1
|
Li D, Chen P, Dong Q, Liu B, Zhang W, Wei DQ, Guo B. Investigating the stabilisation of IFN-α2a by replica exchange molecular dynamics simulation. J Mol Model 2022; 28:232. [PMID: 35882698 DOI: 10.1007/s00894-022-05212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Current biopharmaceutical drugs are mainly a class of peptides or proteins that play an essential role in the treatment of many diseases. Such peptides/proteins are usually thermally unstable and may lose their bioactivity when exposed to ambient conditions. Therefore, they are not suitable for long-term storage. Lyophilisation is the most common method to prolong shelf life of solid peptide/protein drugs; however, the freeze-drying process can lead to irreversible damage. In the present study, human interferon-alpha 2a (IFN-α2a) was selected as a model protein drug; four disaccharides (β-lactose, β-maltose, sucrose, and trehalose) were selected as bioactive protectants. We investigated the effects of different protectants on IFN-α2a under various ambient conditions (vacuum, dry state, and aqueous solution) using replica exchange molecular dynamics simulation. The protective effect of β-maltose on IFN-α2a was the highest in aqueous solution and dry state, β-lactose showed a poor protective effect in all three conditions, the performance of sucrose was good in all conditions, and trehalose showed a better protective effect under vacuum conditions and in aqueous solution. Disaccharides form H-bonds with water, thereby preventing water from the tertiary structure of proteins. Trehalose forms strong H-bonds with water which explains its extraordinary stability.
Collapse
Affiliation(s)
- Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China.
| | - Peiqin Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Qingli Dong
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Wujie Zhang
- Physics and Chemistry Department, Milwaukee School of Engineering, Milwaukee, WI, 53202, USA
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center On Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Baisong Guo
- Injection Laboratory, Shanghai Tofflon Science and Technology Co, Ltd, Shanghai, 201108, China
| |
Collapse
|
2
|
Assessment of transferable forcefields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization. Comput Struct Biotechnol J 2021; 19:2626-2636. [PMID: 34025949 PMCID: PMC8120800 DOI: 10.1016/j.csbj.2021.04.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
Continuous assessment of transferable forcefields for molecular simulations is essential to identify their weaknesses and direct improvement efforts. The latest efforts focused on better describing disordered proteins while retaining proper description of folded domains, important because forcefields of the previous generations produce overly compact disordered states. Such improvements should additionally alleviate the related problem of over-stabilized protein–protein interactions, which has been largely overlooked. Here we evaluated three state-of-the-art forcefields, current flagships of their respective developers, optimized for ordered and disordered proteins: CHARMM36m with its recommended corrected TIP3P* water, ff19SB with the recommended OPC water, and the 2019 a99SBdisp forcefield by D. E. Shaw Research with its modified TIP4P water; plus ff14SB with TIP3P as an example of the former generation of forcefields. Our evaluation entailed simulations of (i) multiple copies of a protein that is highly soluble yet undergoes weak dimerization, (ii) a disordered peptide with low, well-characterized alpha helical propensity, and (iii) a peptide known to form insoluble β-aggregates. Our results recapitulate ff14SB-TIP3P over-stabilizing aggregates and secondary structures and place a99SBdisp-TIP4PD at the other end i.e. predicting overly weak intermolecular interactions despite reasonably predicting secondary structure propensities. In-between, CHARMM36m-TIP3P* still over-stabilizes aggregates but predicts residue-wise alpha helical propensities in solution slightly better than ff19SB-OPC, while ff19SB-OPC poses the best prediction of weak dimerization of the soluble protein still predicting aggregation of the β-peptides. This independent assessment shows that the claimed forcefield improvements are real, but also that a right balance between noncovalent attraction and repulsion has not yet been reached. We thus propose developers to consider systems like those tested here in their forcefield tuning protocols. Last, the good performance of CHARMM36m-TIP3P* further shows that tuning 3-point water models might still be an alternative to the more costly 4-point models like OPC and TIP4PD.
Collapse
|
3
|
Camisasca G, De Marzio M, Gallo P. Effect of trehalose on protein cryoprotection: Insights into the mechanism of slowing down of hydration water. J Chem Phys 2021; 153:224503. [PMID: 33317300 DOI: 10.1063/5.0033526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study, with molecular dynamics simulations, a lysozyme protein immersed in a water-trehalose solution upon cooling. The aim is to understand the cryoprotectant role played by this disaccharide through the modifications that it induces on the slow dynamics of protein hydration water with its presence. The α-relaxation shows a fragile to strong crossover about 20° higher than that in the bulk water phase and 15° higher than that in lysozyme hydration water without trehalose. The protein hydration water without trehalose was found to show a second slower relaxation exhibiting a strong to strong crossover coupled with the protein dynamical transition. This slower relaxation time importantly appears enormously slowed down in our cryoprotectant solution. On the other hand, this long-relaxation in the presence of trehalose is also connected with a stronger damping of the protein structural fluctuations than that found when the protein is in contact with the pure hydration water. Therefore, this appears to be the mechanism through which trehalose manifests its cryoprotecting function.
Collapse
Affiliation(s)
- Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
| | - Margherita De Marzio
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
| |
Collapse
|
4
|
Bashardanesh Z, Elf J, Zhang H, van der Spoel D. Rotational and Translational Diffusion of Proteins as a Function of Concentration. ACS OMEGA 2019; 4:20654-20664. [PMID: 31858051 PMCID: PMC6906769 DOI: 10.1021/acsomega.9b02835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/14/2019] [Indexed: 05/21/2023]
Abstract
Atomistic simulations of three different proteins at different concentrations are performed to obtain insight into protein mobility as a function of protein concentration. We report on simulations of proteins from diluted to the physiological water concentration (about 70% of the mass). First, the viscosity was computed and found to increase by a factor of 7-9 going from pure water to the highest protein concentration, in excellent agreement with in vivo nuclear magnetic resonance results. At a physiological concentration of proteins, the translational diffusion is found to be slowed down to about 30% of the in vitro values. The slow-down of diffusion found here using atomistic models is slightly more than that of a hard sphere model that neglects the electrostatic interactions. Interestingly, rotational diffusion of proteins is slowed down somewhat more (by about 80-95% compared to in vitro values) than translational diffusion, in line with experimental findings and consistent with the increased viscosity. The finding that rotation is retarded more than translation is attributed to solvent-separated clustering. No direct interactions between the proteins are found, and the clustering can likely be attributed to dispersion interactions that are stronger between proteins than between protein and water. Based on these simulations, we can also conclude that the internal dynamics of the proteins in our study are affected only marginally under crowding conditions, and the proteins become somewhat more stable at higher concentrations. Simulations were performed using a force field that was tuned for dealing with crowding conditions by strengthening the protein-water interactions. This force field seems to lead to a reproducible partial unfolding of an α-helix in one of the proteins, an effect that was not observed in the unmodified force field.
Collapse
Affiliation(s)
- Zahedeh Bashardanesh
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| | - Johan Elf
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| | - Haiyang Zhang
- Department
of Biological Science and Engineering, School of Chemistry and Biological
Engineering, University of Science and Technology
Beijing, 100083 Beijing, China
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
- E-mail: . Phone: +46 18 4714205
| |
Collapse
|
5
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
6
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
7
|
Honegger P, Steinhauser O. Towards capturing cellular complexity: combining encapsulation and macromolecular crowding in a reverse micelle. Phys Chem Chem Phys 2019; 21:8108-8120. [DOI: 10.1039/c9cp00053d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper studies the orientational structure and dynamics of multi-protein systems under confinement and discusses the implications on biological cells.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| |
Collapse
|
8
|
Honegger P, Heid E, Schmode S, Schröder C, Steinhauser O. Changes in protein hydration dynamics by encapsulation or crowding of ubiquitin: strong correlation between time-dependent Stokes shift and intermolecular nuclear Overhauser effect. RSC Adv 2019; 9:36982-36993. [PMID: 35539058 PMCID: PMC9075347 DOI: 10.1039/c9ra08008b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The local changes in protein hydration dynamics upon encapsulation of the protein or macromolecular crowding are essential to understand protein function in cellular environments. We were able to obtain a spatially-resolved picture of the influence of confinement and crowding on the hydration dynamics of the protein ubiquitin by analyzing the time-dependent Stokes shift (TDSS), as well as the intermolecular Nuclear Overhauser Effect (NOE) at different sites of the protein by large-scale computer simulation of single and multiple proteins in water and confined in reverse micelles. Besides high advanced space resolved information on hydration dynamics we found a strong correlation of the change in NOE upon crowding or encapsulation and the change in the integral TDSS relaxation times in all investigated systems relative to the signals in a diluted protein solution. Changes in local protein hydration dynamics caused by encapsulation or crowding are reflected in the TDSS and the intermolecular NOE alike.![]()
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Esther Heid
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Stella Schmode
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Christian Schröder
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- Austria
| |
Collapse
|
9
|
Honegger P, Schmollngruber M, Steinhauser O. Macromolecular crowding and the importance of proper hydration for the structure and dynamics of protein solutions. Phys Chem Chem Phys 2018; 20:19581-19594. [DOI: 10.1039/c8cp02360c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive computational studies of ubiquitin crowding with a special focus on protein hydration directly visible in dielectric spectra.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Michael Schmollngruber
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| |
Collapse
|
10
|
Abriata LA. Structural database resources for biological macromolecules. Brief Bioinform 2017; 18:659-669. [PMID: 27273290 DOI: 10.1093/bib/bbw049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 12/30/2022] Open
Abstract
This Briefing reviews the widely used, currently active, up-to-date databases derived from the worldwide Protein Data Bank (PDB) to facilitate browsing, finding and exploring its entries. These databases contain visualization and analysis tools tailored to specific kinds of molecules and interactions, often including also complex metrics precomputed by experts or external programs, and connections to sequence and functional annotation databases. Importantly, updates of most of these databases involves steps of curation and error checks based on specific expertise about the subject molecules or interactions, and removal of sequence redundancy, both leading to better data sets for mining studies compared with the full list of raw PDB entries. The article presents the databases in groups such as those aimed to facilitate browsing through PDB entries, their molecules and their general information, those built to link protein structure with sequence and dynamics, those specific for transmembrane proteins, nucleic acids, interactions of biomacromolecules with each other and with small molecules or metal ions, and those concerning specific structural features or specific protein families. A few webservers directly connected to active databases, and a few databases that have been discontinued but would be important to have back, are also briefly commented on. Along the Briefing, sample cases where these databases have been used to aid structural studies or advance our knowledge about biological macromolecules are referenced. A few specific examples are also given where using these databases is easier and more informative than using raw PDB data.
Collapse
|
11
|
Feig M, Yu I, Wang PH, Nawrocki G, Sugita Y. Crowding in Cellular Environments at an Atomistic Level from Computer Simulations. J Phys Chem B 2017; 121:8009-8025. [PMID: 28666087 PMCID: PMC5582368 DOI: 10.1021/acs.jpcb.7b03570] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The
effects of crowding in biological environments on biomolecular
structure, dynamics, and function remain not well understood. Computer
simulations of atomistic models of concentrated peptide and protein
systems at different levels of complexity are beginning to provide
new insights. Crowding, weak interactions with other macromolecules
and metabolites, and altered solvent properties within cellular environments
appear to remodel the energy landscape of peptides and proteins in
significant ways including the possibility of native state destabilization.
Crowding is also seen to affect dynamic properties, both conformational
dynamics and diffusional properties of macromolecules. Recent simulations
that address these questions are reviewed here and discussed in the
context of relevant experiments.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States.,Quantitative Biology Center, RIKEN , Kobe, Japan
| | - Isseki Yu
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan
| | - Po-Hung Wang
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan
| | - Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States
| | - Yuji Sugita
- Quantitative Biology Center, RIKEN , Kobe, Japan.,Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan.,Advanced Institute for Computational Science, RIKEN , Kobe, Japan
| |
Collapse
|
12
|
Abriata LA, Spiga E, Peraro MD. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics. Biophys J 2017; 111:743-755. [PMID: 27558718 DOI: 10.1016/j.bpj.2016.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022] Open
Abstract
Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function.
Collapse
Affiliation(s)
- Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Enrico Spiga
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
13
|
Menon S, Sengupta N. Influence of Hyperglycemic Conditions on Self-Association of the Alzheimer's Amyloid β (Aβ 1-42) Peptide. ACS OMEGA 2017; 2:2134-2147. [PMID: 30023655 PMCID: PMC6044820 DOI: 10.1021/acsomega.7b00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Clinical studies have identified a correlation between type-2 diabetes mellitus and cognitive decrements en route to the onset of Alzheimer's disease (AD). Recent studies have established that post-translational modifications of the amyloid β (Aβ) peptide occur under hyperglycemic conditions; particularly, the process of glycation exacerbates its neurotoxicity and accelerates AD progression. In view of the assertion that macromolecular crowding has an altering effect on protein self-assembly, it is crucial to characterize the effects of hyperglycemic conditions via crowding on Aβ self-assembly. Toward this purpose, fully atomistic molecular dynamics simulations were performed to study the effects of glucose crowding on Aβ dimerization, which is the smallest known neurotoxic species. The dimers formed in the glucose-crowded environment were found to have weaker associations as compared to that of those formed in water. Binding free energy calculations show that the reduced binding strength of the dimers can be mainly attributed to the overall weakening of the dispersion interactions correlated with substantial loss of interpeptide contacts in the hydrophobic patches of the Aβ units. Analysis to discern the differential solvation pattern in the glucose-crowded and pure water systems revealed that glucose molecules cluster around the protein, at a distance of 5-7 Å, which traps the water molecules in close association with the protein surface. This preferential exclusion of glucose molecules and resulting hydration of the Aβ peptides has a screening effect on the hydrophobic interactions, which in turn diminishes the binding strength of the resulting dimers. Our results imply that physical effects attributed to crowded hyperglycemic environments are incapable of solely promoting Aβ self-assembly, indicating that further mechanistic studies are required to provide insights into the self-assembly of post-translationally modified Aβ peptides, known to possess aggravated toxicity, under these conditions.
Collapse
Affiliation(s)
- Sneha Menon
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi
Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus,
CSIR Road, Chennai 600113, India
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
14
|
Alfano C, Sanfelice D, Martin SR, Pastore A, Temussi PA. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states. Nat Commun 2017; 8:15428. [PMID: 28516908 PMCID: PMC5454340 DOI: 10.1038/ncomms15428] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Macromolecular crowding ought to stabilize folded forms of proteins, through an excluded volume effect. This explanation has been questioned and observed effects attributed to weak interactions with other cell components. Here we show conclusively that protein stability is affected by volume exclusion and that the effect is more pronounced when the crowder's size is closer to that of the protein under study. Accurate evaluation of the volume exclusion effect is made possible by the choice of yeast frataxin, a protein that undergoes cold denaturation above zero degrees, because the unfolded form at low temperature is more expanded than the corresponding one at high temperature. To achieve optimum sensitivity to changes in stability we introduce an empirical parameter derived from the stability curve. The large effect of PEG 20 on cold denaturation can be explained by a change in water activity, according to Privalov's interpretation of cold denaturation.
Collapse
Affiliation(s)
- Caterina Alfano
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
| | - Domenico Sanfelice
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
| | - Stephen R. Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Annalisa Pastore
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Piero Andrea Temussi
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Napoli 80126, Italy
| |
Collapse
|
15
|
Lay WK, Miller MS, Elcock AH. Reparameterization of Solute-Solute Interactions for Amino Acid-Sugar Systems Using Isopiestic Osmotic Pressure Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:1874-1882. [PMID: 28437100 PMCID: PMC5844349 DOI: 10.1021/acs.jctc.7b00194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AMBER/GLYCAM and CHARMM are popular force fields for simulations of amino acids and sugars. Here we report excessively attractive amino acid-sugar interactions in both force fields, and corrections to nonbonded interactions that match experimental osmotic pressures of mixed aqueous solutions of diglycine and sucrose. The modified parameters also improve the ΔGtrans of diglycine from water to aqueous sucrose and, with AMBERff99SB/GLYCAM06, eliminate a caging effect seen in previous simulations of the protein ubiquitin with glucose.
Collapse
Affiliation(s)
- Wesley K Lay
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Mark S Miller
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Wang PH, Yu I, Feig M, Sugita Y. Influence of protein crowder size on hydration structure and dynamics in macromolecular crowding. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Reichert D, Gröger S, Hackel C. New insights into the interaction of proteins and disaccharides-The effect of pH and concentration. Biopolymers 2017; 107:39-45. [PMID: 27677543 DOI: 10.1002/bip.22990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022]
Abstract
To gain new insights into the interaction of proteins and disaccharides, we investigated the hydrodynamic radii, RhProt, of lysozyme molecules in solution and in a ternary protein-sugar-water system by PFG-NMR. Our approach is based on the assumption that the anhydrobiotic properties of disaccharides like trehalose are based on aggregation of sugar molecules to the proteins, i.e., accumulation of sugar molecules close to the protein, and that this process can be investigated by the experimentally detectable RhProt value of the protein. The Rh values are calculated from the experimentally determined diffusion coefficients and the application of a viscosity correction using the inert molecule dioxane as an internal viscosity reference. The experiments were performed as a function of sugar concentration, the overall particle concentration and the pH value. We investigated the disaccharides trehalose and sucrose, mainly for the reason that trehalose has well know cryptobiotic properties while sucrose, which is similar in size and structure, lacks these properties. The results show the formation of a protective sugar shell around the proteins over a wider range of concentrations and pH values in the case of trehalose.
Collapse
Affiliation(s)
- Detlef Reichert
- Department of Physics, University of Halle, Halle, 06120, Germany
| | - Stefan Gröger
- Department of Physics, University of Halle, Halle, 06120, Germany
| | | |
Collapse
|
18
|
Hoffman L, Wang X, Sanabria H, Cheung MS, Putkey JA, Waxham MN. Relative Cosolute Size Influences the Kinetics of Protein-Protein Interactions. Biophys J 2016; 109:510-20. [PMID: 26244733 DOI: 10.1016/j.bpj.2015.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/29/2015] [Accepted: 06/22/2015] [Indexed: 12/18/2022] Open
Abstract
Protein signaling occurs in crowded intracellular environments, and while high concentrations of macromolecules are postulated to modulate protein-protein interactions, analysis of their impact at each step of the reaction pathway has not been systematically addressed. Potential cosolute-induced alterations in target association are particularly important for a signaling molecule like calmodulin (CaM), where competition among >300 targets governs which pathways are selectively activated. To explore how high concentrations of cosolutes influence CaM-target affinity and kinetics, we methodically investigated each step of the CaM-target binding mechanism under crowded or osmolyte-rich environments mimicked by ficoll-70, dextran-10, and sucrose. All cosolutes stabilized compact conformers of CaM and modulated association kinetics by affecting diffusion and rates of conformational change; however, the results showed that differently sized molecules had variable effects to enhance or impede unique steps of the association pathway. On- and off-rates were modulated by all cosolutes in a compensatory fashion, producing little change in steady-state affinity. From this work insights were gained on how high concentrations of inert crowding agents and osmolytes fit into a kinetic framework to describe protein-protein interactions relevant for cellular signaling.
Collapse
Affiliation(s)
- Laurel Hoffman
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Margaret S Cheung
- Department of Physics, University of Houston, Houston, Texas; The Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - John A Putkey
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas.
| |
Collapse
|
19
|
Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding. Sci Rep 2015; 5:10549. [PMID: 26023027 PMCID: PMC4448524 DOI: 10.1038/srep10549] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023] Open
Abstract
Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin's noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations.
Collapse
|
20
|
Politou A, Temussi PA. Revisiting a dogma: the effect of volume exclusion in molecular crowding. Curr Opin Struct Biol 2015; 30:1-6. [DOI: 10.1016/j.sbi.2014.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/12/2023]
|