1
|
Schmidt A, Ayekoi A, Illarionov B, Fischer M, Bacher A, Weber S. Transient 19F photo-CIDNP: A practical tool to distinguish intermediate radical species and determine isotropic hyperfine coupling constants of 19F nuclei. J Chem Phys 2025; 162:054204. [PMID: 39907138 DOI: 10.1063/5.0246273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Fluorine-containing flavin derivatives can be used as probes in flavin-binding proteins forming radical pairs to exploit the photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect. Knowledge of the hyperfine structure is crucial for studying the mechanism of intramolecular radical-pair formation in proteins. Transient 19F photo-CIDNP NMR has so far not been used to determine the isotropic hyperfine coupling constants of 19F nuclei. Here, we show that this method provides reliable results by studying three monofluorinated flavin mononucleotide (FMN) derivatives in conjunction with 6-fluoro-tryptophan. Combining this method with transient 1H photo-CIDNP spectroscopy leads to a more accurate interpretation of the intermediate radical species forming a radical pair. The gathered information can be used to identify the most promising FMN derivative for usage as a probe for formation of radical pairs in proteins.
Collapse
Affiliation(s)
- Anton Schmidt
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Audrey Ayekoi
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | | | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Kurle-Tucholski P, Wiebeler C, Köhler L, Qin R, Zhao Z, Šimėnas M, Pöppl A, Matysik J. Red Shift in the Absorption Spectrum of Phototropin LOV1 upon the Formation of a Semiquinone Radical: Reconstructing the Orbital Architecture. J Phys Chem B 2024; 128:4344-4353. [PMID: 38688080 PMCID: PMC11089501 DOI: 10.1021/acs.jpcb.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Flavin mononucleotide (FMN) is a ubiquitous blue-light pigment due to its ability to drive one- and two-electron transfer reactions. In both light-oxygen-voltage (LOV) domains of phototropin from the green algae Chlamydomonas reinhardtii, FMN is noncovalently bound. In the LOV1 cysteine-to-serine mutant (C57S), light-induced electron transfer from a nearby tryptophan occurs, and a transient spin-correlated radical pair (SCRP) is formed. Within this photocycle, nuclear hyperpolarization is created by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. In a side reaction, a stable protonated semiquinone radical (FMNH·) forms undergoing a significant bathochromic shift of the first electronic transition from 445 to 591 nm. The incorporation of phototropin LOV1-C57S into an amorphous trehalose matrix, stabilizing the radical, allows for application of various magnetic resonance experiments at ambient temperatures, which are combined with quantum-chemical calculations. As a result, the bathochromic shift of the first absorption band is explained by lifting the degeneracy of the molecular orbital energy levels for electrons with alpha and beta spins in FMNH· due to the additional electron.
Collapse
Affiliation(s)
- Patrick Kurle-Tucholski
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
- Institut
für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Lisa Köhler
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Ruonan Qin
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Ziyue Zhao
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Mantas Šimėnas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Andreas Pöppl
- Felix
Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraße 5, D-04103, Leipzig, Germany
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| |
Collapse
|
3
|
Kim Y, Alia A, Kurle-Tucholski P, Wiebeler C, Matysik J. Electronic Structures of Radical-Pair-Forming Cofactors in a Heliobacterial Reaction Center. Molecules 2024; 29:1021. [PMID: 38474533 DOI: 10.3390/molecules29051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic reaction centers (RCs) are membrane proteins converting photonic excitations into electric gradients. The heliobacterial RCs (HbRCs) are assumed to be the precursors of all known RCs, making them a compelling subject for investigating structural and functional relationships. A comprehensive picture of the electronic structure of the HbRCs is still missing. In this work, the combination of selective isotope labelling of 13C and 15N nuclei and the utilization of photo-CIDNP MAS NMR (photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance) allows for highly enhanced signals from the radical-pair-forming cofactors. The remarkable magnetic-field dependence of the solid-state photo-CIDNP effect allows for observation of positive signals of the electron donor cofactor at 4.7 T, which is interpreted in terms of a dominant contribution of the differential relaxation (DR) mechanism. Conversely, at 9.4 T, the emissive signals mainly originate from the electron acceptor, due to the strong activation of the three-spin mixing (TSM) mechanism. Consequently, we have utilized two-dimensional homonuclear photo-CIDNP MAS NMR at both 4.7 T and 9.4 T. These findings from experimental investigations are corroborated by calculations based on density functional theory (DFT). This allows us to present a comprehensive investigation of the electronic structure of the cofactors involved in electron transfer (ET).
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
4
|
Kurle-Tucholski P, Köhler L, Zhao Z, Link G, Wiebeler C, Matysik J. Stabilization of a flavoprotein for solid-state photo-CIDNP MAS NMR at room temperature by embedding in a glassy sugar matrix. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107497. [PMID: 37295281 DOI: 10.1016/j.jmr.2023.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Hyperpolarization via the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect can be detected in frozen solutions of electron transfer proteins generating a radical-pair upon illumination. The effect has been observed in various natural photosynthetic reaction centers and in light-oxygen-voltage (LOV) sensing domains incorporating a flavin mononucleotide (FMN) as chromophore. In LOV domains, where a highly conserved cysteine is mutated to a flavin to interrupt its natural photochemistry, a radical-pair is generated by electron transfer from a nearby tryptophan to the photoexcited triplet state of FMN. During the photocycle, both the LOV domain and the chromophore are photochemically degraded, e.g., by the formation of singlet oxygen. This limits the time for collection of hyperpolarized nuclear magnetic resonance (NMR) data. We show that embedding of the protein into a trehalose sugar glass matrix stabilizes the protein for 13C solid-state photo-CIDNP NMR experiments which can be conducted at room temperature in a powder sample. Additionally, this preparation allows for incorporation of high amounts of protein further boosting the intensity of the detected signals from FMN and tryptophan at natural abundance. Signal assignment is aided by quantum chemical calculations of absolute shieldings. The underlying mechanism for the surprising absorption-only signal pattern is not yet understood. Comparison to calculated isotropic hyperfine couplings imply that the enhancement is not due to the classical radical-pair mechanism (RPM). Analysis of the anisotropic hyperfine couplings associated with solid-state photo-CIDNP mechanisms also show no simple correlation, suggesting a more complex underlying mechanism.
Collapse
Affiliation(s)
- Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Ziyue Zhao
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Gerhard Link
- Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstraße 2, D-04103 Leipzig, Germany; Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
5
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
6
|
Li S, Yang H, Hofstetter H, Tonelli M, Cavagnero S. Magnetic-Field Dependence of LC-Photo-CIDNP in the Presence of Target Molecules Carrying a Quasi-Isolated Spin Pair. APPLIED MAGNETIC RESONANCE 2023; 54:59-75. [PMID: 37483563 PMCID: PMC10358788 DOI: 10.1007/s00723-022-01506-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 07/25/2023]
Abstract
NMR spectroscopy is well known for its superb resolution, especially at high applied magnetic field. However, the sensitivity of this technique is very low. Liquid-state low-concentration photo-chemically-induced dynamic nuclear polarization (LC-photo-CIDNP) is a promising emerging methodology capable of enhancing NMR sensitivity in solution. LC-photo-CIDNP works well on solvent-exposed Trp and Tyr residues, either in isolation or within proteins. This study explores the magnetic-field dependence of the LC-photo-CIDNP experienced by two tryptophan isotopologs in solution upon in situ LED-mediated optical irradiation. Out of the two uniformly 13C,15N-labeled Trp (Trp-U-13C,15N) and Trp-α-13C-β,β,2,4,5,6,7-d7 species employed here, only the latter bears a quasi-isolated 1Hα-13Cα spin pair. Computer simulations of the predicted polarization due to geminate recombination of both species display a roughly bell-shaped field dependence. However, while Trp-U-13C,15N is predicted to show a maximum at ca. 500 MHz (11.7 T) and a fairly weak field dependence, Trp-α-13C-β,β,2,4,5,6,7-d7 is expected to display a much sharper field dependence accompanied by a dramatic polarization increase at lower field (ca. 200 MHz, 4.7 T). Experimental LC-photo-CIDNP studies on both Trp isotopologs at 1μM concentration, performed at selected fields, are consistent with the theoretical predictions. In summary, this study highlights the prominent field-dependence of LC-photo-CIDNP enhancements (ε ) experienced by Trp isotopologs bearing a quasi-isolated spin pair.
Collapse
Affiliation(s)
- Siyu Li
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - Hanming Yang
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - Heike Hofstetter
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| |
Collapse
|
7
|
Kothe G, Lukaschek M, Yago T, Link G, Ivanov KL, Lin TS. Initializing 2 14 Pure 14-Qubit Entangled Nuclear Spin States in a Hyperpolarized Molecular Solid. J Phys Chem Lett 2021; 12:3647-3654. [PMID: 33826347 DOI: 10.1021/acs.jpclett.1c00726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantum entanglement has been realized on a variety of physical platforms such as quantum dots, trapped atomic ions, and superconductors. Here we introduce specific molecular solids as promising alternative platforms. Our model system is triplet pentacene in a host single crystal at level anticrossing (LAC) conditions. First, a laser pulse generates the triplet state and initiates entanglement between an electron spin and 14 hyperfine coupled proton spins (quantum bits or qubits). This gives rise to large nuclear spin polarization. Subsequently, a resonant high-power microwave (mw) pulse disentangles the electron spin from the nuclear spins. Simultaneously, high-dimensional multiqubit entanglement is formed among the proton spins. We verified the initialization of 214 pure 14-qubit entangled nuclear spin states with an average degree of entanglement of Eav = 0.77 ± 0.03. These results pave the way for large-scale quantum information processing with more than 10 000 multiqubit entangled states corresponding to computational (Hilbert) space dimensions of dim >1053.
Collapse
Affiliation(s)
- Gerd Kothe
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Michail Lukaschek
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Tomoaki Yago
- Department of Physical Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Gerhard Link
- Department of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Tien-Sung Lin
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Ding Y, Kiryutin AS, Zhao Z, Xu QZ, Zhao KH, Kurle P, Bannister S, Kottke T, Sagdeev RZ, Ivanov KL, Yurkovskaya AV, Matysik J. Tailored flavoproteins acting as light-driven spin machines pump nuclear hyperpolarization. Sci Rep 2020; 10:18658. [PMID: 33122681 PMCID: PMC7596710 DOI: 10.1038/s41598-020-75627-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022] Open
Abstract
The solid-state photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect generates non-Boltzmann nuclear spin magnetization, referred to as hyperpolarization, allowing for high gain of sensitivity in nuclear magnetic resonance (NMR). Well known to occur in photosynthetic reaction centers, the effect was also observed in a light-oxygen-voltage (LOV) domain of the blue-light receptor phototropin, in which the functional cysteine was removed to prevent photo-chemical reactions with the cofactor, a flavin mononucleotide (FMN). Upon illumination, the FMN abstracts an electron from a tryptophan to form a transient spin-correlated radical pair (SCRP) generating the photo-CIDNP effect. Here, we report on designed molecular spin-machines producing nuclear hyperpolarization upon illumination: a LOV domain of aureochrome1a from Phaeodactylum tricornutum, and a LOV domain named 4511 from Methylobacterium radiotolerans (Mr4511) which lacks an otherwise conserved tryptophan in its wild-type form. Insertion of the tryptophan at canonical and novel positions in Mr4511 yields photo-CIDNP effects observed by 15N and 1H liquid-state high-resolution NMR with a characteristic magnetic-field dependence indicating an involvement of anisotropic magnetic interactions and a slow-motion regime in the transient paramagnetic state. The heuristic biomimetic design opens new categories of experiments to analyze and apply the photo-CIDNP effect.
Collapse
Affiliation(s)
- Yonghong Ding
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Ziyue Zhao
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Qian-Zhao Xu
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Patrick Kurle
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Saskia Bannister
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Tilman Kottke
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Renad Z Sagdeev
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany.
| |
Collapse
|
9
|
Mathony J, Niopek D. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion. Adv Biol (Weinh) 2020; 5:e2000181. [PMID: 33107225 DOI: 10.1002/adbi.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Indexed: 11/05/2022]
Abstract
Optogenetics harnesses natural photoreceptors to non-invasively control selected processes in cells with previously unmet spatiotemporal precision. Linking the activity of a protein of choice to the conformational state of a photosensor domain through allosteric coupling represents a powerful method for engineering light-responsive proteins. It enables the design of compact and highly potent single-component optogenetic systems with fast on- and off-switching kinetics. However, designing protein-photoreceptor chimeras, in which structural changes of the photoreceptor are effectively propagated to the fused effector protein, is a challenging engineering problem and often relies on trial and error. Here, recent advances in the design and application of optogenetic allosteric switches are reviewed. First, an overview of existing optogenetic tools based on inducible allostery is provided and their utility for cell biology applications is highlighted. Focusing on light-oxygen-voltage domains, a widely applied class of small blue light sensors, the available strategies for engineering light-dependent allostery are presented and their individual advantages and limitations are highlighted. Finally, high-throughput screening technologies based on comprehensive insertion libraries, which could accelerate the creation of stimulus-responsive receptor-protein chimeras for use in optogenetics and beyond, are discussed.
Collapse
Affiliation(s)
- Jan Mathony
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany.,BZH graduate school, Heidelberg University, Im Neuheimer Feld 328, Heidelberg, 69120, Germany
| | - Dominik Niopek
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany
| |
Collapse
|
10
|
Richert S, Chen J, Pompe N, Radtke V, Lllarionov B, Fischer M, Bacher A, Weber S. Influence of the cofactor structure on the photophysical processes initiating signal transduction in a phototropin-derived LOV domain. J Chem Phys 2019; 151:235102. [PMID: 31864253 DOI: 10.1063/1.5131856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Due to their biological importance, the photochemistry of blue-light photoreceptor proteins has been studied extensively over the last few decades. Most blue-light photoreceptors, such as cryptochromes and phototropins, utilize flavin chromophores as their cofactors. After irradiation with light, the chromophore undergoes electron transfer with nearby redox-active amino-acid residues within the protein, whereby this first step of signal transduction may be initiated either from the flavin's excited singlet or triplet state. Despite the collective effort of theoreticians and experimentalists to characterize and understand the photochemistry of flavoproteins, the mechanistic details of the excited state processes initiating signal transduction are yet to be revealed. Here, we use a light-oxygen-voltage-sensing domain from Avena sativa phototropin to get additional insight into the excited state photochemistry of flavoproteins. The influence of structural variations of the cofactor flavin mononucleotide (FMN) is explored by varying the methyl substitution pattern in positions 7 and 8 of the flavin core. The photophysical properties of the FMN derivatives, in the absence and presence of the protein environment, are investigated by UV-vis absorption, fluorescence, and electron paramagnetic resonance spectroscopies as well as cyclic voltammetry. The comparison of the properties of the modified flavin cofactors with those of FMN shows that the rates of the different excited state reactions, and therefore also the singlet/triplet yields, can be modulated substantially by only minor structural modifications of the flavin core.
Collapse
Affiliation(s)
- Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Jing Chen
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Nils Pompe
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Valentin Radtke
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Boris Lllarionov
- Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Adelbert Bacher
- Institute of Organic Chemistry and Biochemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
11
|
Ding Y, Kiryutin AS, Yurkovskaya AV, Sosnovsky DV, Sagdeev RZ, Bannister S, Kottke T, Kar RK, Schapiro I, Ivanov KL, Matysik J. Nuclear spin-hyperpolarization generated in a flavoprotein under illumination: experimental field-dependence and theoretical level crossing analysis. Sci Rep 2019; 9:18436. [PMID: 31804538 PMCID: PMC6895156 DOI: 10.1038/s41598-019-54671-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022] Open
Abstract
The solid-state photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect generates non-equilibrium nuclear spin polarization in frozen electron-transfer proteins upon illumination and radical-pair formation. The effect can be observed in various natural photosynthetic reaction center proteins using magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and in a flavin-binding light-oxygen-voltage (LOV) domain of the blue-light receptor phototropin. In the latter system, a functionally instrumental cysteine has been mutated to interrupt the natural cysteine-involving photochemistry allowing for an electron transfer from a more distant tryptophan to the excited flavin mononucleotide chromophore. We explored the solid-state photo-CIDNP effect and its mechanisms in phototropin-LOV1-C57S from the green alga Chlamydomonas reinhardtii by using field-cycling solution NMR. We observed the 13C and, to our knowledge, for the first time, 15N photo-CIDNP signals from phototropin-LOV1-C57S. Additionally, the 1H photo-CIDNP signals of residual water in the deuterated buffer of the protein were detected. The relative strengths of the photo-CIDNP effect from the three types of nuclei, 1H, 13C and 15N were measured in dependence of the magnetic field, showing their maximum polarizations at different magnetic fields. Theoretical level crossing analysis demonstrates that anisotropic mechanisms play the dominant role at high magnetic fields.
Collapse
Affiliation(s)
- Yonghong Ding
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Denis V Sosnovsky
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Renad Z Sagdeev
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Saskia Bannister
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Rajiv K Kar
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany.
| |
Collapse
|
12
|
Serrer K, Matt C, Sokolov M, Kacprzak S, Schleicher E, Weber S. Application of commercially available fluorophores as triplet spin probes in EPR spectroscopy. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1608379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kerstin Serrer
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Clemens Matt
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Monja Sokolov
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Sylwia Kacprzak
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Morozova OB, Ivanov KL. Time-Resolved Chemically Induced Dynamic Nuclear Polarization of Biologically Important Molecules. Chemphyschem 2018; 20:197-215. [DOI: 10.1002/cphc.201800566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/11/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Olga B. Morozova
- International Tomography Center; Institutskaya 3a 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova 2 630090 Novosibirsk Russia
| | - Konstantin L. Ivanov
- International Tomography Center; Institutskaya 3a 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova 2 630090 Novosibirsk Russia
| |
Collapse
|
14
|
Affiliation(s)
- Mareike Daniela Hoffmann
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Felix Bubeck
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Roland Eils
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Digital Health Center; Berlin Institute of Health (BIH) and Charité-University Medicine Berlin; 10117 Berlin Germany
- Health Data Science Unit; University Hospital Heidelberg; 10117 Heidelberg Germany
| | - Dominik Niopek
- Department of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Synthetic Biology Group; Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant); University of Heidelberg; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| |
Collapse
|
15
|
Lin TS. Novel Pulsed Electron Paramagnetic Resonance Techniques for the Studies of Structure and Dynamics of Photo-excited Triplet State of Organic Molecules: A Professional Journey. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tien-Sung Lin
- Department of Chemistry; Washington University in Saint Louis; St. Louis Missouri 63130 USA
| |
Collapse
|
16
|
Gräsing D, Bielytskyi P, Céspedes-Camacho IF, Alia A, Marquardsen T, Engelke F, Matysik J. Field-cycling NMR with high-resolution detection under magic-angle spinning: determination of field-window for nuclear hyperpolarization in a photosynthetic reaction center. Sci Rep 2017; 7:12111. [PMID: 28935961 PMCID: PMC5608766 DOI: 10.1038/s41598-017-10413-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.
Collapse
Affiliation(s)
- Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany
| | - Pavlo Bielytskyi
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany
| | - Isaac F Céspedes-Camacho
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany.,Escuela de Química, Tecnológico de Costa Rica, Sede Central, 30101, Cartago, Costa Rica
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107, Leipzig, Germany.,Leiden Institute of Chemistry, 2333, Leiden, The Netherlands
| | | | - Frank Engelke
- Bruker BioSpin GmbH, Silberstreifen 4, D-76287, Rheinstetten, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany.
| |
Collapse
|
17
|
Morozova OB, Yurkovskaya AV, Vieth HM, Sosnovsky DV, Ivanov KL. Light-induced spin hyperpolarisation in condensed phase. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1363923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Olga B. Morozova
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Laboratory of Magnetic Resonance in Chemistry, Biology and Medicine, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexandra V. Yurkovskaya
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Laboratory of Magnetic Resonance in Chemistry, Biology and Medicine, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Hans-Martin Vieth
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Department of Physics, Free University of Berlin, Berlin, 14195, Germany
| | - Denis V. Sosnovsky
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Laboratory of Magnetic Resonance in Chemistry, Biology and Medicine, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Konstantin L. Ivanov
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Laboratory of Magnetic Resonance in Chemistry, Biology and Medicine, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Sosnovsky DV, Jeschke G, Matysik J, Vieth HM, Ivanov KL. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases. J Chem Phys 2016; 144:144202. [DOI: 10.1063/1.4945341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis V. Sosnovsky
- International Tomography Centre of SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| | - Gunnar Jeschke
- Institut für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Hans-Martin Vieth
- International Tomography Centre of SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Konstantin L. Ivanov
- International Tomography Centre of SB RAS, Institutskaya 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| |
Collapse
|
19
|
Eisenreich W, Joshi M, Illarionov B, Kacprzak S, Lukaschek M, Kothe G, Budisa N, Fischer M, Bacher A, Weber S. Strategy for Enhancement of (13)C-Photo-CIDNP NMR Spectra by Exploiting Fractional (13)C-Labeling of Tryptophan. J Phys Chem B 2015; 119:13934-43. [PMID: 26244593 DOI: 10.1021/acs.jpcb.5b06668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photo-CIDNP effect has proven to be useful to strongly enhance NMR signals of photochemically active proteins simply by irradiation with light. The evolving characteristic patterns of enhanced absorptive and emissive NMR lines can be exploited to elucidate the photochemistry and photophysics of light-driven protein reactions. In particular, by the assignment of (13)C NMR resonances, redox-active amino acids may be identified and thereby electron-transfer pathways unraveled, in favorable cases, even with (13)C at natural abundance. If signal enhancement is weak, uniform (13)C isotope labeling is traditionally applied to increase the signal strength of protein (13)C NMR. However, this typically leads to cross relaxation, which transfers light-induced nuclear-spin polarization to adjacent (13)C nuclei, thereby preventing an unambiguous analysis of the photo-CIDNP effect. In this contribution, two isotope labeling strategies are presented; one leads to specific but ubiquitous (13)C labeling in tryptophan, and the other is based on fractional isotope labeling affording sets of isotopologs with low probability of next-neighbor isotope accumulation within individual tryptophan molecules. Consequently, cross relaxation is largely avoided while the signal enhancement by (13)C enrichment is preserved. This results in significantly simplified polarization patterns that are easier to analyze with respect to the generation of light-generated nuclear-spin polarization.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Technische Universität München , Lehrstuhl für Biochemie, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Monika Joshi
- Technische Universität München , Lehrstuhl für Biochemie, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Boris Illarionov
- Universität Hamburg , Institut für Lebensmittelchemie, Bundesstr. 45, 20146 Hamburg, Germany
| | - Sylwia Kacprzak
- Albert-Ludwigs-Universität Freiburg , Institut für Physikalische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| | - Michail Lukaschek
- Albert-Ludwigs-Universität Freiburg , Institut für Physikalische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| | - Gerd Kothe
- Albert-Ludwigs-Universität Freiburg , Institut für Physikalische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| | - Nediljko Budisa
- Technische Universität Berlin , Institut für Chemie, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Markus Fischer
- Universität Hamburg , Institut für Lebensmittelchemie, Bundesstr. 45, 20146 Hamburg, Germany
| | - Adelbert Bacher
- Technische Universität München , Lehrstuhl für Biochemie, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Stefan Weber
- Albert-Ludwigs-Universität Freiburg , Institut für Physikalische Chemie, Albertstr. 21, 79104 Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS) , Albertstr. 19, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Illarionov B, Zhu F, Eisenreich W, Bacher A, Weber S, Fischer M. Preparation of Flavocoenzyme Isotopologues by Biotransformation of Purines. J Org Chem 2015; 80:2539-44. [DOI: 10.1021/jo502480w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Boris Illarionov
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Feng Zhu
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Wolfgang Eisenreich
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 München, Germany
| | - Adelbert Bacher
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 München, Germany
| | - Stefan Weber
- Institut
für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße
21, 79104 Freiburg, Germany
| | - Markus Fischer
- Hamburg
School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|