1
|
Knanghat R, Senapati S. Toward Greater DNA Stability by Leveraging the Proton-Donating Ability of Protic Ionic Liquids. J Phys Chem B 2024; 128:4301-4314. [PMID: 38682809 DOI: 10.1021/acs.jpcb.3c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Deoxyribonucleic acid (DNA) stability is a prerequisite in many applications, ranging from DNA-based vaccines and data storage to gene therapy. However, the strategies to enhance DNA stability are limited, and the underlying mechanisms are poorly understood. Ionic liquids (ILs), molten salts of organic cations and organic/inorganic anions, are showing tremendous prospects in myriads of applications. With a judicious choice of constituent ions, the protic nature of ILs can be tuned. In this work, we investigate the relative stability of full-length genomic DNA in aqueous IL solutions of increasing protic nature. Our experimental measurements show that the protic ionic liquids (PILs) enhance the DNA melting temperature significantly while unaltering its native B-conformation. Molecular dynamics simulations and quantum mechanical calculation results suggest that the intramolecular Watson-Crick H-bonding in DNA remains unaffected and, in addition, the PILs induce stronger H-bonding networks in solution through their ability to make multiple intermolecular H-bonds with the nucleobases and among its constituent ions, thus aiding greater DNA stability. The detailed understanding obtained from this study could bring about the much-awaited breakthrough in improved DNA stability for its sustained use in the aforesaid applications!
Collapse
Affiliation(s)
- Rajani Knanghat
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Lass M, Kenter T, Plessl C, Brehm M. Characterizing Microheterogeneity in Liquid Mixtures via Local Density Fluctuations. ENTROPY (BASEL, SWITZERLAND) 2024; 26:322. [PMID: 38667876 PMCID: PMC11049288 DOI: 10.3390/e26040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
We present a novel approach to characterize and quantify microheterogeneity and microphase separation in computer simulations of complex liquid mixtures. Our post-processing method is based on local density fluctuations of the different constituents in sampling spheres of varying size. It can be easily applied to both molecular dynamics (MD) and Monte Carlo (MC) simulations, including periodic boundary conditions. Multidimensional correlation of the density distributions yields a clear picture of the domain formation due to the subtle balance of different interactions. We apply our approach to the example of force field molecular dynamics simulations of imidazolium-based ionic liquids with different side chain lengths at different temperatures, namely 1-ethyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride, and 1-decyl-3-methylimidazolium chloride, which are known to form distinct liquid domains. We put the results into the context of existing microheterogeneity analyses and demonstrate the advantages and sensitivity of our novel method. Furthermore, we show how to estimate the configuration entropy from our analysis, and we investigate voids in the system. The analysis has been implemented into our program package TRAVIS and is thus available as free software.
Collapse
Affiliation(s)
- Michael Lass
- Faculty of Computer Science, Electrical Engineering and Mathematics, Department of Computer Science, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany; (M.L.); (T.K.); (C.P.)
| | - Tobias Kenter
- Faculty of Computer Science, Electrical Engineering and Mathematics, Department of Computer Science, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany; (M.L.); (T.K.); (C.P.)
| | - Christian Plessl
- Faculty of Computer Science, Electrical Engineering and Mathematics, Department of Computer Science, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany; (M.L.); (T.K.); (C.P.)
| | - Martin Brehm
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
3
|
Xie W, He S, Fang S, Yin B, Tian R, Wang Y, Wang D. Analysis of starch dissolved in ionic liquid by glass nanopore at single molecular level. Int J Biol Macromol 2023; 239:124271. [PMID: 37019197 DOI: 10.1016/j.ijbiomac.2023.124271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
In this paper, the glass nanopore technology was proposed to detect a single molecule of starch dissolved in ionic liquid [1-butyl-3-methylimidazolium chloride (BmimCl)]. Firstly, the influence of BmimCl on nanopore detection is discussed. It is found that a certain amount of strong polar ionic liquids will disturb the charge distribution in nanopores and increase the detection noise. Then, by analysis of the characteristic current signal of the conical nanopore, the motion behaviour of starch near the entrance of the nanopore was studied and analysis the dominant ion of starch in the BmimCl dissolution process. Finally, based on nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy simply discussed the mechanism of amylose and amylopectin dissolved in BmimCl. These results confirm that branched chain structure would affect the dissolution of polysaccharides in ionic liquids and the contribution of anions to the dissolution of polysaccharides are dominant. It is further proved that the current signal can be used to judge the charge and structure information of the analyte, and the dissolution mechanism can be assist analyzed at the single molecule level.
Collapse
|
4
|
Constantinescu-Aruxandei D, Oancea F. Closing the Nutrient Loop-The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2096. [PMID: 36767462 PMCID: PMC9915181 DOI: 10.3390/ijerph20032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The recovery of plant mineral nutrients from the bio-based value chains is essential for a sustainable, circular bioeconomy, wherein resources are (re)used sustainably. The widest used approach is to recover plant nutrients on the last stage of biomass utilization processes-e.g., from ash, wastewater, or anaerobic digestate. The best approach is to recover mineral nutrients from the initial stages of biomass biorefinery, especially during biomass pre-treatments. Our paper aims to evaluate the nutrient recovery solutions from a trans-sectorial perspective, including biomass processing and the agricultural use of recovered nutrients. Several solutions integrated with the biomass pre-treatment stage, such as leaching/bioleaching, recovery from pre-treatment neoteric solvents, ionic liquids (ILs), and deep eutectic solvents (DESs) or integrated with hydrothermal treatments are discussed. Reducing mineral contents on silicon, phosphorus, and nitrogen biomass before the core biorefinery processes improves processability and yield and reduces corrosion and fouling effects. The recovered minerals are used as bio-based fertilizers or as silica-based plant biostimulants, with economic and environmental benefits.
Collapse
Affiliation(s)
| | - Florin Oancea
- Department of Bioresources, Bioproducts Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania
| |
Collapse
|
5
|
Behera S, Balasubramanian S. Molecular simulations explain the exceptional thermal stability, solvent tolerance and solubility of protein-polymer surfactant bioconjugates in ionic liquids. Phys Chem Chem Phys 2022; 24:21904-21915. [PMID: 36065955 DOI: 10.1039/d2cp02636h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Proteins complexed electrostatically with polymer surfactants constitute a viscous liquid by themselves, called the solvent-free protein liquid (SFPL). A solution of SFPL in a room temperature ionic liquid (PS-IL) offers the protein hyperthermal stability, higher solubility and greater IL tolerance. A generic understanding of these protein-polymer systems is obtained herein through extensive atomistic molecular dynamics simulations of three different enzymes (lipase A, lysozyme and myoglobin) under various conditions. Along with increased intra-protein hydrogen bonding, the surfactant coating around the proteins imparts greater thermal stability, and also aids in screening protein-IL interactions, endowing them IL tolerance. The reduced surface polarity of the protein-polymer bioconjugate and hydrogen bonding between the ethylene glycol groups of the surfactant and the IL cation contribute to the facile solvation of the protein in its PS-IL form. The results presented here rationalize several experimental observations and will aid in the improved design of such hybrid materials for sustainable catalysis.
Collapse
Affiliation(s)
- Sudarshan Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| |
Collapse
|
6
|
Koutsoukos S, Philippi F, Malaret F, Welton T. A review on machine learning algorithms for the ionic liquid chemical space. Chem Sci 2021; 12:6820-6843. [PMID: 34123314 PMCID: PMC8153233 DOI: 10.1039/d1sc01000j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
There are thousands of papers published every year investigating the properties and possible applications of ionic liquids. Industrial use of these exceptional fluids requires adequate understanding of their physical properties, in order to create the ionic liquid that will optimally suit the application. Computational property prediction arose from the urgent need to minimise the time and cost that would be required to experimentally test different combinations of ions. This review discusses the use of machine learning algorithms as property prediction tools for ionic liquids (either as standalone methods or in conjunction with molecular dynamics simulations), presents common problems of training datasets and proposes ways that could lead to more accurate and efficient models.
Collapse
Affiliation(s)
- Spyridon Koutsoukos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Francisco Malaret
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
7
|
Liu X, Zhu R, Chen T, Song P, Lu F, Xu F, Ralph J, Zhang X. Mild Acetylation and Solubilization of Ground Whole Plant Cell Walls in EmimAc: A Method for Solution-State NMR in DMSO- d6. Anal Chem 2020; 92:13101-13109. [PMID: 32885955 DOI: 10.1021/acs.analchem.0c02124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lignocellulosic biomass is mainly composed of polysaccharides and lignin. The complexity and diversity of the plant cell wall polymers makes it difficult to isolate the components in pure form for characterization. Many current approaches to analyzing the structure of lignocellulose, which involve sequential extraction and characterization of the resulting fractions, are time-consuming and labor-intensive. The present study describes a new and facile system for rationally derivatizing and dissolving coarsely ground plant cell wall materials. Using ionic liquids (EmimAc) and dichloroacetyl chloride as a solvent/reagent produced mildly acetylated whole cell walls without significant degradation. The acetylated products were soluble in DMSO-d6 from which they can be characterized by solution-state two-dimensional nuclear magnetic resonance (2D NMR) spectrometry. A distinct advantage of the procedure is that it realizes the dissolution of whole lignocellulosic materials without requiring harsh ball milling, thereby allowing the acquisition of high-resolution 2D NMR spectra to revealing structural details of the main components (lignin and polysaccharides). The method is therefore beneficial to understanding the composition and structure of biomass aimed at its improved utilization.
Collapse
Affiliation(s)
- Xin Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ruonan Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Tianying Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Pingping Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.,Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.,Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| |
Collapse
|
8
|
Morais ES, Lopes AMDC, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD. Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules 2020; 25:E3652. [PMID: 32796649 PMCID: PMC7465760 DOI: 10.3390/molecules25163652] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
A shift to a bioeconomy development model has been evolving, conducting the scientific community to investigate new ways of producing chemicals, materials and fuels from renewable resources, i.e., biomass. Specifically, technologies that provide high performance and maximal use of biomass feedstocks into commodities with reduced environmental impact have been highly pursued. A key example comprises the extraction and/or dissolution of polysaccharides, one of the most abundant fractions of biomass, which still need to be improved regarding these processes' efficiency and selectivity parameters. In this context, the use of alternative solvents and the application of less energy-intensive processes in the extraction of polysaccharides might play an important role to reach higher efficiency and sustainability in biomass valorization. This review debates the latest achievements in sustainable processes for the extraction of polysaccharides from a myriad of biomass resources, including lignocellulosic materials and food residues. Particularly, the ability of ionic liquids (ILs) and deep eutectic solvents (DESs) to dissolve and extract the most abundant polysaccharides from natural sources, namely cellulose, chitin, starch, hemicelluloses and pectins, is scrutinized and the efficiencies between solvents are compared. The interaction mechanisms between solvent and polysaccharide are described, paving the way for the design of selective extraction processes. A detailed discussion of the work developed for each polysaccharide as well as the innovation degree and the development stage of dissolution and extraction technologies is presented. Their advantages and disadvantages are also identified, and possible synergies by integrating microwave- and ultrasound-assisted extraction (MAE and UAE) or a combination of both (UMAE) are briefly described. Overall, this review provides key information towards the design of more efficient, selective and sustainable extraction and dissolution processes of polysaccharides from biomass.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando J. D. Silvestre
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (E.S.M.); (A.M.d.C.L.); (M.G.F.); (C.S.R.F.); (J.A.P.C.)
| |
Collapse
|
9
|
Brehm M, Radicke J, Pulst M, Shaabani F, Sebastiani D, Kressler J. Dissolving Cellulose in 1,2,3-Triazolium- and Imidazolium-Based Ionic Liquids with Aromatic Anions. Molecules 2020; 25:E3539. [PMID: 32748878 PMCID: PMC7435399 DOI: 10.3390/molecules25153539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
We present 1,2,3-triazolium- and imidazolium-based ionic liquids (ILs) with aromatic anions as a new class of cellulose solvents. The two anions in our study, benzoate and salicylate, possess a lower basicity when compared to acetate and therefore should lead to a lower amount of N-heterocyclic carbenes (NHCs) in the ILs. We characterize their physicochemical properties and find that all of them are liquids at room temperature. By applying force field molecular dynamics (MD) simulations, we investigate the structure and dynamics of the liquids and find strong and long-lived hydrogen bonds, as well as significant π-π stacking between the aromatic anion and cation. Our ILs dissolve up to 8.5 wt.-% cellulose. Via NMR spectroscopy of the solution, we rule out chain degradation or derivatization, even after several weeks at elevated temperature. Based on our MD simulations, we estimate the enthalpy of solvation and derive a simple model for semi-quantitative prediction of cellulose solubility in ILs. With the help of Sankey diagrams, we illustrate the hydrogen bond network topology of the solutions, which is characterized by competing hydrogen bond donors and acceptors. The hydrogen bonds between cellulose and the anions possess average lifetimes in the nanosecond range, which is longer than found in common pure ILs.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Julian Radicke
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Martin Pulst
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Farzaneh Shaabani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Jörg Kressler
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| |
Collapse
|
10
|
How imidazolium‐based ionic liquids solubilize the poorly soluble ibuprofen? A theoretical study. AIChE J 2020. [DOI: 10.1002/aic.16940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Abushammala H, Mao J. A Review on the Partial and Complete Dissolution and Fractionation of Wood and Lignocelluloses Using Imidazolium Ionic Liquids. Polymers (Basel) 2020; 12:E195. [PMID: 31940847 PMCID: PMC7023464 DOI: 10.3390/polym12010195] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
Ionic liquids have shown great potential in the last two decades as solvents, catalysts, reaction media, additives, lubricants, and in many applications such as electrochemical systems, hydrometallurgy, chromatography, CO2 capture, etc. As solvents, the unlimited combinations of cations and anions have given ionic liquids a remarkably wide range of solvation power covering a variety of organic and inorganic materials. Ionic liquids are also considered "green" solvents due to their negligible vapor pressure, which means no emission of volatile organic compounds. Due to these interesting properties, ionic liquids have been explored as promising solvents for the dissolution and fractionation of wood and cellulose for biofuel production, pulping, extraction of nanocellulose, and for processing all-wood and all-cellulose composites. This review describes, at first, the potential of ionic liquids and the impact of the cation/anion combination on their physiochemical properties and on their solvation power and selectivity to wood polymers. It also elaborates on how the dissolution conditions influence these parameters. It then discusses the different approaches, which are followed for the homogeneous and heterogeneous dissolution and fractionation of wood and cellulose using ionic liquids and categorize them based on the target application. It finally highlights the challenges of using ionic liquids for wood and cellulose dissolution and processing, including side reactions, viscosity, recyclability, and price.
Collapse
Affiliation(s)
- Hatem Abushammala
- Fraunhofer Institute for Wood Research (WKI), Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Jia Mao
- Department of Mechanical Engineering, Al-Ghurair University, Dubai International Academic City, Dubai P.O. Box 37374, UAE;
| |
Collapse
|
12
|
Matsumoto A, Del Giudice F, Rotrattanadumrong R, Shen AQ. Rheological Scaling of Ionic-Liquid-Based Polyelectrolytes in Ionic Liquid Solutions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Francesco Del Giudice
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Sewansea SA1 8EN, U.K
| | - Rachapun Rotrattanadumrong
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
13
|
Hirose D, Wardhana Kusuma SB, Nomura S, Yamaguchi M, Yasaka Y, Kakuchi R, Takahashi K. Effect of anion in carboxylate-based ionic liquids on catalytic activity of transesterification with vinyl esters and the solubility of cellulose. RSC Adv 2019; 9:4048-4053. [PMID: 35518094 PMCID: PMC9060529 DOI: 10.1039/c8ra10042j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/21/2019] [Indexed: 11/21/2022] Open
Abstract
The role of 1-ethyl-3-methylimidazolium carboxylate-type ionic liquid as the solvent and organocatalyst for transesterification reaction of cellulose was investigated.
Collapse
Affiliation(s)
- Daisuke Hirose
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | | | - Shuhei Nomura
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Makoto Yamaguchi
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Yoshiro Yasaka
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Ryohei Kakuchi
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu 376-8515
- Japan
| | - Kenji Takahashi
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| |
Collapse
|
14
|
Masood A, Shoukat Z, Yousaf Z, Sana M, Faisal Iqbal M, Rehman AR, Sultana I, Razaq A. High capacity natural fiber coated conductive and electroactive composite papers electrode for energy storage applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.47282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Aneeqa Masood
- Department of Physics; COMSATS University Islamabad; Lahore Campus, 54000 Lahore Pakistan
| | - Zahid Shoukat
- Department of Physics; COMSATS University Islamabad; Lahore Campus, 54000 Lahore Pakistan
| | - Zunaira Yousaf
- Department of Physics; COMSATS University Islamabad; Lahore Campus, 54000 Lahore Pakistan
| | - Maham Sana
- Department of Physics; COMSATS University Islamabad; Lahore Campus, 54000 Lahore Pakistan
| | - M. Faisal Iqbal
- Materials Growth and Simulation Laboratory, Department of Physics; University of The Punjab; Lahore 54590 Pakistan
| | - A. R. Rehman
- Department of Physics; University of Agriculture; Faisalabad Pakistan
| | - I. Sultana
- Department of Physics; COMSATS University Islamabad; Lahore Campus, 54000 Lahore Pakistan
| | - Aamir Razaq
- Department of Physics; COMSATS University Islamabad; Lahore Campus, 54000 Lahore Pakistan
| |
Collapse
|
15
|
Nestor ST, Hawkins AN, Xhani X, Sykora RE, Mao JX, Nam K, McManus GJ, Mirjafari A. Studies on solubility and S-alkylation of 2-thiouracil in ionic liquids. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Zaitsau DH, Yermalayeu AV, Emel'yanenko VN, Verevkin SP. Thermodynamics of Imidazolium-Based Ionic Liquids Containing the Trifluoromethanesulfonate Anion. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700454] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dzmitry H. Zaitsau
- University of Rostock; Department of Physical Chemistry and Department of Science and Technology of Life, Light and Matter; Dr-Lorenz-Weg 2 18059 Rostock Germany
| | - Andrei V. Yermalayeu
- University of Rostock; Department of Physical Chemistry and Department of Science and Technology of Life, Light and Matter; Dr-Lorenz-Weg 2 18059 Rostock Germany
| | - Vladimir N. Emel'yanenko
- University of Rostock; Department of Physical Chemistry and Department of Science and Technology of Life, Light and Matter; Dr-Lorenz-Weg 2 18059 Rostock Germany
| | - Sergey P. Verevkin
- University of Rostock; Department of Physical Chemistry and Department of Science and Technology of Life, Light and Matter; Dr-Lorenz-Weg 2 18059 Rostock Germany
- Kazan Federal University; Department of Physical Chemistry; Kremlevskaya str. 18 420008 Kazan Russia
| |
Collapse
|
17
|
Li Y, Wang J, Liu X, Zhang S. Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects. Chem Sci 2018; 9:4027-4043. [PMID: 29780532 PMCID: PMC5941279 DOI: 10.1039/c7sc05392d] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/25/2018] [Indexed: 12/23/2022] Open
Abstract
Cellulose is one of the most abundant bio-renewable materials on the earth and its conversion to biofuels provides an appealing way to satisfy the increasing global energy demand. However, before carrying out the process of enzymolysis to glucose or polysaccharides, cellulose needs to be pretreated to overcome its recalcitrance. In recent years, a variety of ionic liquids (ILs) have been found to be effective solvents for cellulose, providing a new, feasible pretreatment strategy. A lot of experimental and computational studies have been carried out to investigate the dissolution mechanism. However, many details are not fully understood, which highlights the necessity to overview the current knowledge of cellulose dissolution and identify the research trend in the future. This perspective summarizes the mechanistic studies and microscopic insights of cellulose dissolution in ILs. Recent investigations of the synergistic effect of cations/anions and the distinctive structural changes of cellulose microfibril in ILs are also reviewed. Besides, understanding the factors controlling the dissolution process, such as the structure of anions/cations, viscosity of ILs, pretreatment temperature, heating rate, etc., has been discussed from a structural and physicochemical viewpoint. At the end, the existing problems are discussed and future prospects are given. We hope this article would be helpful for deeper understanding of the cellulose dissolution process in ILs and the rational design of more efficient and recyclable ILs.
Collapse
Affiliation(s)
- Yao Li
- Beijing Key Laboratory of Ionic Liquids Clean Process , CAS Key Laboratory of Green Process and Engineering , Institute of Process Engineering , Chinese Academy of Sciences , Beijing , 100190 , P. R. China . ;
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , School of Chemistry and Chemical Engineering , Key Laboratory of Green Chemical Media and Reactions , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Xiaomin Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process , CAS Key Laboratory of Green Process and Engineering , Institute of Process Engineering , Chinese Academy of Sciences , Beijing , 100190 , P. R. China . ;
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process , CAS Key Laboratory of Green Process and Engineering , Institute of Process Engineering , Chinese Academy of Sciences , Beijing , 100190 , P. R. China . ;
| |
Collapse
|
18
|
Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohydr Polym 2018; 180:328-336. [PMID: 29103512 PMCID: PMC6159887 DOI: 10.1016/j.carbpol.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles.
Collapse
Affiliation(s)
- Kamalesh Prasad
- Natural Products and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India; AcSIR- Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India.
| | - Dibyendu Mondal
- Sustainable Energy Materials and Processes Group, Centre for Nano and Material Science, Jain University, Bangalore 562112, India
| | - Mukesh Sharma
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Chandrakant Mukesh
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Jitkumar Bhatt
- Natural Products and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India; AcSIR- Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
19
|
Jiang J, Xiao Y, Huang W, Gong P, Peng S, He J, Fan M, Wang K. An insight into the influence of hydrogen bond acceptors on cellulose/1-allyl-3-methyl imidazolium chloride solution. Carbohydr Polym 2017; 178:295-301. [DOI: 10.1016/j.carbpol.2017.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022]
|
20
|
Solvation free energy of solvation of biomass model cellobiose molecule: A molecular dynamics analysis. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Zhu Y, Yan J, Liu C, Zhang D. Modeling interactions between a β-O-4 type lignin model compound and 1-allyl-3-methylimidazolium chloride ionic liquid. Biopolymers 2017; 107. [DOI: 10.1002/bip.23022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Youtao Zhu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education; Institute of Theoretical Chemistry, Shandong University; Jinan 250100 People's Republic of China
| | - Jing Yan
- Key Lab of Colloid and Interface Chemistry, Ministry of Education; Institute of Theoretical Chemistry, Shandong University; Jinan 250100 People's Republic of China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education; Institute of Theoretical Chemistry, Shandong University; Jinan 250100 People's Republic of China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education; Institute of Theoretical Chemistry, Shandong University; Jinan 250100 People's Republic of China
| |
Collapse
|
22
|
Kan Z, Zhu Q, Yang L, Huang Z, Jin B, Ma J. Polarization Effects on the Cellulose Dissolution in Ionic Liquids: Molecular Dynamics Simulations with Polarization Model and Integrated Tempering Enhanced Sampling Method. J Phys Chem B 2017; 121:4319-4332. [DOI: 10.1021/acs.jpcb.6b12647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zigui Kan
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
- School
of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Qiang Zhu
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Lijiang Yang
- Institute
of Theoretical and Computational Chemistry, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zhixiong Huang
- Research
Institute of Superconductor Electronics (RISE), School of Electronic
Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Biaobing Jin
- Research
Institute of Superconductor Electronics (RISE), School of Electronic
Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jing Ma
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
23
|
Carneiro AP, Rodríguez O, Macedo EA. Dissolution and fractionation of nut shells in ionic liquids. BIORESOURCE TECHNOLOGY 2017; 227:188-196. [PMID: 28024196 DOI: 10.1016/j.biortech.2016.11.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the dissolution of raw peanut and chestnut shells in ionic liquids. Dissolution of raw biomass up to 7wt% was achieved under optimized operatory conditions. Quantification of polysaccharides dissolved through quantitative 13Cq NMR revealed extractions of the cellulosic material to ionic liquids as high as 87%. Regeneration experiments using an antisolvent mixture allowed to recover the cellulosic material and the ionic liquid. The overall mass balance presented very low loss rates (<8%), recoveries of 75% and 95% of cellulosic material from peanut and chestnut shells, respectively, and the recovery of more than 95% of the ionic liquid in both cases. These results show the high potential of using nut shells and ionic liquids for biorefining purposes. Moreover, high recovery of ionic liquids favors the process from an economical point of view.
Collapse
Affiliation(s)
- Aristides P Carneiro
- LSRE - Laboratory of Separation and Reaction Engineering - Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Oscar Rodríguez
- LSRE - Laboratory of Separation and Reaction Engineering - Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Department of Chemical Engineering, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa, s/n., E15782 Santiago de Compostela, Spain.
| | - Eugénia A Macedo
- LSRE - Laboratory of Separation and Reaction Engineering - Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
24
|
Minnick DL, Flores RA, DeStefano MR, Scurto AM. Cellulose Solubility in Ionic Liquid Mixtures: Temperature, Cosolvent, and Antisolvent Effects. J Phys Chem B 2016; 120:7906-19. [DOI: 10.1021/acs.jpcb.6b04309] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David L. Minnick
- Department of Chemical & Petroleum Engineering and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Raul A. Flores
- Department of Chemical & Petroleum Engineering and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Matthew R. DeStefano
- Department of Chemical & Petroleum Engineering and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Aaron M. Scurto
- Department of Chemical & Petroleum Engineering and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|