of these mediators. The increase in contractile response and high levels of ATP are consistent with initial flare up in IC/PBS symptoms after DMSO treatment.
Collapse
|
11
|
Grafmüller A, Knecht V. The free energy of nanopores in tense membranes. Phys Chem Chem Phys 2014; 16:11270-8. [PMID: 24780914 DOI: 10.1039/c3cp54685c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Membrane nanopores are central players for a range of important cellular membrane remodeling processes as well as membrane rupture. Understanding pore formation in tense membranes requires comprehension of the molecular mechanism of pore formation and the associated free energy change as a function of the membrane tension. Here we propose a scheme to calculate the free energy change associated with the formation of a nanometer sized pore in molecular dynamics simulations as a function of membrane tension, which requires the calculation of only one computationally expensive potential of mean force. We show that membrane elastic theory can be used to estimate the pore formation free energy at different tension values from the free energy change in a relaxed membrane and the area expansion curves of the membranes. We have computed the pore formation free energy for a dipalmitoyl-phosphatidylcholine (DPPC) membrane at two different lateral pressure values, 1 bar and -40 bar, by calculating the potential of mean force acting on the head group of a single lipid molecule. Unrestrained simulations of the closing process confirm that the intermediate states along this reaction coordinate are reasonable and show that hydrophilic indentations spanning half the bilayer connected by a hydrophobic pore segment represent the corresponding high energy transition state. A comparison of the stability of simulated membranes to experiment at high loading rates show that, contrary to expectation, pores form too easily in small simulated membrane patches. This discrepancy originates from a combination of the absence of ions in the simulations and the small membrane size.
Collapse
Affiliation(s)
- Andrea Grafmüller
- Max Planck Institute for Colloids and Interfaces, 14424 Potsdam, Germany.
| | | |
Collapse
|
12
|
Vorobyov I, Olson TE, Kim JH, Koeppe RE, Andersen OS, Allen TW. Ion-induced defect permeation of lipid membranes. Biophys J 2014; 106:586-97. [PMID: 24507599 PMCID: PMC3945052 DOI: 10.1016/j.bpj.2013.12.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 01/07/2023] Open
Abstract
We have explored the mechanisms of uncatalyzed membrane ion permeation using atomistic simulations and electrophysiological recordings. The solubility-diffusion mechanism of membrane charge transport has prevailed since the 1960s, despite inconsistencies in experimental observations and its lack of consideration for the flexible response of lipid bilayers. We show that direct lipid bilayer translocation of alkali metal cations, Cl(-), and a charged arginine side chain analog occurs via an ion-induced defect mechanism. Contrary to some previous suggestions, the arginine analog experiences a large free-energy barrier, very similar to those for Na(+), K(+), and Cl(-). Our simulations reveal that membrane perturbations, due to the movement of an ion, are central for explaining the permeation process, leading to both free-energy and diffusion-coefficient profiles that show little dependence on ion chemistry and charge, despite wide-ranging hydration energies and the membrane's dipole potential. The results yield membrane permeabilities that are in semiquantitative agreement with experiments in terms of both magnitude and selectivity. We conclude that ion-induced defect-mediated permeation may compete with transient pores as the dominant mechanism of uncatalyzed ion permeation, providing new understanding for the actions of a range of membrane-active peptides and proteins.
Collapse
Affiliation(s)
- Igor Vorobyov
- Department of Chemistry, University of California, Davis, Davis, California
| | - Timothy E Olson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Jung H Kim
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York.
| | - Toby W Allen
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia; Department of Chemistry, University of California, Davis, Davis, California.
| |
Collapse
|
13
|
Malajczuk CJ, Hughes ZE, Mancera RL. Molecular dynamics simulations of the interactions of DMSO, mono- and polyhydroxylated cryosolvents with a hydrated phospholipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2041-55. [PMID: 23707690 DOI: 10.1016/j.bbamem.2013.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/19/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023]
Abstract
Molecular dynamics (MD) simulations have been used to investigate the interactions of a variety of hydroxylated cryosolvents (glycerol, propylene glycol and ethylene glycol), methanol and dimethyl sulfoxide (DMSO) in aqueous solution with a 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayer in its fluid phase at 323K. Each cryosolvent induced lateral expansion of the membrane leading to thinning of the bilayer and resulting in disordering of the lipid hydrocarbon chains. Propylene glycol and DMSO were observed to exhibit a greater disordering effect on the structure of the membrane than the other three alcohols. Closer examination exposed a number of effects on the lipid bilayer as a function of the molecular size and hydrogen bonding capacity of the cryosolvents. Analyses of hydrogen bonds revealed that increased concentrations of the polyhydroxylated cryosolvents induced the formation of a cross-linked cryosolvent layer across the surface of the membrane bilayer. This effect was most pronounced for glycerol at sufficiently high concentrations, which displayed a comparatively enhanced capacity to induce cross-linking of lipid headgroups resulting in the formation of extensive hydrogen bonding bridges and the promotion of a dense cryosolvent layer across the phospholipid bilayer.
Collapse
Affiliation(s)
- Chris J Malajczuk
- Western Australian Biomedical Research Institute, Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, P.O. Box U1987, Perth WA 6845, Australia
| | | | | |
Collapse
|
14
|
Hughes ZE, Malajczuk CJ, Mancera RL. The Effects of Cryosolvents on DOPC−β-Sitosterol Bilayers Determined from Molecular Dynamics Simulations. J Phys Chem B 2013; 117:3362-75. [DOI: 10.1021/jp400975y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zak E. Hughes
- Western Australian Biomedical
Research Institute, Curtin
Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, P.O. Box U1987, Perth WA, 6845,
Australia
| | - Chris J. Malajczuk
- Western Australian Biomedical
Research Institute, Curtin
Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, P.O. Box U1987, Perth WA, 6845,
Australia
| | - Ricardo L. Mancera
- Western Australian Biomedical
Research Institute, Curtin
Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, P.O. Box U1987, Perth WA, 6845,
Australia
| |
Collapse
|
15
|
Mashaghi S, Jadidi T, Koenderink G, Mashaghi A. Lipid nanotechnology. Int J Mol Sci 2013; 14:4242-82. [PMID: 23429269 PMCID: PMC3588097 DOI: 10.3390/ijms14024242] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023] Open
Abstract
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.
Collapse
Affiliation(s)
- Samaneh Mashaghi
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, Nijenborgh 4, 9747 AG Groningen, The Netherlands; E-Mail:
| | - Tayebeh Jadidi
- Department of Physics, University of Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany; E-Mail:
| | - Gijsje Koenderink
- FOM Institute AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands; E-Mail:
| | - Alireza Mashaghi
- FOM Institute AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands; E-Mail:
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
16
|
Notman R, Anwar J. Breaching the skin barrier--insights from molecular simulation of model membranes. Adv Drug Deliv Rev 2013; 65:237-50. [PMID: 22414344 DOI: 10.1016/j.addr.2012.02.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/08/2012] [Accepted: 02/27/2012] [Indexed: 01/13/2023]
Abstract
Breaching the skin's barrier function by design is an important strategy for delivering drugs and vaccines to the body. However, while there are many proposed approaches for reversibly breaching the skin barrier, our understanding of the molecular processes involved is still rudimentary. Molecular simulation offers an unprecedented molecular-level resolution with an ability to reproduce molecular and bulk level properties. We review the basis of the molecular simulation methodology and give applications of relevance to the skin lipid barrier, focusing on permeation of molecules and chemical approaches for breaching the lipid barrier by design. The bulk kinetic model based on Fick's Law describing absorption of a drug through skin has been reconciled with statistical mechanical quantities such as the local excess chemical potential and local diffusion coefficient within the membrane structure. Applications of molecular simulation reviewed include investigations of the structure and dynamics of simple models of skin lipids, calculation of the permeability of molecules in simple model membranes, and mechanisms of action of the penetration enhancers, DMSO, ethanol and oleic acid. The studies reviewed illustrate the power and potential of molecular simulation to yield important physical insights, inform and rationalize experimental studies, and to predict structural changes, and kinetic and thermodynamic quantities.
Collapse
Affiliation(s)
- Rebecca Notman
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | |
Collapse
|
17
|
Hughes ZE, Mark AE, Mancera RL. Molecular Dynamics Simulations of the Interactions of DMSO with DPPC and DOPC Phospholipid Membranes. J Phys Chem B 2012; 116:11911-23. [DOI: 10.1021/jp3035538] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Alan E. Mark
- School
of Chemistry and Molecular
Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
18
|
de Ménorval MA, Mir LM, Fernández ML, Reigada R. Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: a comparative study of experiments in silico and with cells. PLoS One 2012; 7:e41733. [PMID: 22848583 PMCID: PMC3404987 DOI: 10.1371/journal.pone.0041733] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/25/2012] [Indexed: 01/12/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca(2+)) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.
Collapse
Affiliation(s)
- Marie-Amélie de Ménorval
- Université Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Orsay, France
- CNRS, Orsay, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Orsay, France
- Institut Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif, France
| | - Lluis M. Mir
- Université Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Orsay, France
- CNRS, Orsay, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Orsay, France
- Institut Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif, France
| | - M. Laura Fernández
- Laboratorio de Sistemas Complejos, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ramon Reigada
- Department de Química Física and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
He F, Liu W, Zheng S, Zhou L, Ye B, Qi Z. Ion transport through dimethyl sulfoxide (DMSO) induced transient water pores in cell membranes. Mol Membr Biol 2012; 29:107-13. [PMID: 22656651 DOI: 10.3109/09687688.2012.687460] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well known that dimethyl sulphoxide (DMSO) increases membrane permeability, which makes it widely used as a vehicle to facilitate drug delivery across biological membranes. However, the mechanism of how DMSO increases membrane permeability has not been well understood. Recently, molecular dynamics simulations have demonstrated that DMSO can induce water pores in biological membranes, but no direct experimental evidence is so far available to prove the simulation result. Using FluxOR Tl⁺ influx assay and intracellular Ca²⁺ imaging technique, we studied the effect of DMSO on Tl⁺ and Ca²⁺ permeation across cell membranes. Upon application of DMSO on CHO-K1 cell line, Tl⁺ influx was transiently increased in a dose-dependent manner. The increase in Tl⁺ permeability induced by DMSO was not changed in the presence of blockers for K⁺ channel and Na⁺-K⁺ ATPase, suggesting that Tl⁺ permeates through transient water pores induced by DMSO to enter into the cell. In addition, Ca²⁺ permeability was significantly increased upon application of DMSO, indicating that the transient water pores induced by DMSO were non-selective pores. Furthermore, similar results could be obtained from RAW264.7 macrophage cell line. Therefore, this study provided experimental evidence to support the prediction that DMSO can induce transient water pores in cell membranes, which in turn facilitates the transport of active substances across membranes.
Collapse
Affiliation(s)
- Fei He
- Department of Physiology, Medical College of Xiamen University, Xiamen, P. R. China
| | | | | | | | | | | |
Collapse
|
20
|
Kepczynski M, Jamróz D, Wytrwal M, Bednar J, Rzad E, Nowakowska M. Interactions of a hydrophobically modified polycation with zwitterionic lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:676-688. [PMID: 22085465 DOI: 10.1021/la203748q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The interactions between synthetic polycations and phospholipid bilayers play an important role in some biophysical applications such as gene delivery or antibacterial usage. Despite extensive investigation into the nature of these interactions, their physical and molecular bases remain poorly understood. In this Article, we present the results of our studies on the impact of a hydrophobically modified strong polycation on the properties of a zwitterionic bilayer used as a model of the mammalian cellular membrane. The study was carried out using a set of complementary experimental methods and molecular dynamic (MD) simulations. A new polycation, poly(allyl-N,N-dimethyl-N-hexylammonium chloride) (polymer 3), was synthesized, and its interactions with liposomes composed of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) were examined using dynamic light scattering (DLS), zeta potential measurements, and cryo-transmission electron microscopy (cryo-TEM). Our results have shown that polymer 3 can efficiently associate with and insert into the POPC membrane. However, it does not change its lamellar structure, as was demonstrated by cryo-TEM. The influence of polymer 3 on the membrane functionality was studied by leakage experiments applying a fluorescence dye (calcein) encapsulated in the phospholipid vesicles. The MD simulations of model systems reveal that polymer 3 promotes formation of hydrophilic pores in the membrane, thus increasing considerably its permeability.
Collapse
Affiliation(s)
- Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
21
|
Valincius G, Meškauskas T, Ivanauskas F. Electrochemical impedance spectroscopy of tethered bilayer membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:977-90. [PMID: 22126190 DOI: 10.1021/la204054g] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The electrochemical impedance spectra (EIS) of tethered bilayer membranes (tBLMs) were analyzed, and the analytical solution for the spectral response of membranes containing natural or artificially introduced defects was derived. The analysis carried out in this work shows that the EIS features of an individual membrane defect cannot be modeled by conventional electrical elements. The primary reason for this is the complex nature of impedance of the submembrane ionic reservoir separating the phospholipid layer and the solid support. We demonstrate that its EIS response, in the case of radially symmetric defects, is described by the Hankel functions of a complex variable. Therefore, neither the impedance of the submembrane reservoir nor the total impedance of tBLMs can be modeled using the conventional elements of the equivalent electrical circuits of interfaces. There are, however, some limiting cases in which the complexity of the EIS response of the submembrane space reduces. In the high frequency limit, the EIS response of a submembrane space that surrounds the defect transforms into a response of a constant phase element (CPE) with the exponent (α) value of 0.5. The onset of this transformation is, beside other parameters, dependent on the defect size. Large-sized defects push the frequency limit lower, therefore, the EIS spectra exhibiting CPE behavior with α ≈ 0.5, can serve as a diagnostic criterion for the presence of such defects. In the low frequency limit, the response is dependent on the density of the defects, and it transforms into the capacitive impedance if the area occupied by a defect is finite. The higher the defect density, the higher the frequency edge at which the onset of the capacitive behavior is observed. Consequently, the presented analysis provides practical tools to evaluate the defect density in tBLMs, which could be utilized in tBLM-based biosensor applications. Alternatively, if the parameters of the defects, e.g., ion channels, such as the diameter and the conductance are known, the EIS data analysis provides a possibility to estimate other physical parameters of the system, such as thickness of the submembrane reservoir and its conductance. Finally, current analysis demonstrates a possibility to discriminate between the situations, in which the membrane defects are evenly distributed or clustered on the surface of tBLMs. Such sensitivity of EIS could be used for elucidation of the mechanisms of interaction between the proteins and the membranes.
Collapse
Affiliation(s)
- Gintaras Valincius
- Vilnius University Institute of Biochemistry, Mokslininku 12, LT-08662 Vilnius, Lithuania.
| | | | | |
Collapse
|
22
|
Berenguer M, Zhang J, Bruce MC, Martinez L, Gonzalez T, Gurtovenko AA, Xu T, Le Marchand-Brustel Y, Govers R. Dimethyl sulfoxide enhances GLUT4 translocation through a reduction in GLUT4 endocytosis in insulin-stimulated 3T3-L1 adipocytes. Biochimie 2011; 93:697-709. [DOI: 10.1016/j.biochi.2010.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/21/2010] [Indexed: 01/14/2023]
|
23
|
Wu FG, Wang NN, Tao LF, Yu ZW. Acetonitrile Induces Nonsynchronous Interdigitation and Dehydration of Dipalmitoylphosphatidylcholine Bilayers. J Phys Chem B 2010; 114:12685-91. [DOI: 10.1021/jp104190z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Nan-Nan Wang
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Le-Fu Tao
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
24
|
Gurtovenko AA, Anwar J, Vattulainen I. Defect-Mediated Trafficking across Cell Membranes: Insights from in Silico Modeling. Chem Rev 2010; 110:6077-103. [DOI: 10.1021/cr1000783] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrey A. Gurtovenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg, 199004 Russia, Computational Laboratory, Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, U.K., Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, Aalto University, School of Science and Technology, Finland, and MEMPHYS—Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Jamshed Anwar
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg, 199004 Russia, Computational Laboratory, Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, U.K., Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, Aalto University, School of Science and Technology, Finland, and MEMPHYS—Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Ilpo Vattulainen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg, 199004 Russia, Computational Laboratory, Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, U.K., Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, Aalto University, School of Science and Technology, Finland, and MEMPHYS—Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Demchenko AP, Yesylevskyy SO. Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem Phys Lipids 2009; 160:63-84. [PMID: 19481071 DOI: 10.1016/j.chemphyslip.2009.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/21/2022]
Abstract
Electrostatic fields generated on and inside biological membranes are recognized to play a fundamental role in key processes of cell functioning. Their understanding requires an adequate description on the level of elementary charges and the reconstruction of electrostatic potentials by integration over all elementary interactions. Out of all the available research tools, only molecular dynamics simulations are capable of this, extending from the atomic to the mesoscopic level of description on the required time and space scale. A complementary approach is that offered by molecular probe methods, with the application of electrochromic dyes. Highly sensitive to intermolecular interactions, they generate integrated signals arising from electric fields produced by elementary charges at the sites of their location. This review is an attempt to provide a critical analysis of these two approaches and their present and potential applications. The results obtained by both methods are consistent in that they both show an extremely complex profile of the electric field in the membrane. The nanoscopic view, with two-dimensional averaging over the bilayer plane and formal separation of the electrostatic potential into surface (Psi(s)), dipole (Psi(d)) and transmembrane (Psi(t)) potentials, is constructive in the analysis of different functional properties of membranes.
Collapse
Affiliation(s)
- Alexander P Demchenko
- A.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovicha St. 9, Kiev 01601, Ukraine.
| | | |
Collapse
|
26
|
Chapter 1 Free Energies of Lipid–Lipid Interactions in Membranes. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1574-1400(09)00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Marrink SJ, de Vries AH, Tieleman DP. Lipids on the move: simulations of membrane pores, domains, stalks and curves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:149-68. [PMID: 19013128 DOI: 10.1016/j.bbamem.2008.10.006] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/16/2022]
Abstract
In this review we describe the state-of-the-art of computer simulation studies of lipid membranes. We focus on collective lipid-lipid and lipid-protein interactions that trigger deformations of the natural lamellar membrane state, showing that many important biological processes including self-aggregation of membrane components into domains, the formation of non-lamellar phases, and membrane poration and curving, are now amenable to detailed simulation studies.
Collapse
Affiliation(s)
- Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
28
|
Gurtovenko AA, Onike OI, Anwar J. Chemically induced phospholipid translocation across biological membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9656-9660. [PMID: 18680319 DOI: 10.1021/la801431f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemical means of manipulating the distribution of lipids across biological membranes is of considerable interest for many biomedical applications as a characteristic lipid distribution is vital for numerous cellular functions. Here we employ atomic-scale molecular simulations to shed light on the ability of certain amphiphilic compounds to promote lipid translocation (flip-flops) across membranes. We show that chemically induced lipid flip-flops are most likely pore-mediated: the actual flip-flop event is a very fast process (time scales of tens of nanoseconds) once a transient water defect has been induced by the amphiphilic chemical (dimethylsulfoxide in this instance). Our findings are consistent with available experimental observations and further emphasize the importance of transient membrane defects for chemical control of lipid distribution across cell membranes.
Collapse
Affiliation(s)
- Andrey A Gurtovenko
- Computational Biophysics Laboratory, Institute of Pharmaceutical Innovation, University of Bradford, Bradford, BD7 1DP, U.K
| | | | | |
Collapse
|