1
|
Huang C, Bai S, Shi Q. Simulation of the Pump-Probe Spectra and Excitation Energy Relaxation of the B850 Band of the LH2 Complex in Purple Bacteria. J Phys Chem B 2024; 128:7467-7475. [PMID: 39059418 DOI: 10.1021/acs.jpcb.4c02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ultrafast spectroscopic techniques have been vital in studying excitation energy transfer (EET) in photosynthetic light harvesting complexes. In this paper, we simulate the pump-probe spectra of the B850 band of the light harvesting complex 2 (LH2) of purple bacteria, by using the hierarchical equation of motion method and the optical response function approach. The ground state bleach, stimulated emission, and excited state absorption components of the pump-probe spectra are analyzed in detail. The laser pulse-induced population dynamics are also simulated to help understand the main features of the pump-probe spectra and the EET process. It is shown that the excitation energy relaxation is an ultrafast process with multiple time scales. The first 40 fs of the pump-probe spectra is dominated by the relaxation of the k = ±1 states to both the k = 0 and higher energy states. Dynamics on a longer time scale around 200 fs reflects the relaxation of higher energy states to the k = 0 state.
Collapse
Affiliation(s)
- Chenghong Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun,Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun,Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun,Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sauer PV, Cupellini L, Sutter M, Bondanza M, Domínguez Martin MA, Kirst H, Bína D, Koh AF, Kotecha A, Greber BJ, Nogales E, Polívka7 T, Mennucci B, Kerfeld CA. Structural and quantum chemical basis for OCP-mediated quenching of phycobilisomes. SCIENCE ADVANCES 2024; 10:eadk7535. [PMID: 38578996 PMCID: PMC10997198 DOI: 10.1126/sciadv.adk7535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Cyanobacteria use large antenna complexes called phycobilisomes (PBSs) for light harvesting. However, intense light triggers non-photochemical quenching, where the orange carotenoid protein (OCP) binds to PBS, dissipating excess energy as heat. The mechanism of efficiently transferring energy from phycocyanobilins in PBS to canthaxanthin in OCP remains insufficiently understood. Using cryo-electron microscopy, we unveiled the OCP-PBS complex structure at 1.6- to 2.1-angstrom resolution, showcasing its inherent flexibility. Using multiscale quantum chemistry, we disclosed the quenching mechanism. Identifying key protein residues, we clarified how canthaxanthin's transition dipole moment in its lowest-energy dark state becomes large enough for efficient energy transfer from phycocyanobilins. Our energy transfer model offers a detailed understanding of the atomic determinants of light harvesting regulation and antenna architecture in cyanobacteria.
Collapse
Affiliation(s)
- Paul V. Sauer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - María Agustina Domínguez Martin
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henning Kirst
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Bína
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | | | - Basil J. Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Tomáš Polívka7
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Thermo Fisher Scientific, Eindhoven, Netherlands
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Hao JF, Yamano N, Qi CH, Zhang Y, Ma F, Wang P, Yu LJ, Zhang JP. Carotenoid-Mediated Long-Range Energy Transfer in the Light Harvesting-Reaction Center Complex from Photosynthetic Bacterium Roseiflexus castenholzii. J Phys Chem B 2023; 127:10360-10369. [PMID: 37983555 DOI: 10.1021/acs.jpcb.3c07087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The light harvesting-reaction center complex (LH-RC) of Roseiflexus castenholzii binds bacteriochlorophylls a (BChls a), B800 and B880, absorbing around 800 and 880 nm, respectively. We comparatively investigated the interband excitation energy transfer (EET) dynamics of the wild-type LH-RC (wt-LH-RC) of Rfl. castenholzii and its carotenoid (Car)-less mutant (m-LH-RC) and found that Car can boost the B800 → B880 EET rate from (2.43 ps)-1 to (1.75 ps)-1, accounting for 38% acceleration of the EET process. Interestingly, photoexcitation of wt-LH-RC at 800 nm induced pronounced excitation dynamics of Car despite the insufficient photon energy for direct Car excitation, a phenomenon which is attributed to the BChl-Car exciplex 1[B800(↑↑)···Car(↓↓)]*. Such an exciplex is suggested to play an essential role in promoting the B800 → B880 EET process, as corroborated by the recently reported cryo-EM structures of wt-LH-RC and m-LH-RC. The mechanism of Car-mediated EET will be helpful to deepen the understanding of the role of Car in bacterial photosynthesis.
Collapse
Affiliation(s)
- Jin-Fang Hao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
4
|
Wang D, Fiebig OC, Harris D, Toporik H, Ji Y, Chuang C, Nairat M, Tong AL, Ogren JI, Hart SM, Cao J, Sturgis JN, Mazor Y, Schlau-Cohen GS. Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria. Proc Natl Acad Sci U S A 2023; 120:e2220477120. [PMID: 37399405 PMCID: PMC10334754 DOI: 10.1073/pnas.2220477120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/21/2023] [Indexed: 07/05/2023] Open
Abstract
In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Å and resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Å resulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.
Collapse
Affiliation(s)
- Dihao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Olivia C. Fiebig
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Hila Toporik
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ85281
| | - Yi Ji
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Chern Chuang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Muath Nairat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ashley L. Tong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - John I. Ogren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - James N. Sturgis
- LISM UMR 7255, CNRS and Aix-Marseille University, Marseille Cedex 913402, France
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ85281
| | | |
Collapse
|
5
|
Wu F, Finkelstein-Shapiro D, Wang M, Rosenkampff I, Yartsev A, Pascher T, Nguyen- Phan TC, Cogdell R, Börjesson K, Pullerits T. Optical cavity-mediated exciton dynamics in photosynthetic light harvesting 2 complexes. Nat Commun 2022; 13:6864. [PMID: 36369202 PMCID: PMC9652305 DOI: 10.1038/s41467-022-34613-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Strong light-matter interaction leads to the formation of hybrid polariton states and alters the photophysical dynamics of organic materials and biological systems without modifying their chemical structure. Here, we experimentally investigated a well-known photosynthetic protein, light harvesting 2 complexes (LH2) from purple bacteria under strong coupling with the light mode of a Fabry-Perot optical microcavity. Using femtosecond pump probe spectroscopy, we analyzed the polariton dynamics of the strongly coupled system and observed a significant prolongation of the excited state lifetime compared with the bare exciton, which can be explained in terms of the exciton reservoir model. Our findings indicate the potential of tuning the dynamic of the whole photosynthetic unit, which contains several light harvesting complexes and reaction centers, with the help of strong exciton-photon coupling, and opening the discussion about possible design strategies of artificial photosynthetic devices.
Collapse
Affiliation(s)
- Fan Wu
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Daniel Finkelstein-Shapiro
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden ,grid.9486.30000 0001 2159 0001Instituto de Química, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Mao Wang
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ilmari Rosenkampff
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Arkady Yartsev
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Torbjörn Pascher
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Tu C. Nguyen- Phan
- grid.8756.c0000 0001 2193 314XSchool of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Richard Cogdell
- grid.8756.c0000 0001 2193 314XSchool of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Karl Börjesson
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tönu Pullerits
- grid.4514.40000 0001 0930 2361Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022; 609:835-845. [PMID: 36045294 DOI: 10.1038/s41586-022-05156-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.
Collapse
|
7
|
Cao S, Rosławska A, Doppagne B, Romeo M, Féron M, Chérioux F, Bulou H, Scheurer F, Schull G. Energy funnelling within multichromophore architectures monitored with subnanometre resolution. Nat Chem 2021; 13:766-770. [PMID: 34031563 DOI: 10.1038/s41557-021-00697-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023]
Abstract
The funnelling of energy within multichromophoric assemblies is at the heart of the efficient conversion of solar energy by plants. The detailed mechanisms of this process are still actively debated as they rely on complex interactions between a large number of chromophores and their environment. Here we used luminescence induced by scanning tunnelling microscopy to probe model multichromophoric structures assembled on a surface. Mimicking strategies developed by photosynthetic systems, individual molecules were used as ancillary, passive or blocking elements to promote and direct resonant energy transfer between distant donor and acceptor units. As it relies on organic chromophores as the elementary components, this approach constitutes a powerful model to address fundamental physical processes at play in natural light-harvesting complexes.
Collapse
Affiliation(s)
- Shuiyan Cao
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.,Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Anna Rosławska
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.
| | | | | | - Michel Féron
- Université Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, Besançon, France
| | - Frédéric Chérioux
- Université Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, Besançon, France
| | - Hervé Bulou
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.
| |
Collapse
|
8
|
Saga Y, Otsuka Y, Tanaka A, Masaoka Y, Hidaka T, Nagasawa Y. Energy Transfer Dynamics in Light-Harvesting Complex 2 Variants Containing Oxidized B800 Bacteriochlorophyll a. J Phys Chem B 2021; 125:6830-6836. [PMID: 34139847 DOI: 10.1021/acs.jpcb.1c01592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Excitation energy transfer (EET) in light-harvesting proteins is vital for photosynthetic activities. The pigment compositions and their organizations in these proteins are responsible for the EET functions. Thus, changing the pigment compositions in light-harvesting proteins contributes to a better understanding of EET mechanisms. In this study, we investigated the EET dynamics of two light-harvesting complex 2 (LH2) variants, in which nine B800 bacteriochlorophyll (BChl) a pigments were entirely or half converted to 3-acetyl chlorophyll (AcChl) a. The AcChl a pigments showed a Qy band, which was blue-shifted by 107 nm from B800 BChl a in the two variants. EET from AcChl a to B850 BChl a was observed in both fully oxidized and half-oxidized LH2 variants, but the EET rates were lower than that from B800 to B850 BChl a. EET from AcChl a to the co-present B800 was barely detected in the half-oxidized LH2. The preferential EET from AcChl a to B850 instead of B800 was rationalized by little spectral overlap of AcChl a with B800 BChl a and the pigment geometry in the protein. The EET rate from B800 to B850 BChl a in the half-oxidized LH2 was analogous to that in native LH2, indicating that partial oxidation of B800 did not disturb the EET channel from the residual B800 to B850.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuji Otsuka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aiko Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuto Masaoka
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tsubasa Hidaka
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yutaka Nagasawa
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
9
|
Saga Y, Yamashita M, Masaoka Y, Hidaka T, Imanishi M, Kimura Y, Nagasawa Y. Excitation Energy Transfer from Bacteriochlorophyll b in the B800 Site to B850 Bacteriochlorophyll a in Light-Harvesting Complex 2. J Phys Chem B 2021; 125:2009-2017. [PMID: 33605728 DOI: 10.1021/acs.jpcb.0c09605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control of the spectral overlap between energy donors and acceptors provides insight into excitation energy transfer (EET) mechanisms in photosynthetic light-harvesting proteins. Substitution of energy-donating B800 bacteriochlorophyll (BChl) a with other pigments in the light-harvesting complex 2 (LH2) of purple photosynthetic bacteria has been extensively performed; however, most studies on the B800 substitution have focused on the decrease in the spectral overlap integral with energy-accepting B850 BChl a by reconstitution of chlorophylls into the B800 site. Here, we reconstitute BChl b into the B800 site of the LH2 protein from Rhodoblastus acidophilus to increase the spectral overlap with B850 BChl a. BChl b in the B800 site had essentially the same hydrogen-bonding pattern as B800 BChl a, whereas it showed a red-shifted Qy absorption band at 831 nm. The EET rate from BChl b to B850 BChl a in the reconstituted LH2 was similar to that of native LH2 despite the red shift of the Qy band of the energy donor. These results demonstrate the importance of the contribution of the density of excitation states of the B850 circular assembly, which incorporates higher lying optically forbidden states, to intracomplex EET in LH2.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Madoka Yamashita
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuto Masaoka
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tsubasa Hidaka
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Michie Imanishi
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yutaka Nagasawa
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
10
|
Maillard J, Klehs K, Rumble C, Vauthey E, Heilemann M, Fürstenberg A. Universal quenching of common fluorescent probes by water and alcohols. Chem Sci 2020; 12:1352-1362. [PMID: 34163898 PMCID: PMC8179231 DOI: 10.1039/d0sc05431c] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Although biological imaging is mostly performed in aqueous media, it is hardly ever considered that water acts as a classic fluorescence quencher for organic fluorophores. By investigating the fluorescence properties of 42 common organic fluorophores recommended for biological labelling, we demonstrate that H2O reduces their fluorescence quantum yield and lifetime by up to threefold and uncover the underlying fluorescence quenching mechanism. We show that the quenching efficiency is significantly larger for red-emitting probes and follows an energy gap law. The fluorescence quenching finds its origin in high-energy vibrations of the solvent (OH groups), as methanol and other linear alcohols are also found to quench the emission, whereas it is restored in deuterated solvents. Our observations are consistent with a mechanism by which the electronic excitation of the fluorophore is resonantly transferred to overtones and combination transitions of high-frequency vibrational stretching modes of the solvent through space and not through hydrogen bonds. Insight into this solvent-assisted quenching mechanism opens the door to the rational design of brighter fluorescent probes by offering a justification for protecting organic fluorophores from the solvent via encapsulation.
Collapse
Affiliation(s)
- Jimmy Maillard
- Department of Physical Chemistry, University of Geneva 1211 Geneva Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Kathrin Klehs
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Christopher Rumble
- Department of Physical Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Mike Heilemann
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva 1211 Geneva Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
11
|
Yan Y, Liu Y, Xing T, Shi Q. Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light‐harvesting complexes using the nonperturbative reduced dynamics method. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Yanying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| |
Collapse
|
12
|
Tong AL, Fiebig OC, Nairat M, Harris D, Giansily M, Chenu A, Sturgis JN, Schlau-Cohen GS. Comparison of the Energy-Transfer Rates in Structural and Spectral Variants of the B800-850 Complex from Purple Bacteria. J Phys Chem B 2020; 124:1460-1469. [PMID: 31971387 DOI: 10.1021/acs.jpcb.9b11899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosynthetic light harvesting can occur with a remarkable near-unity quantum efficiency. The B800-850 complex, also known as light-harvesting complex 2 (LH2), is the primary light-harvesting complex in purple bacteria and has been extensively studied as a model system. The bacteriochlorophylls of the B800-850 complex are organized into two concentric rings, known as the B800 and B850 rings. However, depending on the species and growth conditions, the number of constituent subunits, the pigment geometry, and the absorption energies vary. While the dynamics of some B800-850 variants have been exhaustively characterized, others have not been measured. Furthermore, a direct and simultaneous comparison of how both structural and spectral differences between variants affect these dynamics has not been performed. In this work, we utilize ultrafast transient absorption measurements to compare the B800 to B850 energy-transfer rates in the B800-850 complex as a function of the number of subunits, geometry, and absorption energies. The nonameric B800-850 complex from Rhodobacter (Rb.) sphaeroides is 40% faster than the octameric B800-850 complex from Rhodospirillum (Rs.) molischianum, consistent with structure-based predictions. In contrast, the blue-shifted B800-820 complex from Rs. molischianum is only 20% faster than the B800-850 complex from Rs. molischianum despite an increase in the spectral overlap between the rings that would be expected to produce a larger increase in the energy-transfer rate. These measurements support current models that contain dark, higher-lying excitonic states to bridge the energy gap between rings, thereby maintaining similar energy-transfer dynamics. Overall, these results demonstrate that energy-transfer dynamics in the B800-850 complex are robust to the spectral and structural variations between species used to optimize energy capture and flow in purple bacteria.
Collapse
Affiliation(s)
- Ashley L Tong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Olivia C Fiebig
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Muath Nairat
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Dvir Harris
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Marcel Giansily
- LISM UMR 7255 , CNRS and Aix-Marseille University , 31 Chemin Joseph Aiguier , Marseille Cedex 9 13402 , France
| | - Aurélia Chenu
- Donostia International Physics Center , E-20018 San Sebastián , Spain.,Ikerbasque, Basque Foundation for Science , E-48013 Bilbao , Spain
| | - James N Sturgis
- LISM UMR 7255 , CNRS and Aix-Marseille University , 31 Chemin Joseph Aiguier , Marseille Cedex 9 13402 , France
| | - Gabriela S Schlau-Cohen
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
13
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
14
|
Kühn O, Mančal T, Pullerits T. Interpreting Fluorescence Detected Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2020; 11:838-842. [PMID: 32024369 DOI: 10.1021/acs.jpclett.9b03851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Oliver Kühn
- Institute of Physics , University of Rostock , Albert Einstein Strasse 23-24 , 18059 Rostock , Germany
| | - Tomáš Mančal
- Faculty of Mathematics and Physics , Charles University in Prague , Ke Karlovu 5 , CZ-121 16 Prague 2, Czech Republic
| | - Tõnu Pullerits
- Department of Chemical Physics and NanoLund , Lund University , P.O. Box 124, 22100 Lund , Sweden
| |
Collapse
|
15
|
Liu X, Kühn O. The light-harvesting complex 2 of Allochromatium vinosum: B800 absorption band splitting and exciton relaxation. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Karki KJ, Chen J, Sakurai A, Shi Q, Gardiner AT, Kühn O, Cogdell RJ, Pullerits T. Before Förster. Initial excitation in photosynthetic light harvesting. Chem Sci 2019; 10:7923-7928. [PMID: 31673317 PMCID: PMC6788518 DOI: 10.1039/c9sc01888c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
Electronic 2D spectroscopy allows nontrivial quantum effects to be explored in unprecedented detail. Here, we apply recently developed fluorescence detected coherent 2D spectroscopy to study the light harvesting antenna 2 (LH2) of photosynthetic purple bacteria. We report double quantum coherence 2D spectra which show clear cross peaks indicating correlated excitations. Similar results are found for rephasing and nonrephasing signals. Analysis of signal generating quantum pathways leads to the conclusion that, contrary to the currently prevailing physical picture, the two weakly coupled pigment rings of LH2 share the initial electronic excitation leading to quantum mechanical correlation between the two clearly separate absorption bands. These results are general and have consequences for the interpretation of initially created excited states not only in photosynthesis but in all light absorbing systems composed of weakly interacting pigments where the excitation transfer is commonly described by using Förster theory. Being able to spectrally resolve the nonequilibrium dynamics immediately following photoabsorption may provide a glimpse to the systems' transition into the Förster regime.
Collapse
Affiliation(s)
- Khadga J Karki
- Chemical Physics and NanoLund , Lund University , Box 124 , 22100 Lund , Sweden .
| | - Junsheng Chen
- Chemical Physics and NanoLund , Lund University , Box 124 , 22100 Lund , Sweden .
| | - Atsunori Sakurai
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba, Meguro , Tokyo 153-8505 , Japan
| | - Qi Shi
- Chemical Physics and NanoLund , Lund University , Box 124 , 22100 Lund , Sweden .
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology , College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow G12 8QQ , UK
| | - Oliver Kühn
- Institute of Physics , University of Rostock , Albert-Einstein-Str. 23-24 , 18059 Rostock , Germany
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology , College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow G12 8QQ , UK
| | - Tönu Pullerits
- Chemical Physics and NanoLund , Lund University , Box 124 , 22100 Lund , Sweden .
| |
Collapse
|
17
|
Zazubovich V, Jankowiak R. How Well Does the Hole-Burning Action Spectrum Represent the Site-Distribution Function of the Lowest-Energy State in Photosynthetic Pigment-Protein Complexes? J Phys Chem B 2019; 123:6007-6013. [PMID: 31265294 DOI: 10.1021/acs.jpcb.9b03806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the first time, we combined Monte Carlo and nonphotochemical hole burning (NPHB) master equation approaches to allow for ultrahigh-resolution (<0.005 cm-1, smaller than the typical homogeneous line widths at 5 K) simulations of the NPHB spectra of dimers and trimers of interacting pigments. These simulations reveal significant differences between the zero-phonon hole (ZPH) action spectrum and the site-distribution function (SDF) of the lowest-energy state. The NPHB of the lowest-energy pigment, following the excitation energy transfer (EET) from the higher-energy pigments which are excited directly, results in the shifts of all excited states. These shifts affect the ZPH action spectra and EET times derived from the widths of the spectral holes burned in the donor-dominated regions. The effect is present for a broad variety of realistic antihole functions, and it is maximal at relatively low values of interpigment coupling (V ≤ 5 cm-1) where the use of the Förster approximation is justified. These findings need to be considered in interpreting various optical spectra of photosynthetic pigment-protein complexes for which SDFs (describing the inhomogeneous broadening) are often obtained directly from the ZPH action spectra. Water-soluble chlorophyll-binding protein (WSCP) was considered as an example.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics , Concordia University , 7141 Sherbrooke Street West , Montreal H4B 1R6 , Quebec , Canada
| | - Ryszard Jankowiak
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
18
|
Kunsel T, Tiwari V, Matutes YA, Gardiner AT, Cogdell RJ, Ogilvie JP, Jansen TLC. Simulating Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of Multichromophoric Systems. J Phys Chem B 2019; 123:394-406. [PMID: 30543283 PMCID: PMC6345114 DOI: 10.1021/acs.jpcb.8b10176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 11/28/2022]
Abstract
We present a theory for modeling fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems. The theory is tested by comparison of the predicted spectra of the light-harvesting complex LH2 with experimental data. A qualitative explanation of the strong cross-peaks as compared to conventional two-dimensional electronic spectra is given. The strong cross-peaks are attributed to the clean ground-state signal that is revealed when the annihilation of exciton pairs created on the same LH2 complex cancels oppositely signed signals from the doubly excited state. This annihilation process occurs much faster than the nonradiative relaxation. Furthermore, the line shape difference is attributed to slow dynamics, exciton delocalization within the bands, and intraband exciton-exciton annihilation. This is in line with existing theories presented for model systems. We further propose the use of time-resolved fluorescence-detected two-dimensional spectroscopy to study state-resolved exciton-exciton annihilation.
Collapse
Affiliation(s)
- Tenzin Kunsel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Vivek Tiwari
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yassel Acosta Matutes
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Richard J. Cogdell
- Institute
for Molecular Biology, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Jennifer P. Ogilvie
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
19
|
Kournoutas F, Seintis K, Karakostas N, Tydlitát J, Achelle S, Pistolis G, Bureš F, Fakis M. Photophysical and Protonation Time Resolved Studies of Donor–Acceptor Branched Systems With Pyridine Acceptors. J Phys Chem A 2018; 123:417-428. [DOI: 10.1021/acs.jpca.8b08628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fotis Kournoutas
- Department of Physics, University of Patras, Greece, GR-26504 Patras, Greece
| | - Kostas Seintis
- Department of Physics, University of Patras, Greece, GR-26504 Patras, Greece
| | - Nikolaos Karakostas
- NCSR “Demokritos” Institute of Nanosciences and Nanotechnology (INN), 153 10 Athens, Greece
| | - Jiří Tydlitát
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Sylvain Achelle
- University of Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - George Pistolis
- NCSR “Demokritos” Institute of Nanosciences and Nanotechnology (INN), 153 10 Athens, Greece
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Mihalis Fakis
- Department of Physics, University of Patras, Greece, GR-26504 Patras, Greece
| |
Collapse
|
20
|
Schröter M, Pullerits T, Kühn O. Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores. J Chem Phys 2018; 149:114107. [DOI: 10.1063/1.5046645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Marco Schröter
- Institute of Physics, University of Rostock, Albert Einstein Straße 23-24, 18059 Rostock, Germany
| | - Tõnu Pullerits
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert Einstein Straße 23-24, 18059 Rostock, Germany
| |
Collapse
|
21
|
Caycedo-Soler F, Lim J, Oviedo-Casado S, van Hulst NF, Huelga SF, Plenio MB. Theory of Excitonic Delocalization for Robust Vibronic Dynamics in LH2. J Phys Chem Lett 2018; 9:3446-3453. [PMID: 29863872 DOI: 10.1021/acs.jpclett.8b00933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nonlinear spectroscopy has revealed long-lasting oscillations in the optical response of a variety of photosynthetic complexes. Different theoretical models that involve the coherent coupling of electronic (excitonic) or electronic-vibrational (vibronic) degrees of freedom have been put forward to explain these observations. The ensuing debate concerning the relevance of either mechanism may have obscured their complementarity. To illustrate this balance, we quantify how the excitonic delocalization in the LH2 unit of Rhodopseudomonas acidophila purple bacterium leads to correlations of excitonic energy fluctuations, relevant coherent vibronic coupling, and importantly, a decrease in the excitonic dephasing rates. Combining these effects, we identify a feasible origin for the long-lasting oscillations observed in fluorescent traces from time-delayed two-pulse single-molecule experiments performed on this photosynthetic complex and use this approach to discuss the role of this complementarity in other photosynthetic systems.
Collapse
Affiliation(s)
- Felipe Caycedo-Soler
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST , University of Ulm , Albert-Einstein-Allee 11 , D-89069 Ulm , Germany
| | - James Lim
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST , University of Ulm , Albert-Einstein-Allee 11 , D-89069 Ulm , Germany
| | - Santiago Oviedo-Casado
- Departmento de Física Aplicada , Universidad Politécnica de Cartagena , 30202 Cartagena , Spain
| | - Niek F van Hulst
- ICFO - Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats , 08010 Barcelona , Spain
| | - Susana F Huelga
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST , University of Ulm , Albert-Einstein-Allee 11 , D-89069 Ulm , Germany
| | - Martin B Plenio
- Institute of Theoretical Physics and Integrated Quantum Science and Technology IQST , University of Ulm , Albert-Einstein-Allee 11 , D-89069 Ulm , Germany
| |
Collapse
|
22
|
Tan LM, Yu J, Kawakami T, Kobayashi M, Wang P, Wang-Otomo ZY, Zhang JP. New Insights into the Mechanism of Uphill Excitation Energy Transfer from Core Antenna to Reaction Center in Purple Photosynthetic Bacteria. J Phys Chem Lett 2018; 9:3278-3284. [PMID: 29863354 DOI: 10.1021/acs.jpclett.8b01197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The uphill excitation energy transfer (EET) from the core antenna (LH1) to the reaction center (RC) of purple photosynthetic bacteria was investigated at room temperature by comparing the native LH1-RC from Thermochromatium ( Tch.) tepidum with the hybrid LH1-RC from a mutant strain of Rhodobacter ( Rba.) sphaeroides. The latter protein with chimeric Tch-LH1 and Rba-RC exhibits a substantially larger RC-to-LH1 energy difference (Δ E = 630 cm-1) of 3-fold thermal energy (3 kB T). The spectroscopic and kinetics results are discussed on the basis of the newly reported high-resolution structures of Tch. tepidum LH1-RC, which allow us to propose the existence of a passage formed by LH1 BChls that facilitates the LH1 → RC EET. The semilogarithmic plot of the EET rate against Δ E was found to be linear over a broad range of Δ E, which consolidates the mechanism of thermal activation as promoted by the spectral overlap between the LH1 fluorescence and the special pair absorption of RC.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Chemistry , Renmin University of China , Beijing 1000872 , PR China
| | - Jie Yu
- Department of Chemistry , Renmin University of China , Beijing 1000872 , PR China
| | | | - Masayuki Kobayashi
- Institute of National Colleges of Technology , Ariake College , Omuta , Fukuoka 836-8585 , Japan
| | - Peng Wang
- Department of Chemistry , Renmin University of China , Beijing 1000872 , PR China
| | | | - Jian-Ping Zhang
- Department of Chemistry , Renmin University of China , Beijing 1000872 , PR China
| |
Collapse
|
23
|
Montemayor D, Rivera E, Jang SJ. Computational Modeling of Exciton-Bath Hamiltonians for Light Harvesting 2 and Light Harvesting 3 Complexes of Purple Photosynthetic Bacteria at Room Temperature. J Phys Chem B 2018. [PMID: 29533664 DOI: 10.1021/acs.jpcb.8b00358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Light harvesting 2 (LH2) complex is the primary component of the photosynthetic unit of purple bacteria that is responsible for harvesting and relaying excitons. The electronic absorption line shape of LH2 contains two major bands at 800 and 850 nm wavelength regions. Under low light conditions, some species of purple bacteria replace LH2 with light harvesting 3 (LH3), a variant form with almost the same structure as the former but with distinctively different spectral features. The major difference between the absorption line shapes of LH2 and LH3 is the shift of the 850 nm band of the former to a new 820 nm region. The microscopic origin of this difference has been the subject of some theoretical/computational investigations. However, the genuine molecular level source of such a difference is not clearly understood yet. This work reports a comprehensive computational study of LH2 and LH3 complexes so as to clarify different molecular level features of LH2 and LH3 complexes and to construct simple exciton-bath models with a common form. All-atomistic molecular dynamics simulations of both LH2 and LH3 complexes provide detailed molecular level structural differences of bacteriochlorophylls (BChls) in the two complexes, in particular, in their patterns of hydrogen bonding (HB) and torsional angles of the acetyl group. Time-dependent density functional theory calculation of the excitation energies of BChls for structures sampled from the MD simulations suggests that the observed differences in the HB and torsional angles cannot fully account for the experimentally observed spectral shift of LH3. Potential sources that can explain the actual spectral shift of LH3 are discussed, and their magnitudes are assessed through fitting of experimental line shapes. These results demonstrate the feasibility of developing simple exciton-bath models for both LH2 and LH3, which can be employed for large-scale exciton quantum dynamics in their aggregates.
Collapse
Affiliation(s)
- Daniel Montemayor
- Department of Chemistry and Biochemistry, Queens College , City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States.,PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Eva Rivera
- Department of Chemistry and Biochemistry, Queens College , City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States.,PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College , City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States.,PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|
24
|
Schröter M, Alcocer MJP, Cogdell RJ, Kühn O, Zigmantas D. Origin of the Two Bands in the B800 Ring and Their Involvement in the Energy Transfer Network of Allochromatium vinosum. J Phys Chem Lett 2018; 9:1340-1345. [PMID: 29488385 DOI: 10.1021/acs.jpclett.8b00438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial photosynthesis features robust and adaptable energy-harvesting processes in which light-harvesting proteins play a crucial role. The peripheral light-harvesting complex of the purple bacterium Allochromatium vinosum is particularly distinct, featuring a double peak structure in its B800 absorption band. Two hypotheses-not necessarily mutually exclusive-concerning the origin of this splitting have been proposed; either two distinct B800 bacteriochlorophyll site energies are involved, or an excitonic dimerization of bacteriochlorophylls within the B800 ring takes place. Through the use of two-dimensional electronic spectroscopy, we present unambiguous evidence that excitonic interaction shapes the split band. We further identify and characterize all of the energy transfer pathways within this complex by using a global kinetic fitting procedure. Our approach demonstrates how the combination of two-dimensional spectral resolution and self-consistent fitting allows for extraction of information on light-harvesting processes, which would otherwise be inaccessible due to signal congestion.
Collapse
Affiliation(s)
- Marco Schröter
- Institute of Physics , University of Rostock , Albert-Einstein-Straße 23-24 , 18059 Rostock , Germany
- Chemical Physics , Lund University , Box 124, 22100 Lund , Sweden
| | | | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Oliver Kühn
- Institute of Physics , University of Rostock , Albert-Einstein-Straße 23-24 , 18059 Rostock , Germany
| | | |
Collapse
|
25
|
Fakis M, Beckwith JS, Seintis K, Martinou E, Nançoz C, Karakostas N, Petsalakis I, Pistolis G, Vauthey E. Energy transfer and charge separation dynamics in photoexcited pyrene-bodipy molecular dyads. Phys Chem Chem Phys 2018; 20:837-849. [PMID: 29230451 DOI: 10.1039/c7cp06914f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The photophysical properties of two pyrene-bodipy molecular dyads, composed of a phenyl-pyrene (Py-Ph) linked to the meso position of a bodipy (BD) molecule with either H-atoms (BD1) or ethyl groups (BD2) at the 2,6 positions, are investigated by stationary, nanosecond and femtosecond spectroscopy. The properties of these dyads (Py-Ph-BD1 and Py-Ph-BD2) are compared to those of their constituent chromophores in two solvents namely 1,2-dichloroethane (DCE) and acetonitrile (ACN). Stationary spectroscopy reveals a weak coupling among the subunits in both dyads. Excitation of the pyrene (Py) subunit leads to emission that is totally governed by the BD subunits in both dyads pointing to excitation energy transfer (EET) from the Py to BD chromophore. Femtosecond fluorescence and transient absorption spectroscopy reveal that EET takes place within 0.3-0.5 ps and is mostly independent of the solvent and the type of the BD subunit. The EET lifetime is in reasonable agreement with that predicted by Förster theory. After EET has taken place, Py-Ph-BD1 in DCE and Py-Ph-BD2 in both solvents decay mainly radiatively to the ground state with 3.5-5.0 ns lifetimes which are similar to those of the individual BD chromophores. However, the excited state of Py-Ph-BD1 in ACN is quenched having a lifetime of 1 ns. This points to the opening of an additional non-radiative channel of the excited state of Py-Ph-BD1 in this solvent, most probably charge separation (CS). Target analysis of the TA spectra has shown that the CS follows inverted kinetics and is substantially slower than the recombination of the charge-separated state. Occurrence of CS with Py-Ph-BD1 in ACN is also supported by energetic considerations. The above results indicate that only a small change in the structure of the BD units incorporated in the dyads significantly affects the excited state dynamics leading either to a dyad with long lifetime and high fluorescence quantum yield or to a dyad with ability to undergo CS.
Collapse
Affiliation(s)
- M Fakis
- Department of Physics, University of Patras, GR-26504, Patras, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jansen TLC. Simple Quantum Dynamics with Thermalization. J Phys Chem A 2018; 122:172-183. [PMID: 29199829 PMCID: PMC5770886 DOI: 10.1021/acs.jpca.7b10380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/04/2017] [Indexed: 02/05/2023]
Abstract
In this paper, we introduce two simple quantum dynamics methods. One is based on the popular surface-hopping method, and the other is based on rescaling of the propagation on the bath ground-state potential surface. The first method is special, as it avoids specific feedback from the simulated quantum system to the bath and can be applied for precalculated classical trajectories. It is based on the equipartition theorem to determine if hops between different potential energy surfaces are allowed. By comparing with the formally exact Hierarchical Equations Of Motion approach for four model systems we find that the method generally approximates the quantum dynamics toward thermal equilibrium very well. The second method is based on rescaling of the nonadiabatic coupling and also neglect the effect of the state of the quantum system on the bath. By the nature of the approximations, they cannot reproduce the effect of bath relaxation following excitation. However, the methods are both computationally more tractable than the conventional fewest switches surface hopping, and we foresee that the methods will be powerful for simulations of quantum dynamics in systems with complex bath dynamics, where the system-bath coupling is not too strong compared to the thermal energy.
Collapse
Affiliation(s)
- Thomas L. C. Jansen
- Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
27
|
Kell A, Jassas M, Hacking K, Cogdell RJ, Jankowiak R. On Light-Induced Photoconversion of B800 Bacteriochlorophylls in the LH2 Antenna of the Purple Sulfur Bacterium Allochromatium vinosum. J Phys Chem B 2017; 121:9999-10006. [DOI: 10.1021/acs.jpcb.7b06185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Kirsty Hacking
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland
| | - Richard J. Cogdell
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland
| | | |
Collapse
|
28
|
Segatta F, Cupellini L, Jurinovich S, Mukamel S, Dapor M, Taioli S, Garavelli M, Mennucci B. A Quantum Chemical Interpretation of Two-Dimensional Electronic Spectroscopy of Light-Harvesting Complexes. J Am Chem Soc 2017; 139:7558-7567. [DOI: 10.1021/jacs.7b02130] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francesco Segatta
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi
13, 56124 Pisa, Italy
| | - Sandro Jurinovich
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi
13, 56124 Pisa, Italy
| | - Shaul Mukamel
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Maurizio Dapor
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
| | - Simone Taioli
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Faculty
of Mathematics and Physics, Charles University, Prague 116 36, Czech Republic
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi
13, 56124 Pisa, Italy
| |
Collapse
|
29
|
Athanasopoulos S, Alfonso Hernandez L, Beljonne D, Fernandez-Alberti S, Tretiak S. Ultrafast Non-Förster Intramolecular Donor-Acceptor Excitation Energy Transfer. J Phys Chem Lett 2017; 8:1688-1694. [PMID: 28339205 DOI: 10.1021/acs.jpclett.7b00259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrafast intramolecular electronic energy transfer in a conjugated donor-acceptor system is simulated using nonadiabatic excited-state molecular dynamics. After initial site-selective photoexcitation of the donor, transition density localization is monitored throughout the S2 → S1 internal conversion process, revealing an efficient unidirectional donor → acceptor energy-transfer process. Detailed analysis of the excited-state trajectories uncovers several salient features of the energy-transfer dynamics. While a weak temperature dependence is observed during the entire electronic energy relaxation, an ultrafast initially temperature-independent process allows the molecular system to approach the S2-S1 potential energy crossing seam within the first ten femtoseconds. Efficient energy transfer occurs in the absence of spectral overlap between the donor and acceptor units and is assisted by a transient delocalization phenomenon of the excited-state wave function acquiring Frenkel-exciton character at the moment of quantum transition.
Collapse
Affiliation(s)
- Stavros Athanasopoulos
- Departamento de Física, Universidad Carlos III de Madrid , Avenida Universidad 30, 28911 Leganés, Madrid, Spain
- Experimental Physics II, University of Bayreuth , Bayreuth 95440, Germany
| | | | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons , Place du Parc 20, B-7000 Mons, Belgium
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for integrated Nanotechnologies (CINT), Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
30
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Martin EC, Bocian DF, Hunter CN, Holten D. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2017; 131:291-304. [PMID: 27854005 PMCID: PMC5313593 DOI: 10.1007/s11120-016-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, "blue" form with an S2 (11B u+ ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, "red" form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u+ ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u+ ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u+ ) → S0 (11A g- ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid-protein interactions, including the inferred hydrogen bonding.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO, 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
31
|
Seintis K, Agathangelou D, Cvejn D, Almonasy N, Bureš F, Giannetas V, Fakis M. Femtosecond to nanosecond studies of octupolar molecules and their quadrupolar and dipolar analogues. Phys Chem Chem Phys 2017; 19:16485-16497. [DOI: 10.1039/c7cp01463e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fs–ps anisotropy dynamics of octupolar, quadrupolar and dipolar molecules with different π-bridges.
Collapse
Affiliation(s)
- K. Seintis
- Department of Physics
- University of Patras
- Patras
- Greece
| | | | - D. Cvejn
- Institute of Organic Chemistry and Technology
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice
- Czech Republic
| | - N. Almonasy
- Institute of Organic Chemistry and Technology
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice
- Czech Republic
| | - F. Bureš
- Institute of Organic Chemistry and Technology
- Faculty of Chemical Technology
- University of Pardubice
- Pardubice
- Czech Republic
| | - V. Giannetas
- Department of Physics
- University of Patras
- Patras
- Greece
| | - M. Fakis
- Department of Physics
- University of Patras
- Patras
- Greece
| |
Collapse
|
32
|
|
33
|
Tubasum S, Torbjörnsson M, Yadav D, Camacho R, Söderlind G, Scheblykin IG, Pullerits T. Protein Configuration Landscape Fluctuations Revealed by Exciton Transition Polarizations in Single Light Harvesting Complexes. J Phys Chem B 2016; 120:724-32. [PMID: 26741912 DOI: 10.1021/acs.jpcb.5b12466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein is a flexible material with broad distribution of conformations forming an energy landscape of quasi-stationary states. Disentangling the system dynamics along this landscape is the key for understanding the functioning of the protein. Here we studied a photosynthetic antenna pigment-protein complex LH2 with single molecule two-dimensional polarization imaging. Modeling based on the Redfield relaxation theory well describes the observed polarization properties of LH2 fluorescence and fluorescence excitation, strongly suggesting that at 77 K the conformational subspace of the LH2 is limited to about three configurations with relatively frequent switching among each other. At room temperature the next level of fluctuations determines the conformational dynamics. The results support the multitier model of the energy landscape of proteins and demonstrate the potential of the method for the studies of structural dynamics in proteins.
Collapse
Affiliation(s)
- Sumera Tubasum
- Division of Chemical Physics, Department of Chemistry, Lund University , Box 124, 22100 Lund, Sweden.,Division of Numerical Analysis, Centre for Mathematical Sciences, Lund University , Box 124, 22100 Lund, Sweden
| | - Magne Torbjörnsson
- Division of Chemical Physics, Department of Chemistry, Lund University , Box 124, 22100 Lund, Sweden.,Division of Numerical Analysis, Centre for Mathematical Sciences, Lund University , Box 124, 22100 Lund, Sweden
| | - Dheerendra Yadav
- Division of Chemical Physics, Department of Chemistry, Lund University , Box 124, 22100 Lund, Sweden.,Division of Numerical Analysis, Centre for Mathematical Sciences, Lund University , Box 124, 22100 Lund, Sweden
| | - Rafael Camacho
- Division of Chemical Physics, Department of Chemistry, Lund University , Box 124, 22100 Lund, Sweden.,Division of Numerical Analysis, Centre for Mathematical Sciences, Lund University , Box 124, 22100 Lund, Sweden
| | - Gustaf Söderlind
- Division of Chemical Physics, Department of Chemistry, Lund University , Box 124, 22100 Lund, Sweden.,Division of Numerical Analysis, Centre for Mathematical Sciences, Lund University , Box 124, 22100 Lund, Sweden
| | - Ivan G Scheblykin
- Division of Chemical Physics, Department of Chemistry, Lund University , Box 124, 22100 Lund, Sweden.,Division of Numerical Analysis, Centre for Mathematical Sciences, Lund University , Box 124, 22100 Lund, Sweden
| | - Tõnu Pullerits
- Division of Chemical Physics, Department of Chemistry, Lund University , Box 124, 22100 Lund, Sweden.,Division of Numerical Analysis, Centre for Mathematical Sciences, Lund University , Box 124, 22100 Lund, Sweden
| |
Collapse
|
34
|
Mohamed A, Nagao R, Noguchi T, Fukumura H, Shibata Y. Structure-Based Modeling of Fluorescence Kinetics of Photosystem II: Relation between Its Dimeric Form and Photoregulation. J Phys Chem B 2016; 120:365-76. [PMID: 26714062 DOI: 10.1021/acs.jpcb.5b09103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photosystem II-enriched membrane (PSII-em) consists of the PSII core complex (PSII-cc) which is surrounded by peripheral antenna complexes. PSII-cc consists of two core antenna (CP43 and CP47) and the reaction center (RC) complex. Time-resolved fluorescence spectra of a PSII-em were measured at 77 K. The data were globally analyzed with a new compartment model, which has a minimum number of compartments and is consistent with the structure of PSII-cc. The reliability of the model was investigated by fitting the data of different experimental conditions. From the analysis, the energy-transfer time constants from the peripheral antenna to CP47 and CP43 were estimated to be 20 and 35 ps, respectively. With an exponential time constant of 320 ps, the excitation energy was estimated to accumulate in the reddest chlorophyll (Red Chl), giving a 692 nm fluorescence peak. The excited state on the Red Chl was confirmed to be quenched upon the addition of an oxidant, as reported previously. The calculations based on the Förster theory predicted that the excitation energy on Chl29 is quenched by ChlZD1(+), which is a redox active but not involved in the electron-transfer chain, located in the D1 subunit of RC, in the other monomer with an exponential time constant of 75 ps. This quenching pathway is consistent with our structure-based simulation of PSII-cc, which assigned Chl29 as the Red Chl. On the other hand, the alternative interpretation assigning Chl26 as the Red Chl was not excluded. The excited Chl26 was predicted to be quenched by another redox active ChlZD2(+) in the D2 subunit of RC in the same monomer unit with an exponential time constant of 88 ps.
Collapse
Affiliation(s)
- Ahmed Mohamed
- Department of Chemistry, Graduate School of Science, Tohoku University , Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Ryo Nagao
- Division of Material Science (Physics), Graduate School of Science, Nagoya University , Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University , Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Hiroshi Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University , Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University , Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
35
|
Magyar RJ, Tretiak S. Dependence of Spurious Charge-Transfer Excited States on Orbital Exchange in TDDFT: Large Molecules and Clusters. J Chem Theory Comput 2015; 3:976-87. [PMID: 26627417 DOI: 10.1021/ct600282k] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-dependent density functional theory (TDDFT) is a powerful tool allowing for accurate description of excited states in many nanoscale molecular systems; however, its application to large molecules may be plagued with difficulties that are not immediately obvious from previous experiences of applying TDDFT to small molecules. In TDDFT, the appearance of spurious charge-transfer states below the first optical excited state is shown to have significant effects on the predicted absorption and emission spectra of several donor-acceptor substituted molecules. The same problem affects the predictions of electronic spectra of molecular aggregates formed from weakly interacting chromophores. For selected benchmark cases, we show that today's popular density functionals, such as purely local (Local Density Approximation, LDA) and semilocal (Generalized Gradient Approximation, GGA) models, are qualitatively wrong. Nonlocal hybrid approximations including both semiempirical (B3LYP) and ab initio (PBE1PBE) containing a small fraction (20-25%) of Fock-like orbital exchange are also susceptible to such problems. Functionals that contain a larger fraction (50%) of orbital exchange like the early hybrid (BHandHLYP) are shown to exhibit far fewer spurious charge-transfer (CT) states at the expense of accuracy. Based on the trends observed in this study and our previous experience we formulate several practical approaches to overcome these difficulties providing a reliable description of electronic excitations in nanosystems.
Collapse
Affiliation(s)
- R J Magyar
- NIST Center for Theoretical and Computational Nanosciences (NCTCN), Gaithersburg, Maryland 20899, and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.,Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - S Tretiak
- NIST Center for Theoretical and Computational Nanosciences (NCTCN), Gaithersburg, Maryland 20899, and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.,Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
36
|
Shi Y, Zhao NJ, Wang P, Fu LM, Yu LJ, Zhang JP, Wang-Otomo ZY. Thermal Adaptability of the Light-Harvesting Complex 2 from Thermochromatium tepidum: Temperature-Dependent Excitation Transfer Dynamics. J Phys Chem B 2015; 119:14871-9. [DOI: 10.1021/acs.jpcb.5b09023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying Shi
- Department
of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Ning-Jiu Zhao
- Department
of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Peng Wang
- Department
of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Li-Min Fu
- Department
of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Long-Jiang Yu
- Faculty
of Science, Ibaraki University, Mito 310-8512, Japan
| | - Jian-Ping Zhang
- Department
of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | | |
Collapse
|
37
|
Camacho R, Tubasum S, Southall J, Cogdell RJ, Sforazzini G, Anderson HL, Pullerits T, Scheblykin IG. Fluorescence polarization measures energy funneling in single light-harvesting antennas--LH2 vs conjugated polymers. Sci Rep 2015; 5:15080. [PMID: 26478272 PMCID: PMC4609963 DOI: 10.1038/srep15080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.
Collapse
Affiliation(s)
- Rafael Camacho
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Sumera Tubasum
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - June Southall
- Glasgow Biomedical Research Centre, University of Glasgow, G12 8QQ, United Kingdom
| | - Richard J Cogdell
- Glasgow Biomedical Research Centre, University of Glasgow, G12 8QQ, United Kingdom
| | - Giuseppe Sforazzini
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tõnu Pullerits
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Ivan G Scheblykin
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| |
Collapse
|
38
|
Bai S, Song K, Shi Q. Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study. J Phys Chem Lett 2015; 6:1954-1960. [PMID: 26263276 DOI: 10.1021/acs.jpclett.5b00690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Observations of oscillatory features in the 2D spectra of several photosynthetic complexes have led to diverged opinions on their origins, including electronic coherence, vibrational coherence, and vibronic coherence. In this work, effects of these different types of quantum coherence on ultrafast pump-probe polarization anisotropy are investigated and distinguished. We first simulate the isotropic pump-probe signal and anisotropy decay of the Fenna-Matthews-Olson (FMO) complex using a model with only electronic coherence at low temperature and obtain the same coherence time as in the previous experiment. Then, three model dimer systems with different prespecified quantum coherence are simulated, and the results show that their different spectral characteristics can be used to determine the type of coherence during the spectral process. Finally, we simulate model systems with different electronic-vibrational couplings and reveal the condition in which long time vibronic coherence can be observed in systems like the FMO complex.
Collapse
Affiliation(s)
- Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North 1st Street, Zhongguancun, Beijing 100190, China
| | - Kai Song
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North 1st Street, Zhongguancun, Beijing 100190, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North 1st Street, Zhongguancun, Beijing 100190, China
| |
Collapse
|
39
|
|
40
|
van der Vegte CP, Prajapati JD, Kleinekathöfer U, Knoester J, Jansen TLC. Atomistic Modeling of Two-Dimensional Electronic Spectra and Excited-State Dynamics for a Light Harvesting 2 Complex. J Phys Chem B 2015; 119:1302-13. [DOI: 10.1021/jp509247p] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. P. van der Vegte
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - J. D. Prajapati
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - U. Kleinekathöfer
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - J. Knoester
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - T. L. C. Jansen
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
41
|
Yushchenko O, Hangarge RV, Mosquera-Vazquez S, Boshale SV, Vauthey E. Electron, Hole, Singlet, and Triplet Energy Transfer in Photoexcited Porphyrin-Naphthalenediimide Dyads. J Phys Chem B 2014; 119:7308-20. [DOI: 10.1021/jp5108685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oleksandr Yushchenko
- Department
of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva, 4, Switzerland
| | - Rahul V. Hangarge
- Department
of Organic Chemistry, School of Chemical Sciences, North Maharashtra University, Jalgaon, 425 001 Maharashtra, India
| | - Sandra Mosquera-Vazquez
- Department
of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva, 4, Switzerland
| | - Sheshanath V. Boshale
- School of Applied
Sciences, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Eric Vauthey
- Department
of Physical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva, 4, Switzerland
| |
Collapse
|
42
|
|
43
|
Fidler AF, Singh VP, Long PD, Dahlberg PD, Engel GS. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy. J Chem Phys 2014; 139:155101. [PMID: 24160544 DOI: 10.1063/1.4824637] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.
Collapse
Affiliation(s)
- Andrew F Fidler
- Department of Chemistry, The Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
44
|
Pullerits TÕN. Exciton States and Relaxation in Molecular Aggregates: Numerical Study of Photosynthetic Light Harvesting. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200000106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Ostroumov EE, Mulvaney RM, Anna JM, Cogdell RJ, Scholes GD. Energy Transfer Pathways in Light-Harvesting Complexes of Purple Bacteria as Revealed by Global Kinetic Analysis of Two-Dimensional Transient Spectra. J Phys Chem B 2013; 117:11349-62. [DOI: 10.1021/jp403028x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evgeny E. Ostroumov
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| | - Rachel M. Mulvaney
- Glasgow Biomedical Research
Centre, IBLS, University of Glasgow, 126
Place, Glasgow G12 8TA, Scotland, U.K
| | - Jessica M. Anna
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| | - Richard J. Cogdell
- Glasgow Biomedical Research
Centre, IBLS, University of Glasgow, 126
Place, Glasgow G12 8TA, Scotland, U.K
| | - Gregory D. Scholes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| |
Collapse
|
46
|
Hildner R, Brinks D, Nieder JB, Cogdell RJ, van Hulst NF. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 2013; 340:1448-51. [PMID: 23788794 DOI: 10.1126/science.1235820] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting.
Collapse
Affiliation(s)
- Richard Hildner
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels, Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Tubasum S, Sakai S, Dewa T, Sundström V, Scheblykin IG, Nango M, Pullerits T. Anchored LH2 Complexes in 2D Polarization Imaging. J Phys Chem B 2013; 117:11391-6. [DOI: 10.1021/jp403863c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sumera Tubasum
- Department of Chemical Physics, Lund University, SE-22 100, Lund, Sweden
| | - Shunsuke Sakai
- Department of Frontier Materials,
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takehisa Dewa
- Department of Frontier Materials,
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Villy Sundström
- Department of Chemical Physics, Lund University, SE-22 100, Lund, Sweden
| | - Ivan G. Scheblykin
- Department of Chemical Physics, Lund University, SE-22 100, Lund, Sweden
| | - Mamoru Nango
- Department of Frontier Materials,
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, SE-22 100, Lund, Sweden
| |
Collapse
|
48
|
Novoderezhkin V, van Grondelle R. Spectra and Dynamics in the B800 Antenna: Comparing Hierarchical Equations, Redfield and Förster Theories. J Phys Chem B 2013; 117:11076-90. [DOI: 10.1021/jp400957t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vladimir Novoderezhkin
- A. N. Belozersky Institute
of
Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Rienk van Grondelle
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Duvanel G, Grilj J, Vauthey E. Ultrafast long-distance excitation energy transport in donor-bridge-acceptor systems. J Phys Chem A 2013; 117:918-28. [PMID: 23327635 DOI: 10.1021/jp311540x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The excited-state dynamics of two energy donor-bridge-acceptor (D-B-A) systems consisting of a zinc tetraphenylporphyrin (ZnP) and a free base tetraphenylporphyrin (FbP) bridged by oligo-p-phenyleneethynylene units with different substituents has been investigated using ultrafast spectroscopy. These systems differ by the location of the lowest singlet excited state of the bridge, just above or below the S(2) porphyrin states. In the first case, Soret band excitation of the porphyrins is followed by internal conversion to the local S(1) state of both molecules and by a S(1) energy transfer from the ZnP to the FbP end on the 10 ns time scale, as expected for a center-to-center distance of about 4.7 nm. On the other hand, if the bridge is excited, the energy is efficiently transferred within 1 ps to both porphyrin ends. Selective bridge excitation is not possible with the second system, because of the overlap of the absorption bands. However, the time-resolved spectroscopic data suggest a reversible conversion between the D*(S(2))-B-A and D-B*(S(1))-A states as well as a transition from the D-B*(S(1))-A to the D-B-A* states on the picosecond time scale. This implies that the local S(2) energy of the ZnP end can be transported stepwise to the FbP end, i.e., over about 4.7 nm, within 1 ps with an efficiency of more than 0.2.
Collapse
Affiliation(s)
- Guillaume Duvanel
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
50
|
Tubasum S, Camacho R, Meyer M, Yadav D, Cogdell RJ, Pullerits T, Scheblykin IG. Evidence of excited state localization and static disorder in LH2 investigated by 2D-polarization single-molecule imaging at room temperature. Phys Chem Chem Phys 2013; 15:19862-9. [DOI: 10.1039/c3cp52127c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|