1
|
Caporaletti F, Gunkel L, Fernández-Ibáñez MÁ, Hunger J, Woutersen S. Fast Collective Hydrogen-Bond Dynamics in Hexafluoroisopropanol Related to its Chemical Activity. Angew Chem Int Ed Engl 2024; 63:e202416091. [PMID: 39388385 DOI: 10.1002/anie.202416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Using fluorinated mono-alcohols, in particular hexafluoro-isopropanol (HFIP), as a solvent can enhance chemical reaction rates in a spectacular manner. Previous work has shown evidence that this enhancement is related to the hydrogen-bond structure of these liquids. Here, we investigate the hydrogen-bond dynamics of HFIP and compare it to that of its non-fluorinated analog, isopropanol. Ultrafast infrared spectroscopy experiments show that the dynamics of individual hydrogen-bonds is about twice as slow in HFIP as in isopropanol. Surprisingly, from dielectric spectroscopy we find the opposite behavior for the dynamics of hydrogen-bonded clusters: collective rearrangements are 3 times faster in HFIP than in isopropanol. This difference indicates that the hydrogen-bonded clusters in HFIP are smaller than in isopropanol. The differences in cluster size can be traced to changes in the hydrogen-bond donor and acceptor strengths upon fluorination. The smaller cluster size can boost reaction rates in HFIP by increasing the concentration of reactive, terminal OH-groups of the clusters, whereas the fast collective dynamics can increase the rate of formation of hydrogen-bonds with the reactants. The longer lifetime of the individual hydrogen-bonds in HFIP can enhance the stability of the hydrogen-bonded clusters, and so increase the probability of reactant-solvent hydrogen-bonding.
Collapse
Affiliation(s)
- Federico Caporaletti
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Universitè libre de Bruxelles (ULB), Brussels, Belgium
| | - Lucas Gunkel
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Giubertoni G, Chagri S, Argudo PG, Prädel L, Maltseva D, Greco A, Caporaletti F, Pavan A, Ilie IM, Ren Y, Ng DYW, Bonn M, Weil T, Woutersen S. Structural adaptability and surface activity of peptides derived from tardigrade proteins. Protein Sci 2024; 33:e5135. [PMID: 39150232 PMCID: PMC11328126 DOI: 10.1002/pro.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Tardigrades are unique micro-organisms with a high tolerance to desiccation. The protection of their cells against desiccation involves tardigrade-specific proteins, which include the so-called cytoplasmic abundant heat soluble (CAHS) proteins. As a first step towards the design of peptides capable of mimicking the cytoprotective properties of CAHS proteins, we have synthesized several model peptides with sequences selected from conserved CAHS motifs and investigated to what extent they exhibit the desiccation-induced structural changes of the full-length proteins. Using circular dichroism spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations, we have found that the CAHS model peptides are mostly disordered, but adopt a moreα $$ \alpha $$ -helical structure upon addition of 2,2,2-trifluoroethanol, which mimics desiccation. This structural behavior is similar to that of full-length CAHS proteins, which also adopt more ordered conformations upon desiccation. We also have investigated the surface activity of the peptides at the air/water interface, which also mimics partial desiccation. Interestingly, sum-frequency generation spectroscopy shows that all model peptides are surface active and adopt a helical structure at the air/water interface. Our results suggest that amino acids with high helix-forming propensities might contribute to the propensity of these peptides to adopt a helical structure when fully or partially dehydrated. Thus, the selected sequences retain part of the CAHS structural behavior upon desiccation, and might be used as a basis for the design of new synthetic peptide-based cryoprotective materials.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Chagri
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Pablo G Argudo
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Leon Prädel
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Daria Maltseva
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Federico Caporaletti
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alberto Pavan
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Ioana M Ilie
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, Amsterdam, Netherlands
- Computational Soft Matter (CSM), University of Amsterdam, Amsterdam, Netherlands
| | - Yong Ren
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Sanchez‐Martinez S, Nguyen K, Biswas S, Nicholson V, Romanyuk AV, Ramirez J, Kc S, Akter A, Childs C, Meese EK, Usher ET, Ginell GM, Yu F, Gollub E, Malferrari M, Francia F, Venturoli G, Martin EW, Caporaletti F, Giubertoni G, Woutersen S, Sukenik S, Woolfson DN, Holehouse AS, Boothby TC. Labile assembly of a tardigrade protein induces biostasis. Protein Sci 2024; 33:e4941. [PMID: 38501490 PMCID: PMC10949331 DOI: 10.1002/pro.4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS D's fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.
Collapse
Affiliation(s)
| | - K. Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - V. Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. V. Romanyuk
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
| | - J. Ramirez
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Kc
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. Akter
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - C. Childs
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. K. Meese
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. T. Usher
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - G. M. Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - F. Yu
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - E. Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - M. Malferrari
- Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaBolognaItaly
| | - F. Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
| | - G. Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA)Università di BolognaBolognaItaly
| | - E. W. Martin
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - F. Caporaletti
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - G. Giubertoni
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Woutersen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Sukenik
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - D. N. Woolfson
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
- School of BiochemistryUniversity of Bristol, Biomedical Sciences BuildingBristolUK
| | - A. S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - T. C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
4
|
Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, van der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proc Natl Acad Sci U S A 2024; 121:e2313162121. [PMID: 38451946 PMCID: PMC10945838 DOI: 10.1073/pnas.2313162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/30/2023] [Indexed: 03/09/2024] Open
Abstract
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Liru Feng
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Kevin Klein
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
- University College London, Division of Physics and Astronomy, LondonWC1E 6BT, United Kingdom
| | - Guido Giannetti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Yeji Choi
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Federico Caporaletti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Dimitra Micha
- Amsterdam University Medical Centers, Human Genetics Department, Vrije Universiteit, Amsterdam1007 MB, The Netherlands
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Antoine Deblais
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Andela Šarić
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
| | - Ioana M. Ilie
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| |
Collapse
|
5
|
Giubertoni G, Hilbers M, Caporaletti F, Laity P, Groen H, Van der Weide A, Bonn D, Woutersen S. Hydrogen Bonds under Stress: Strain-Induced Structural Changes in Polyurethane Revealed by Rheological Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2023; 14:940-946. [PMID: 36688732 PMCID: PMC9900637 DOI: 10.1021/acs.jpclett.2c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The remarkable elastic properties of polymers are ultimately due to their molecular structure, but the relation between the macroscopic and molecular properties is often difficult to establish, in particular for (bio)polymers that contain hydrogen bonds, which can easily rearrange upon mechanical deformation. Here we show that two-dimensional infrared spectroscopy on polymer films in a miniature stress tester sheds new light on how the hydrogen-bond structure of a polymer is related to its viscoelastic response. We study thermoplastic polyurethane, a block copolymer consisting of hard segments of hydrogen-bonded urethane groups embedded in a soft matrix of polyether chains. The conventional infrared spectrum shows that, upon deformation, the number of hydrogen bonds increases, a process that is largely reversible. However, the 2DIR spectrum reveals that the distribution of hydrogen-bond strengths becomes slightly narrower after a deformation cycle, due to the disruption of weak hydrogen bonds, an effect that could explain the strain-cycle induced softening (Mullins effect) of polyurethane. These results show how rheo-2DIR spectroscopy can bridge the gap between the molecular structure and the macroscopic elastic properties of (bio)polymers.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Michiel Hilbers
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Federico Caporaletti
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Peter Laity
- Department
of Materials Science and Engineering, University
of Sheffield, Sir Robert
Hadfield Building, Mappin Street, Sheffield S1 3JD, U.K.
| | - Hajo Groen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Anne Van der Weide
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Giubertoni G, Caporaletti F, Roeters SJ, Chatterley AS, Weidner T, Laity P, Holland C, Woutersen S. In Situ Identification of Secondary Structures in Unpurified Bombyx mori Silk Fibrils Using Polarized Two-Dimensional Infrared Spectroscopy. Biomacromolecules 2022; 23:5340-5349. [PMID: 36437734 DOI: 10.1021/acs.biomac.2c01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanical properties of biomaterials are dictated by the interactions and conformations of their building blocks, typically proteins. Although the macroscopic behavior of biomaterials is widely studied, our understanding of the underlying molecular properties is generally limited. Among the noninvasive and label-free methods to investigate molecular structures, infrared spectroscopy is one of the most commonly used tools because the absorption bands of amide groups strongly depend on protein secondary structure. However, spectral congestion usually complicates the analysis of the amide spectrum. Here, we apply polarized two-dimensional (2D) infrared spectroscopy (IR) to directly identify the protein secondary structures in native silk films cast from Bombyx mori silk feedstock. Without any additional peak fitting, we find that the initial effect of hydration is an increase of the random coil content at the expense of the helical content, while the β-sheet content is unchanged and only increases at a later stage. This paper demonstrates that 2D-IR can be a valuable tool for characterizing biomaterials.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands.,Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Federico Caporaletti
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands.,Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Steven J Roeters
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands.,Department of Chemistry, Aarhus University, 8000Aarhus C, Denmark
| | | | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000Aarhus C, Denmark
| | - Peter Laity
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, SheffieldS1 3JD, U.K
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, SheffieldS1 3JD, U.K
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
7
|
Roeters SJ, Golbek TW, Bregnhøj M, Drace T, Alamdari S, Roseboom W, Kramer G, Šantl-Temkiv T, Finster K, Pfaendtner J, Woutersen S, Boesen T, Weidner T. Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water. Nat Commun 2021; 12:1183. [PMID: 33608518 PMCID: PMC7895962 DOI: 10.1038/s41467-021-21349-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
Ice-nucleation active (INA) bacteria can promote the growth of ice more effectively than any other known material. Using specialized ice-nucleating proteins (INPs), they obtain nutrients from plants by inducing frost damage and, when airborne in the atmosphere, they drive ice nucleation within clouds, which may affect global precipitation patterns. Despite their evident environmental importance, the molecular mechanisms behind INP-induced freezing have remained largely elusive. We investigate the structural basis for the interactions between water and the ice-nucleating protein InaZ from the INA bacterium Pseudomonas syringae. Using vibrational sum-frequency generation (SFG) and two-dimensional infrared spectroscopy, we demonstrate that the ice-active repeats of InaZ adopt a β-helical structure in solution and at water surfaces. In this configuration, interaction between INPs and water molecules imposes structural ordering on the adjacent water network. The observed order of water increases as the interface is cooled to temperatures close to the melting point of water. Experimental SFG data combined with molecular-dynamics simulations and spectral calculations show that InaZ reorients at lower temperatures. This reorientation can enhance water interactions, and thereby the effectiveness of ice nucleation. Ice-nucleating proteins promote ice formation at high sub-zero temperatures, but the mechanism is still unclear. The authors investigate a model ice-nucleating protein at the air-water interface using vibrational sum frequency generation spectroscopy and simulations, revealing its reorientation at low temperatures, which increases contact with water molecules and promotes their ordering.
Collapse
Affiliation(s)
- Steven J Roeters
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Taner Drace
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sarah Alamdari
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Winfried Roseboom
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Gertjan Kramer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Tina Šantl-Temkiv
- Department of Biology, Aarhus University, Aarhus C, Denmark.,The Stellar Astrophysics Centre - SAC, Department of Physics and Astronomy, Aarhus University, Aarhus C, Denmark
| | - Kai Finster
- Department of Biology, Aarhus University, Aarhus C, Denmark.,The Stellar Astrophysics Centre - SAC, Department of Physics and Astronomy, Aarhus University, Aarhus C, Denmark
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNano, Aarhus University, Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Aarhus C, Denmark. .,Department of Chemical Engineering, University of Washington, Seattle, WA, USA. .,Interdisciplinary Nanoscience Center - iNano, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
8
|
Roeters SJ, Sawall M, Eskildsen CE, Panman MR, Tordai G, Koeman M, Neymeyr K, Jansen J, Smilde AK, Woutersen S. Unraveling VEALYL Amyloid Formation Using Advanced Vibrational Spectroscopy and Microscopy. Biophys J 2020; 119:87-98. [PMID: 32562617 DOI: 10.1016/j.bpj.2020.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Intermediate species are hypothesized to play an important role in the toxicity of amyloid formation, a process associated with many diseases. This process can be monitored with conventional and two-dimensional infrared spectroscopy, vibrational circular dichroism, and optical and electron microscopy. Here, we present how combining these techniques provides insight into the aggregation of the hexapeptide VEALYL (Val-Glu-Ala-Leu-Tyr-Leu), the B-chain residue 12-17 segment of insulin that forms amyloid fibrils (intermolecularly hydrogen-bonded β-sheets) when the pH is lowered below 4. Under such circumstances, the aggregation commences after approximately an hour and continues to develop over a period of weeks. Singular value decompositions of one-dimensional and two-dimensional infrared spectroscopy spectra indicate that intermediate species are formed during the aggregation process. Multivariate curve resolution analyses of the one and two-dimensional infrared spectroscopy data show that the intermediates are more fibrillar and deprotonated than the monomers, whereas they are less ordered than the final fibrillar structure that is slowly formed from the intermediates. A comparison between the vibrational circular dichroism spectra and the scanning transmission electron microscopy and optical microscope images shows that the formation of mature fibrils of VEALYL correlates with the appearance of spherulites that are on the order of several micrometers, which give rise to a "giant" vibrational circular dichroism effect.
Collapse
Affiliation(s)
- Steven J Roeters
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Mathias Sawall
- Institut für Mathematik, Universität Rostock, Rostock, Germany
| | - Carl E Eskildsen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthijs R Panman
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Gergely Tordai
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Mike Koeman
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Klaus Neymeyr
- Institut für Mathematik, Universität Rostock, Rostock, Germany; Leibniz-Institut für Katalyse, Rostock, Germany
| | - Jeroen Jansen
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Age K Smilde
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Hermans JJ, Baij L, Koenis M, Keune K, Iedema PD, Woutersen S. 2D-IR spectroscopy for oil paint conservation: Elucidating the water-sensitive structure of zinc carboxylate clusters in ionomers. SCIENCE ADVANCES 2019; 5:eaaw3592. [PMID: 31245541 PMCID: PMC6588360 DOI: 10.1126/sciadv.aaw3592] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/13/2019] [Indexed: 06/01/2023]
Abstract
The molecular structure around metal ions in polymer materials has puzzled researchers for decades. This question has acquired new relevance with the discovery that aged oil paint binders can adopt an ionomer structure when metal ions leached from pigments bind to carboxylate groups on the polymerized oil network. The characteristics of the metal-polymer structure are expected to have important consequences for the rate of oil paint degradation reactions such as metal soap formation and oil hydrolysis. Here, we use two-dimensional infrared (2D-IR) spectroscopy to demonstrate that zinc carboxylates formed in paint films containing zinc white pigment adopt either a coordination chain- or an oxo-type cluster structure. Moreover, it was found that the presence of water governs the relative concentration of these two types of zinc carboxylate coordination. The results pave the way for a molecular approach to paintings conservation and the application of 2D-IR spectroscopy to the study of polymer structure.
Collapse
Affiliation(s)
- Joen. J. Hermans
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GD Amsterdam, Netherlands
- Rijksmuseum Amsterdam, Conservation and Science, PO Box 74888, 1070 DN Amsterdam, Netherlands
| | - Lambert Baij
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GD Amsterdam, Netherlands
- Rijksmuseum Amsterdam, Conservation and Science, PO Box 74888, 1070 DN Amsterdam, Netherlands
| | - Mark Koenis
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GD Amsterdam, Netherlands
| | - Katrien Keune
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GD Amsterdam, Netherlands
- Rijksmuseum Amsterdam, Conservation and Science, PO Box 74888, 1070 DN Amsterdam, Netherlands
| | - Piet D. Iedema
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GD Amsterdam, Netherlands
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GD Amsterdam, Netherlands
| |
Collapse
|
10
|
Strudwick BH, O'Bryen C, Sanders HJ, Woutersen S, Buma WJ. Opening 2,2-diphenyl-2H-chromene to infrared light. Phys Chem Chem Phys 2019; 21:11689-11696. [PMID: 31134263 PMCID: PMC8610085 DOI: 10.1039/c9cp01906e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved vibrational spectroscopy studies are reported on the photoinduced structural dynamics of 2,2-diphenyl-2H-chromene, a prototypical photochromic compound that undergoes ring opening upon UV radiation. The transient IR absorption measurements in combination with (TD-)DFT calculations have been used to understand in detail the life cycle of such compounds. Excited-state decay and ring opening was found to occur on an ultrafast time scale. Three species have been identified in the time-resolved IR spectra with two short-lived species (on a picosecond timescale) and a final long-lived species that remains after the measurable ns delay range. These species have been assigned to various open isomers using quantum chemical calculations of equilibrium structures and force fields. From the experiments and calculations key conclusions can be drawn on previously suggested models for the photocycle of such compounds, as well as on possible ways to controllably influence the performance of these compounds. Opening a prototypical chromene compound using UV radiation and witnessing the evolution of the photoactivated structures with infrared light.![]()
Collapse
Affiliation(s)
- Benjamin H Strudwick
- Molecular Photonics Group, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Strudwick BH, Zhang J, Hilbers MF, Buma WJ, Woutersen S, Liu SH, Hartl F. Excited-State Electronic Asymmetry Prevents Photoswitching in Terthiophene Compounds. Inorg Chem 2018; 57:9039-9047. [PMID: 30027738 DOI: 10.1021/acs.inorgchem.8b01005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diarylethene moiety is one of the most extensively used switches in the field of molecular electronics. Here we report on spectroscopic and quantum chemical studies of two diarylethene-based compounds with a non- C3-symmetric triethynyl terthiophene core symmetrically substituted with RuCp*(dppe) or trimethylsilyl termini. The ethynyl linkers are strong IR markers that we use in time-resolved vibrational spectroscopic studies to get insight into the character and dynamics of the electronically excited states of these compounds on the picosecond to nanosecond time scale. In combination with electronic transient absorption studies and DFT calculations, our studies show that the conjugation of the non- C3-symmetric triethynyl terthiophene system in the excited state strongly affects one of the thiophene rings involved in the ring closure. As a result, cyclization of the otherwise photochromic 3,3″-dimethyl-2,2':3',2″-terthiophene core is inhibited. Instead, the photoexcited compounds undergo intersystem crossing to a long-lived triplet excited state from which they convert back to the ground state.
Collapse
Affiliation(s)
- Benjamin H Strudwick
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Jing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P.R. China
| | - Michiel F Hilbers
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Wybren Jan Buma
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Sander Woutersen
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P.R. China
| | - František Hartl
- Department of Chemistry , University of Reading , Whiteknights, Reading RG6 6AD , United Kingdom
| |
Collapse
|
12
|
Iyer A, Roeters SJ, Kogan V, Woutersen S, Claessens MMAE, Subramaniam V. C-Terminal Truncated α-Synuclein Fibrils Contain Strongly Twisted β-Sheets. J Am Chem Soc 2017; 139:15392-15400. [PMID: 28968082 PMCID: PMC5668890 DOI: 10.1021/jacs.7b07403] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
C-terminal truncations
of monomeric wild-type alpha-synuclein (henceforth
WT-αS) have been shown to enhance the formation of amyloid aggregates
both in vivo and in vitro and have
been associated with accelerated progression of Parkinson’s
disease (PD). The correlation with PD may not solely be a result of
faster aggregation, but also of which fibril polymorphs are preferentially
formed when the C-terminal residues are deleted. Considering that
different polymorphs are known to result in distinct pathologies,
it is important to understand how these truncations affect the organization
of αS into fibrils. Here we present high-resolution microscopy
and advanced vibrational spectroscopy studies that indicate that the
C-terminal truncation variant of αS, lacking residues 109–140
(henceforth referred to as 1–108-αS), forms amyloid fibrils
with a distinct structure and morphology. The 1–108-αS
fibrils have a unique negative circular dichroism band at ∼230
nm, a feature that differs from the canonical ∼218 nm band
usually observed for amyloid fibrils. We show evidence that 1–108-αS
fibrils consist of strongly twisted β-sheets with an increased
inter-β-sheet distance and a higher solvent exposure than WT-αS
fibrils, which is also indicated by the pronounced differences in
the 1D-IR (FTIR), 2D-IR, and vibrational circular dichroism spectra.
As a result of their distinct β-sheet structure, 1–108-αS
fibrils resist incorporation of WT-αS monomers.
Collapse
Affiliation(s)
- Aditya Iyer
- Nanoscale Biophysics Group, AMOLF , Science Park 104, Amsterdam 1098 XG, The Netherlands.,Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Steven J Roeters
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Vladimir Kogan
- Dannalab BV , Wethouder Beversstraat 185, Enschede 7543 BK, The Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Mireille M A E Claessens
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Vinod Subramaniam
- Nanoscale Biophysics Group, AMOLF , Science Park 104, Amsterdam 1098 XG, The Netherlands.,Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands.,Vrije Universiteit Amsterdam , De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
13
|
Wang J. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1321856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, P.R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
14
|
Roeters SJ, Iyer A, Pletikapić G, Kogan V, Subramaniam V, Woutersen S. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy. Sci Rep 2017; 7:41051. [PMID: 28112214 PMCID: PMC5253669 DOI: 10.1038/srep41051] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.
Collapse
Affiliation(s)
- Steven J Roeters
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aditya Iyer
- Nanoscale Biophysics Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Galja Pletikapić
- Nanoscale Biophysics Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Vladimir Kogan
- Dannalab BV, Wethouder Beversstraat 185, 7543 BK Enschede, The Netherlands
| | - Vinod Subramaniam
- Nanoscale Biophysics Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
15
|
Meuzelaar H, Panman MR, van Dijk CN, Woutersen S. Folding of a Zinc-Finger ββα-Motif Investigated Using Two-Dimensional and Time-Resolved Vibrational Spectroscopy. J Phys Chem B 2016; 120:11151-11158. [PMID: 27723346 DOI: 10.1021/acs.jpcb.6b08883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small proteins provide good model systems for studying the fundamental forces that control protein folding. Here, we investigate the folding dynamics of the 28-residue zinc-finger mutant FSD-1, which is designed to form a metal-independent folded ββα-motif, and which provides a testing ground for proteins containing a mixed α/β fold. Although the folding of FSD-1 has been actively studied, the folding mechanism remains largely unclear. In particular, it is unclear in what stage of folding the α-helix is formed. To address this issue we investigate the folding mechanism of FSD-1 using a combination of temperature-dependent UV circular dichroism (UV-CD), Fourier transform infrared (FTIR) spectroscopy, two-dimensional infrared (2D-IR) spectroscopy, and temperature-jump (T-jump) transient-IR spectroscopy. Our UV-CD and FTIR data show different thermal melting transitions, indicating multistate folding behavior. Temperature-dependent 2D-IR spectra indicate that the α-helix is the most stable structural element of FSD-1. To investigate the folding/unfolding re-equilibration dynamics of FSD-1, the conformational changes induced by a nanosecond T-jump are probed with transient-IR and transient dispersed-pump-probe (DPP) IR spectroscopy. We observe biexponential T-jump relaxation kinetics (with time constants of 80 ± 13 ns and 1300 ± 100 ns at 322 K), confirming that the folding involves an intermediate state. The IR and dispersed-pump-probe IR spectra associated with the two kinetic components suggest that the folding of FSD-1 involves early formation of the α-helix, followed by the formation of the β-hairpin and hydrophobic contacts.
Collapse
Affiliation(s)
- Heleen Meuzelaar
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Matthijs R Panman
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris N van Dijk
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
Iyer A, Roeters SJ, Schilderink N, Hommersom B, Heeren RMA, Woutersen S, Claessens MMAE, Subramaniam V. The Impact of N-terminal Acetylation of α-Synuclein on Phospholipid Membrane Binding and Fibril Structure. J Biol Chem 2016; 291:21110-21122. [PMID: 27531743 PMCID: PMC5076520 DOI: 10.1074/jbc.m116.726612] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/29/2022] Open
Abstract
Human α-synuclein (αS) has been shown to be N terminally acetylated in its physiological state. This modification is proposed to modulate the function and aggregation of αS into amyloid fibrils. Using bacterially expressed acetylated-αS (NTAc-αS) and endogenous αS (Endo-αS) from human erythrocytes, we show that N-terminal acetylation has little impact on αS binding to anionic membranes and thus likely not relevant for regulating membrane affinity. N-terminal acetylation does have an effect on αS aggregation, resulting in a narrower distribution of the aggregation lag times and rates. 2D-IR spectra show that acetylation changes the secondary structure of αS in fibrils. This difference may arise from the slightly higher helical propensity of acetylated-αS in solution leading to a more homogenous fibril population with different fibril structure than non-acetylated αS. We speculate that N-terminal acetylation imposes conformational restraints on N-terminal residues in αS, thus predisposing αS toward specific interactions with other binding partners or alternatively decrease nonspecific interactions.
Collapse
Affiliation(s)
- Aditya Iyer
- From the Nanoscale Biophysics Group, FOM Institute AMOLF, Amsterdam, the Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede
| | - Steven J Roeters
- the Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam
| | - Nathalie Schilderink
- the Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede
| | - Bob Hommersom
- the BioImaging MS Group, FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Ron M A Heeren
- the BioImaging MS Group, FOM Institute AMOLF, Amsterdam, The Netherlands, the M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, and
| | - Sander Woutersen
- the Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam,
| | | | - Vinod Subramaniam
- From the Nanoscale Biophysics Group, FOM Institute AMOLF, Amsterdam, the Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, the Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
17
|
Feng Y, Huang J, Kim S, Shim JH, MacKerell AD, Ge NH. Structure of Penta-Alanine Investigated by Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation. J Phys Chem B 2016; 120:5325-39. [PMID: 27299801 DOI: 10.1021/acs.jpcb.6b02608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the structure of (Ala)5, a model unfolded peptide, using a combination of 2D IR spectroscopy and molecular dynamics (MD) simulation. Two different isotopomers, each bis-labeled with (13)C═O and (13)C═(18)O, were strategically designed to shift individual site frequencies and uncouple neighboring amide-I' modes. 2D IR spectra taken under the double-crossed ⟨π/4, -π/4, Y, Z⟩ polarization show that the labeled four-oscillator systems can be approximated by three two-oscillator systems. By utilizing the different polarization dependence of diagonal and cross peaks, we extracted the coupling constants and angles between three pairs of amide-I' transition dipoles through spectral fitting. These parameters were related to the peptide backbone dihedral angles through DFT calculated maps. The derived dihedral angles are all located in the polyproline-II (ppII) region of the Ramachandran plot. These results were compared to the conformations sampled by Hamiltonian replica-exchange MD simulations with three different CHARMM force fields. The C36 force field predicted that ppII is the dominant conformation, consistent with the experimental findings, whereas C22/CMAP predicted similar population for α+, β, and ppII, and the polarizable Drude-2013 predicted dominating β structure. Spectral simulation based on MD representative conformations and structure ensembles demonstrated the need to include multiple 2D spectral features, especially the cross-peak intensity ratio and shape, in structure determination. Using 2D reference spectra defined by the C36 structure ensemble, the best spectral simulation is achieved with nearly 100% ppII population, although the agreement with the experimental cross-peak intensity ratio is still insufficient. The dependence of population determination on the choice of reference structures/spectra and the current limitations on theoretical modeling relating peptide structures to spectral parameters are discussed. Compared with the previous results on alanine based oligopeptides, the dihedral angles of our fitted structure, and the most populated ppII structure from the C36 simulation are in good agreement with those suggesting a major ppII population. Our results provide further support for the importance of ppII conformation in the ensemble of unfolded peptides.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Jing Huang
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Seongheun Kim
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Ji Hyun Shim
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
18
|
Huerta-Viga A, Amirjalayer S, Domingos SR, Meuzelaar H, Rupenyan A, Woutersen S. The structure of salt bridges between Arg+ and Glu− in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries. J Chem Phys 2015; 142:212444. [DOI: 10.1063/1.4921064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Adriana Huerta-Viga
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Saeed Amirjalayer
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Sérgio R. Domingos
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Heleen Meuzelaar
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Alisa Rupenyan
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
19
|
Huerta-Viga A, Domingos SR, Amirjalayer S, Woutersen S. A salt-bridge structure in solution revealed by 2D-IR spectroscopy. Phys Chem Chem Phys 2015; 16:15784-6. [PMID: 24676430 DOI: 10.1039/c4cp00233d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a significant change in the infrared response of Gdm(+) and Ac(-), and cross peaks between them appear in the 2D-IR spectrum. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes of Gdm(+) and Ac(-), as well as the coupling between them.
Collapse
Affiliation(s)
- Adriana Huerta-Viga
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Panman MR, Vos J, Bocokić V, Bellini R, de Bruin B, Reek JHN, Woutersen S. Exchanging conformations of a hydroformylation catalyst structurally characterized using two-dimensional vibrational spectroscopy. Inorg Chem 2013; 52:14294-8. [PMID: 24256078 DOI: 10.1021/ic402254q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytic transition-metal complexes often occur in several conformations that exchange rapidly (<ms) in solution so that their spatial structures are difficult to characterize with conventional methods. Here, we determine specific bond angles in the two rapidly exchanging solution conformations of the hydroformylation catalyst (xantphos)Rh(CO)2H using two-dimensional vibrational spectroscopy, a method that can be applied to any catalyst provided that the exchange between its conformers occurs on a time scale of a few picoseconds or slower. We find that, in one of the conformations, the OC-Rh-CO angle deviates significantly from the canonical value in a trigonal-bipyramidal structure. On the basis of complementary density functional calculations, we ascribe this effect to attractive van der Waals interaction between the CO and the xantphos ligand.
Collapse
Affiliation(s)
- Matthijs R Panman
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Studying Biomacromolecules with Two-Dimensional Infrared Spectroscopy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 93:1-36. [DOI: 10.1016/b978-0-12-416596-0.00001-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Panman MR, Newton AC, Vos J, van den Bosch B, Bocokić V, Reek JNH, Woutersen S. Ultrafast dynamics in iron tetracarbonyl olefin complexes investigated with two-dimensional vibrational spectroscopy. Phys Chem Chem Phys 2013; 15:1115-22. [DOI: 10.1039/c2cp43565a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Yang M. Time-averaging approximation in the interaction picture: Anisotropy of vibrational pump-probe experiments for coupled chromophores with application to liquid water. J Chem Phys 2012; 137:154102. [DOI: 10.1063/1.4758453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Wu Y, Liu S, He L. Polymerization-assisted signal amplification for electrochemical detection of biomarkers. Analyst 2011; 136:2558-63. [DOI: 10.1039/c1an15134g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|