1
|
Krall JB, Nichols PJ, Henen MA, Vicens Q, Vögeli B. Structure and Formation of Z-DNA and Z-RNA. Molecules 2023; 28:843. [PMID: 36677900 PMCID: PMC9867160 DOI: 10.3390/molecules28020843] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Despite structural differences between the right-handed conformations of A-RNA and B-DNA, both nucleic acids adopt very similar, left-handed Z-conformations. In contrast to their structural similarities and sequence preferences, RNA and DNA exhibit differences in their ability to adopt the Z-conformation regarding their hydration shells, the chemical modifications that promote the Z-conformation, and the structure of junctions connecting them to right-handed segments. In this review, we highlight the structural and chemical properties of both Z-DNA and Z-RNA and delve into the potential factors that contribute to both their similarities and differences. While Z-DNA has been extensively studied, there is a gap of knowledge when it comes to Z-RNA. Where such information is lacking, we try and extend the principles of Z-DNA stability and formation to Z-RNA, considering the inherent differences of the nucleic acids.
Collapse
Affiliation(s)
- Jeffrey B. Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Chhetri KB, Naskar S, Maiti PK. Probing the microscopic structure and flexibility of oxidized DNA by molecular simulations. INDIAN JOURNAL OF PHYSICS 2022; 96:2597-2611. [DOI: 10.1007/s12648-022-02299-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/17/2022] [Indexed: 01/17/2025]
|
3
|
Gkionis K, Kruse H, Šponer J. Derivation of Reliable Geometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and Restrained Implicit Solvent QM Optimizations of G-Quadruplexes. J Chem Theory Comput 2016; 12:2000-16. [DOI: 10.1021/acs.jctc.5b01025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Konstantinos Gkionis
- Institute of Biophysics,
Academy of Sciences of the Czech Republic, Královopolská 135, 612
65 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics,
Academy of Sciences of the Czech Republic, Královopolská 135, 612
65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics,
Academy of Sciences of the Czech Republic, Královopolská 135, 612
65 Brno, Czech Republic
- CEITEC
− Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Imeddourene AB, Xu X, Zargarian L, Oguey C, Foloppe N, Mauffret O, Hartmann B. The intrinsic mechanics of B-DNA in solution characterized by NMR. Nucleic Acids Res 2016; 44:3432-47. [PMID: 26883628 PMCID: PMC4838374 DOI: 10.1093/nar/gkw084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3′-H3′ and C4′-H4′ vectors are correlated to the 31P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2′ and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinter are mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5′ and 3′ ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Xiaoqian Xu
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Department of Life Sciences, East China Normal University, 200062 Shanghai, People's Republic of China
| | - Loussiné Zargarian
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Christophe Oguey
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Olivier Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Brigitte Hartmann
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| |
Collapse
|
5
|
Xu Y, Vanommeslaeghe K, Aleksandrov A, MacKerell AD, Nilsson L. Additive CHARMM force field for naturally occurring modified ribonucleotides. J Comput Chem 2016; 37:896-912. [PMID: 26841080 PMCID: PMC4801715 DOI: 10.1002/jcc.24307] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 01/13/2023]
Abstract
More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201.,Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, B-1090, Belgium
| | - Alexey Aleksandrov
- Department of Biology, Ecole Polytechnique, Laboratoire De Biochimie (CNRS UMR7654), Palaiseau, F-91128, France
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| |
Collapse
|
6
|
Ben Imeddourene A, Elbahnsi A, Guéroult M, Oguey C, Foloppe N, Hartmann B. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics. PLoS Comput Biol 2015; 11:e1004631. [PMID: 26657165 PMCID: PMC4689557 DOI: 10.1371/journal.pcbi.1004631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 01/30/2023] Open
Abstract
The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- Université Pierre et Marie Curie, Paris, France
| | - Ahmad Elbahnsi
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | - Marc Guéroult
- UMR S665, INSERM, Université Paris Diderot, INTS, Paris, France
| | - Christophe Oguey
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Brigitte Hartmann
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- * E-mail: (NF); (BH)
| |
Collapse
|
7
|
Kruse H, Mladek A, Gkionis K, Hansen A, Grimme S, Sponer J. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J Chem Theory Comput 2015; 11:4972-91. [PMID: 26574283 DOI: 10.1021/acs.jctc.5b00515] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields.
Collapse
Affiliation(s)
- Holger Kruse
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Arnost Mladek
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Konstantinos Gkionis
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Disney MD, Yildirim I, Childs-Disney JL. Methods to enable the design of bioactive small molecules targeting RNA. Org Biomol Chem 2014; 12:1029-39. [PMID: 24357181 PMCID: PMC4020623 DOI: 10.1039/c3ob42023j] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.
Collapse
Affiliation(s)
- Matthew D Disney
- The Department of Chemistry, The Scripps Research Institute, 130 Scripps Way #3A1, Jupiter, FL 33458, USA.
| | | | | |
Collapse
|
9
|
Mládek A, Banáš P, Jurečka P, Otyepka M, Zgarbová M, Šponer J. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations. J Chem Theory Comput 2013; 10:463-80. [PMID: 26579924 DOI: 10.1021/ct400837p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the distribution data derived from the simulations. The QM and MM energy profiles predict the same 2'-hydroxyl group orientation preferences. Finally, we demonstrate that the high energy of unfavorable and rarely sampled 2'-hydroxyl group orientations can be attributed to clashes between occupied orbitals.
Collapse
Affiliation(s)
- Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC, Central European Institute of Technology , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
10
|
Zgarbová M, Luque FJ, Šponer J, Cheatham TE, Otyepka M, Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J Chem Theory Comput 2013; 9:2339-2354. [PMID: 24058302 PMCID: PMC3775469 DOI: 10.1021/ct400154j] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a refinement of the backbone torsion parameters ε and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as εζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput. 2012, 7(9), 2886-2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined parameters decreased the backbone RMS deviations in B-DNA MD simulations. In the antiparallel guanine quadruplex (G-DNA) the εζOL1 modification improved the description of non-canonical α/γ backbone substates, which were shown to be coupled to the ε/ζ torsion potential. Thus, the refinement is suggested as a possible alternative to the current ε/ζ torsion potential, which may enable more accurate modeling of nucleic acids. However, long-term testing is recommended before its routine application in DNA simulations.
Collapse
Affiliation(s)
- Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - F. Javier Luque
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultad de Farmacia, Universidad de Barcelona, Campus Torribera, Prat de la Riba 171, Edifici Verdaguer, 080921 Santa Coloma de Gramanet, Spain
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Thomas E. Cheatham
- Departments of Medicinal Chemistry, University of Utah, 2000 East 30 South Skaggs 105, Salt Lake City, UT 84112, USA
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
11
|
Grokhovsky SL, Il’icheva IA, Panchenko LA, Golovkin MV, Nechipurenko DY, Polozov RV, Nechipurenko YD. Ultrasonic cleavage of DNA in complexes with Ag(I), Cu(II), Hg(II). Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Islam B, Sgobba M, Laughton C, Orozco M, Sponer J, Neidle S, Haider S. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Res 2013; 41:2723-35. [PMID: 23293000 PMCID: PMC3575793 DOI: 10.1093/nar/gks1331] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. Although G-quartet stems have been well characterized, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 μs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology.
Collapse
Affiliation(s)
- Barira Islam
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Miriam Sgobba
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Charlie Laughton
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Modesto Orozco
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Jiri Sponer
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Stephen Neidle
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Shozeb Haider
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
13
|
Mládek A, Krepl M, Svozil D, Čech P, Otyepka M, Banáš P, Zgarbová M, Jurečka P, Šponer J. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar–phosphate backbone and their comparison with modern density functional theory. Phys Chem Chem Phys 2013; 15:7295-310. [DOI: 10.1039/c3cp44383c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Foloppe N, Guéroult M, Hartmann B. Simulating DNA by molecular dynamics: aims, methods, and validation. Methods Mol Biol 2013; 924:445-468. [PMID: 23034759 DOI: 10.1007/978-1-62703-017-5_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The structure and dynamics of the B-DNA double helix involves subtle sequence-dependent effects which are decisive for its function, but difficult to characterize. These structural and dynamic effects can be addressed by simulations of DNA sequences in explicit solvent. Here, we present and discuss the state-of-art of B-DNA molecular dynamics simulations with the major force fields in use today. We explain why a critical analysis of the MD trajectories is required to assess their reliability, and estimate the value and limitations of these models. Overall, simulations of DNA bear great promise towards deciphering the structural and physical subtleties of this biopolymer, where much remains to be understood.
Collapse
|
15
|
Šponer J, Mládek A, Šponer JE, Svozil D, Zgarbová M, Banáš P, Jurečka P, Otyepka M. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Phys Chem Chem Phys 2012; 14:15257-77. [PMID: 23072945 DOI: 10.1039/c2cp41987d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Knowledge of geometrical and physico-chemical properties of the sugar-phosphate backbone substantially contributes to the comprehension of the structural dynamics, function and evolution of nucleic acids. We provide a side by side overview of structural biology/bioinformatics, quantum chemical and molecular mechanical/simulation studies of the nucleic acids backbone. We highlight main features, advantages and limitations of these techniques, with a special emphasis given to their synergy. The present status of the research is then illustrated by selected examples which include classification of DNA and RNA backbone families, benchmark structure-energy quantum chemical calculations, parameterization of the dihedral space of simulation force fields, incorporation of arsenate into DNA, sugar-phosphate backbone self-cleavage in small RNA enzymes, and intricate geometries of the backbone in recurrent RNA building blocks. Although not apparent from the current literature showing limited overlaps between the QM, simulation and bioinformatics studies of the nucleic acids backbone, there in fact should be a major cooperative interaction between these three approaches in studies of the sugar-phosphate backbone.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Denning EJ, MacKerell AD. Intrinsic contribution of the 2'-hydroxyl to RNA conformational heterogeneity. J Am Chem Soc 2012; 134:2800-6. [PMID: 22242623 DOI: 10.1021/ja211328g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Canonical duplex RNA assumes only the A-form conformation at the secondary structure level while, in contrast, a wide range of noncanonical, tertiary conformations of RNA occur. Here, we show how the 2'-hydroxyl controls RNA conformational properties. Quantum mechanical calculations reveal that the orientation of the 2'-hydroxyl significantly alters the intrinsic flexibility of the phosphodiester backbone, favoring the A-form in duplex RNA when it is in the base orientation and facilitating sampling of a wide range of noncanonical, tertiary structures when it is in the O3' orientation. Influencing the orientation of the 2'-hydroxyl are interactions with the environment, as evidenced by crystallographic survey data, indicating the 2'-hydroxyl to sample more of the O3' orientation in noncanonical RNA structures. These results indicate that the 2'-hydroxyl acts as a "switch", both limiting the conformation of RNA to the A-form at the secondary structure level and allowing RNA to sample a wide range of noncanonical tertiary conformations.
Collapse
Affiliation(s)
- Elizabeth J Denning
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
17
|
Mládek A, Šponer JE, Kulhánek P, Lu XJ, Olson WK, Šponer J. Understanding the Sequence Preference of Recurrent RNA Building Blocks using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform. J Chem Theory Comput 2012; 8:335-347. [PMID: 22712001 PMCID: PMC3375708 DOI: 10.1021/ct200712b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Folded RNA molecules are shaped by an astonishing variety of highly conserved noncanonical molecular interactions and backbone topologies. The dinucleotide platform is a widespread recurrent RNA modular building submotif formed by the side-by-side pairing of bases from two consecutive nucleotides within a single strand, with highly specific sequence preferences. This unique arrangement of bases is cemented by an intricate network of noncanonical hydrogen bonds and facilitated by a distinctive backbone topology. The present study investigates the gas-phase intrinsic stabilities of the three most common RNA dinucleotide platforms - 5'-GpU-3', ApA, and UpC - via state-of-the-art quantum-chemical (QM) techniques. The mean stability of base-base interactions decreases with sequence in the order GpU > ApA > UpC. Bader's atoms-in-molecules analysis reveals that the N2(G)…O4(U) hydrogen bond of the GpU platform is stronger than the corresponding hydrogen bonds in the other two platforms. The mixed-pucker sugar-phosphate backbone conformation found in most GpU platforms, in which the 5'-ribose sugar (G) is in the C2'-endo form and the 3'-sugar (U) in the C3'-endo form, is intrinsically more stable than the standard A-RNA backbone arrangement, partially as a result of a favorable O2'…O2P intra-platform interaction. Our results thus validate the hypothesis of Lu et al. (Lu Xiang-Jun, et al. Nucleic Acids Res. 2010, 38, 4868-4876), that the superior stability of GpU platforms is partially mediated by the strong O2'…O2P hydrogen bond. In contrast, ApA and especially UpC platform-compatible backbone conformations are rather diverse and do not display any characteristic structural features. The average stabilities of ApA and UpC derived backbone conformers are also lower than those of GpU platforms. Thus, the observed structural and evolutionary patterns of the dinucleotide platforms can be accounted for, to a large extent, by their intrinsic properties as described by modern QM calculations. In contrast, we show that the dinucleotide platform is not properly described in the course of atomistic explicit-solvent simulations. Our work also gives methodological insights into QM calculations of experimental RNA backbone geometries. Such calculations are inherently complicated by rather large data and refinement uncertainties in the available RNA experimental structures, which often preclude reliable energy computations.
Collapse
Affiliation(s)
- Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Judit E. Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jiřĺ Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L, MacKerell AD. Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. J Chem Theory Comput 2012; 8:348-362. [PMID: 22368531 PMCID: PMC3285246 DOI: 10.1021/ct200723y] [Citation(s) in RCA: 432] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The B-form of DNA can populate two different backbone conformations: BI and BII, defined by the difference between the torsion angles ε and ζ (BI = ε-ζ < 0 and BII = ε-ζ > 0). BI is the most populated state, but the population of the BII state, which is sequence dependent, is significant and accumulating evidence shows that BII affects the overall structure of DNA, and thus influences protein-DNA recognition. This work presents a reparametrization of the CHARMM27 additive nucleic acid force field to increase the sampling of the BII form in MD simulations of DNA. In addition, minor modifications of sugar puckering were introduced to facilitate sampling of the A form of DNA under the appropriate environmental conditions. Parameter optimization was guided by quantum mechanical data on model compounds, followed by calculations on several DNA duplexes in the condensed phase. The selected optimized parameters were then validated against a number of DNA duplexes, with the most extensive tests performed on the EcoRI dodecamer, including comparative calculations using the Amber Parm99bsc0 force field. The new CHARMM model better reproduces experimentally observed sampling of the BII conformation, including sampling as a function of sequence. In addition, the model reproduces the A form of the 1ZF1 duplex in 75 % ethanol, and yields a stable Z-DNA conformation of duplex (GTACGTAC) in its crystal environment. The resulting model, in combination with a recent reoptimization of the CHARMM27 force field for RNA, will be referred to as CHARMM36.
Collapse
Affiliation(s)
- Katarina Hart
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, SE-141 83 HUDDINGE, Sweden
| | | | - Christopher M. Baker
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, USA
| | - Elizabeth J. Denning
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, USA
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, SE-141 83 HUDDINGE, Sweden
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, USA
| |
Collapse
|
19
|
Zgarbová M, Otyepka M, Šponer J, Mládek A, Banáš P, Cheatham TE, Jurečka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J Chem Theory Comput 2011; 7:2886-2902. [PMID: 21921995 PMCID: PMC3171997 DOI: 10.1021/ct200162x] [Citation(s) in RCA: 837] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Indexed: 01/19/2023]
Abstract
We report a reparameterization of the glycosidic torsion χ of the Cornell et al. AMBER force field for RNA, χ(OL). The parameters remove destabilization of the anti region found in the ff99 force field and thus prevent formation of spurious ladder-like structural distortions in RNA simulations. They also improve the description of the syn region and the syn-anti balance as well as enhance MD simulations of various RNA structures. Although χ(OL) can be combined with both ff99 and ff99bsc0, we recommend the latter. We do not recommend using χ(OL) for B-DNA because it does not improve upon ff99bsc0 for canonical structures. However, it might be useful in simulations of DNA molecules containing syn nucleotides. Our parametrization is based on high-level QM calculations and differs from conventional parametrization approaches in that it incorporates some previously neglected solvation-related effects (which appear to be essential for obtaining correct anti/high-anti balance). Our χ(OL) force field is compared with several previous glycosidic torsion parametrizations.
Collapse
Affiliation(s)
- Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 77146 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 77146 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 77146 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 77146 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Thomas E. Cheatham
- Departments of Medicinal Chemistry and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, Utah 84112, United States
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
20
|
Churchill CDM, Wetmore SD. Developing a computational model that accurately reproduces the structural features of a dinucleoside monophosphate unit within B-DNA. Phys Chem Chem Phys 2011; 13:16373-83. [PMID: 21842033 DOI: 10.1039/c1cp21689a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability of a dinucleoside monophosphate to mimic the conformation of B-DNA was tested using a combination of different phosphate models (anionic, neutral, counterion), environments (gas, water), and density functionals (B3LYP, MPWB1K, M06-2X) with the 6-31G(d,p) basis set. Three sequences (5'-GX(Py)-3', where X(Py) = T, U or (Br)U) were considered, which vary in the (natural or modified) 3' pyrimidine nucleobase (X(Py)). These bases were selected due to their presence in natural DNA, structural similarity to T and/or applications in radical-initiated anti-tumour therapies. The accuracy of each of the 54 model, method and sequence combinations was judged based on the ability to reproduce key structural features of natural B-DNA, including the stacked base-base orientation and important backbone torsion angles. B3LYP yields distorted or tilted relative base-base orientations, while many computational challenges were encountered for MPWB1K. Despite wide use in computational studies of DNA, the neutral (protonated) phosphate model could not consistently predict a stacked arrangement for all sequences. In contrast, stacked base-base arrangements were obtained for all sequences with M06-2X in conjunction with both the anionic and (sodium) counterion phosphate models. However, comparison of calculated and experimental backbone conformations reveals the charge-neutralized counterion phosphate model best mimics B-DNA. Structures optimized with implicit solvent (water) are comparable to gas-phase structures, which suggests similar results should be obtained in an environment of intermediate polarity. We recommend the use of either gas-phase or water M06-2X optimizations with the counterion phosphate model to study the structure and/or reactivity of natural or modified DNA with a dinucleoside monophosphate.
Collapse
Affiliation(s)
- Cassandra D M Churchill
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | | |
Collapse
|
21
|
Grokhovsky SL, Il'icheva IA, Nechipurenko DY, Golovkin MV, Panchenko LA, Polozov RV, Nechipurenko YD. Sequence-specific ultrasonic cleavage of DNA. Biophys J 2011; 100:117-25. [PMID: 21190663 PMCID: PMC3010002 DOI: 10.1016/j.bpj.2010.10.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022] Open
Abstract
We investigated the phenomenon of ultrasonic cleavage of DNA by analyzing a large set of cleavage patterns of DNA restriction fragments using polyacrylamide gel electrophoresis. The cleavage intensity of individual phosphodiester bonds was found to depend on the nucleotide sequence and the position of the bond with respect to the ends of the fragment. The relative intensities of cleavage of the central phosphodiester bond in 16 dinucleotides and 256 tetranucleotides were determined by multivariate statistical analysis. We observed a remarkable enhancement of the mean values of the relative intensities of cleavage (cleavage rates) in phosphodiester bonds following deoxycytidine, which diminished in the row of dinucleotides: d(CpG) > d(CpA) > d(CpT) >> d(CpC). The cleavage rates for all pairs of complementary dinucleotides were significantly different from each other. The effect of flanking nucleotides in tetranucleotides on cleavage rates of all 16 types of central dinucleotides was also statistically significant. The sequence-dependent ultrasonic cleavage rates of dinucleotides are consistent with reported data on the intensity of the conformational motion of their 5'-deoxyribose. As a measure of local conformational dynamics, cleavage rates may be useful for characterizing functional regions of the genome.
Collapse
Affiliation(s)
- Sergei L Grokhovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mládek A, Šponer JE, Jurečka P, Banáš P, Otyepka M, Svozil D, Šponer J. Conformational Energies of DNA Sugar−Phosphate Backbone: Reference QM Calculations and a Comparison with Density Functional Theory and Molecular Mechanics. J Chem Theory Comput 2010. [DOI: 10.1021/ct1004593] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology, Technická 3, 166 28 Prague 6, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6,
| | - Judit E. Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology, Technická 3, 166 28 Prague 6, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6,
| | - Petr Jurečka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology, Technická 3, 166 28 Prague 6, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6,
| | - Pavel Banáš
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology, Technická 3, 166 28 Prague 6, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6,
| | - Michal Otyepka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology, Technická 3, 166 28 Prague 6, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6,
| | - Daniel Svozil
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology, Technická 3, 166 28 Prague 6, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6,
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology, Technická 3, 166 28 Prague 6, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6,
| |
Collapse
|
23
|
Borkar A, Ghosh I, Bhattacharyya D. Structure and Dynamics of Double Helical DNA in Torsion Angle Hyperspace: A Molecular Mechanics Approach. J Biomol Struct Dyn 2010; 27:695-712. [DOI: 10.1080/07391102.2010.10508582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Millen AL, Manderville RA, Wetmore SD. Conformational Flexibility of C8-Phenoxyl-2′-deoxyguanosine Nucleotide Adducts. J Phys Chem B 2010; 114:4373-82. [DOI: 10.1021/jp911993f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A. Manderville
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
25
|
Abi-Ghanem J, Heddi B, Foloppe N, Hartmann B. DNA structures from phosphate chemical shifts. Nucleic Acids Res 2010; 38:e18. [PMID: 19942687 PMCID: PMC2817473 DOI: 10.1093/nar/gkp1061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/14/2009] [Accepted: 11/01/2009] [Indexed: 01/04/2023] Open
Abstract
For B-DNA, the strong linear correlation observed by nuclear magnetic resonance (NMR) between the (31)P chemical shifts (deltaP) and three recurrent internucleotide distances demonstrates the tight coupling between phosphate motions and helicoidal parameters. It allows to translate deltaP into distance restraints directly exploitable in structural refinement. It even provides a new method for refining DNA oligomers with restraints exclusively inferred from deltaP. Combined with molecular dynamics in explicit solvent, these restraints lead to a structural and dynamical view of the DNA as detailed as that obtained with conventional and more extensive restraints. Tests with the Jun-Fos oligomer show that this deltaP-based strategy can provide a simple and straightforward method to capture DNA properties in solution, from routine NMR experiments on unlabeled samples.
Collapse
Affiliation(s)
- Joséphine Abi-Ghanem
- INTS, INSERM S-665, 6 rue Alexandre Cabanel, Paris 75015, IBPC, CNRS UPR 9080, 13 rue Pierre et Marie Curie, Paris 75005, France and 51 Natal Road, Cambridge CB1 3NY, UK
| | - Brahim Heddi
- INTS, INSERM S-665, 6 rue Alexandre Cabanel, Paris 75015, IBPC, CNRS UPR 9080, 13 rue Pierre et Marie Curie, Paris 75005, France and 51 Natal Road, Cambridge CB1 3NY, UK
| | - Nicolas Foloppe
- INTS, INSERM S-665, 6 rue Alexandre Cabanel, Paris 75015, IBPC, CNRS UPR 9080, 13 rue Pierre et Marie Curie, Paris 75005, France and 51 Natal Road, Cambridge CB1 3NY, UK
| | - Brigitte Hartmann
- INTS, INSERM S-665, 6 rue Alexandre Cabanel, Paris 75015, IBPC, CNRS UPR 9080, 13 rue Pierre et Marie Curie, Paris 75005, France and 51 Natal Road, Cambridge CB1 3NY, UK
| |
Collapse
|
26
|
Wang FF, Gong LD, Zhao DX. Studies on the torsions of nucleic acids using ABEEMσπ/MM method. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Tocík Z, Budesínský M, Barvík I, Rosenberg I. Conformational evaluation of labeled C3'-O-P-(13)CH(2)-O-C4'' phosphonate internucleotide linkage, a phosphodiester isostere. Biopolymers 2009; 91:514-29. [PMID: 19213047 DOI: 10.1002/bip.21162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Modified internucleotide linkage featuring the C3'-O-P-CH(2)-O-C4'' phosphonate grouping as an isosteric alternative to the phosphodiester C3'-O-P-O-CH(2)-C4'' bond was studied in order to learn more on its stereochemical arrangement, which we showed earlier to be of prime importance for the properties of the respective oligonucleotide analogues. Two approaches were pursued: First, the attempt to prepare the model dinucleoside phosphonate with (13)C-labeled CH(2) group present in the modified internucleotide linkage that would allow for a more detailed evaluation of the linkage conformation by NMR spectroscopy. Second, the use of ab initio calculations along with molecular dynamics (MD) simulations in order to observe the most populated conformations and specify main structural elements governing the conformational preferences. To deal with the former aim, a novel synthesis of key labeled reagent (CH(3)O)(2)P(O)(13)CH(2)OH for dimer preparation had to be elaborated using aqueous (13)C-formaldehyde. The results from both approaches were compared and found consistent.
Collapse
Affiliation(s)
- Zdenek Tocík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 16610 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
28
|
Banavali NK, MacKerell AD. Characterizing structural transitions using localized free energy landscape analysis. PLoS One 2009; 4:e5525. [PMID: 19436759 PMCID: PMC2678196 DOI: 10.1371/journal.pone.0005525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 03/27/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes. METHODOLOGY/PRINCIPAL FINDINGS Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined) base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom. CONCLUSIONS/SIGNIFICANCE The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.
Collapse
Affiliation(s)
- Nilesh K. Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, The State University of New York at Albany, Albany, New York, United States of America
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
29
|
MacKerell AD. Contribution of the intrinsic mechanical energy of the phosphodiester linkage to the relative stability of the A, BI, and BII forms of duplex DNA. J Phys Chem B 2009; 113:3235-44. [PMID: 19708270 PMCID: PMC2784611 DOI: 10.1021/jp8102782] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical forms of duplex DNA are known to sample well-defined regions of the alpha, beta, gamma, epsilon, and zeta dihedral angles that define the conformation of the phosphodiester linkage in the backbone of oligonucleotides. While extensive studies of base composition and base sequence dependent effects on the sampling of the A, B1, and BII canonical forms of duplex DNA have been presented, our understanding of the intrinsic contribution of the five dihedral degrees of freedom associated with the phosphodiester linkage to the conformational properties of duplex DNA is still limited. To better understand this contribution, ab initio quantum mechanical (QM) calculations were performed on a model compound representative of the phosphodiester backbone to systematically sample the energetics about the alpha, beta, gamma, epsilon, and zeta dihedral angles relevant to the conformational properties of duplex DNA. Low-energy regions of dihedral potential energy surfaces are shown to correlate with the regions of dihedral space sampled in experimental crystal structures of the canonical forms of DNA, validating the utility of the model compound and emphasizing the contribution of the intrinsic mechanical properties of the phosphodiester backbone to the conformational properties of duplex DNA. Those contributions include the relative stability of the A, BI, and BII conformations of duplex DNA, where the gas-phase energetics favor the BI form over the A and BII forms. In addition, subtle features of the potential energy surfaces mimic changes in the probability distributions of alpha, beta, gamma, epsilon, and zeta dihedral angles in A, BI, and BII forms of DNA as well as with conformations sampled in single-stranded DNA. These results show that the intrinsic mechanical properties of the phosphodiester backbone make a significant contribution to conformational properties of duplex DNA observed in the condensed phase and allow for the prediction that single-stranded DNA primarily samples folded conformations thereby possibly lowering the entropic barrier to the formation of duplex DNA.
Collapse
Affiliation(s)
- Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, USA.
| |
Collapse
|
30
|
Svozil D, Sponer JE, Marchan I, Pérez A, Cheatham TE, Forti F, Luque FJ, Orozco M, Sponer J. Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids. J Phys Chem B 2008; 112:8188-97. [PMID: 18558755 DOI: 10.1021/jp801245h] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The anionic sugar-phosphate backbone of nucleic acids substantially contributes to their structural flexibility. To model nucleic acid structure and dynamics correctly, the potentially sampled substates of the sugar-phosphate backbone must be properly described. However, because of the complexity of the electronic distribution in the nucleic acid backbone, its representation by classical force fields is very challenging. In this work, the three-dimensional potential energy surfaces with two independent variables corresponding to rotations around the alpha and gamma backbone torsions are studied by means of high-level ab initio methods (B3LYP/6-31+G*, MP2/6-31+G*, and MP2 complete basis set limit levels). The ability of the AMBER ff99 [Wang, J. M.; Cieplak, P.; Kollman, P. A. J. Comput. Chem. 2000, 21, 1049-1074] and parmbsc0 [Perez, A.; Marchan, I.; Svozil, D.; Sponer, J.; Cheatham, T. E.; Laughten, C. A.; Orozco, M. Biophys. J. 2007, 92, 3817-3829] force fields to describe the various alpha/gamma conformations of the DNA backbone accurately is assessed by comparing the results with those of ab initio quantum chemical calculations. Two model systems differing in structural complexity were used to describe the alpha/gamma energetics. The simpler one, SPM, consisting of a sugar and methyl group linked through a phosphodiester bond was used to determine higher-order correlation effects covered by the CCSD(T) method. The second, more complex model system, SPSOM, includes two deoxyribose residues (without the bases) connected via a phosphodiester bond. It has been shown by means of a natural bond orbital analysis that the SPSOM model provides a more realistic representation of the hyperconjugation network along the C5'-O5'-P-O3'-C3' linkage. However, we have also shown that quantum mechanical investigations of this model system are nontrivial because of the complexity of the SPSOM conformational space. A comparison of the ab initio data with the ff99 potential energy surface clearly reveals an incorrect ff99 force-field description in the regions where the gamma torsion is in the trans conformation. An explanation is proposed for why the alpha/gamma flips are eliminated so successfully when the parmbsc0 force-field modification is used.
Collapse
Affiliation(s)
- Daniel Svozil
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 166 10, Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pous J, Urpí L, Subirana JA, Gouyette C, Navaza J, Campos JL. Stabilization by extra-helical thymines of a DNA duplex with Hoogsteen base pairs. J Am Chem Soc 2008; 130:6755-60. [PMID: 18447354 DOI: 10.1021/ja078022+] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the crystal structure of the DNA duplex formed by d(ATATATCT). The crystals contain seven stacked antiparallel duplexes in the asymmetric unit with A.T Hoogsteen base pairs. The terminal CT sequences bend over so that the thymines enter the minor groove and form a hydrogen bond with thymine 2 of the complementary strand in the Hoogsteen duplex. Cytosines occupy extra-helical positions; they contribute to the crystal lattice through various kinds of interactions, including a unique CAA triplet. The presence of thymine in the minor groove apparently contributes to the stability of the DNA duplex in the Hoogsteen conformation. These observations open the way toward finding under what conditions the Hoogsteen duplex may be stabilized in vivo. The present crystal structure also confirms the tendency of A.T-rich oligonucleotides to crystallize as long helical stacks of duplexes.
Collapse
Affiliation(s)
- Joan Pous
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Wang F. Unsaturated didehydrodeoxycytidine drugs. 1. Impact of C=C positions in the sugar ring. J Phys Chem B 2007; 111:9628-33. [PMID: 17658790 DOI: 10.1021/jp072014y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemical names of a pair of recently synthesized antitumor drugs are given in the present study as 1',2'-didehydro-3',4'-deoxycytidine and 3',4'-didehydro-2',4'-deoxycytidine. The order of stabilities, geometries, and ionization potentials of the unsaturated sugar-modified cytidine derivatives is investigated quantum mechanically. Our density functional theory calculations based on the B3LYP/6-311++G** model reveal that 3',4'-didehydro-2',4'-deoxycytidine (SD-C2) is slightly more stable than its isomer, 1',2'-didehydro-3',4'-deoxycytidine, by an energy of 5.28 kJ x mol(-1) in isolation. The isomers structurally differ by only the C=C location in the sugar ring. However, the compounds exhibit an unusual orientation with a less puckered sugar ring; that is, 3',4'-didehydro-2',4'-deoxycytidine is determined to be a beta-nucleoside, which is a C1'-endo, north conformer with an anticlinal sugar ring, whereas 1',2'-didehydro-3',4'-deoxycytidine is neither an alpha-nucleoside nor a beta-nucleoside but is a C4'-endo, south conformer with an antiperiplanar sugar ring. The present study further indicates that the C=C double bond location imposes significant effects on their ionization potentials (IPs) and other important molecular properties such as molecular electrostatic potential (MEP). In addition, inner shell binding energy spectral variations with respect to the C=C bond exhibit more site dependence. The valence shell binding energy spectral changes are, on the other hand, significant and delocalized. The latter indicates that such changes in valence space are not isolated effects but are within the entire nucleoside. Finally, the present study suggests that the nearly 0.6 eV difference in the first ionization potentials (highest occupied molecular orbital) of the isomers is sufficiently large to identify them by further spectroscopic measures.
Collapse
Affiliation(s)
- Feng Wang
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Melbourne, Victoria, 3122, Australia.
| |
Collapse
|
33
|
Foloppe N, Nilsson L. Toward a full characterization of nucleic acid components in aqueous solution: simulations of nucleosides. J Phys Chem B 2007; 109:9119-31. [PMID: 16852085 DOI: 10.1021/jp044513u] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eight nucleoside constituents of nucleic acids were simulated for 50 ns in explicit water with molecular dynamics. This provides equilibrium populations of the torsional degrees of freedom, their kinetics of interconversion, their couplings, and how they are influenced by water. This is important, given that a full and quantitative characterization of the nucleosides in aqueous solution by experimental means has been elusive, despite immense efforts in that direction. It is with the anti/syn equilibrium that the simulations are most complementary to experiment, by accessing directly the influence of the sugar type, sugar pucker, and base on the anti/syn populations. The glycosidic torsion distributions in the anti conformation are strongly affected by water and depart from the corresponding X-ray modal values and the associated energy minima in vacuo. Water also preferentially stabilizes some sugar conformations, showing that potential energies in vacuo are not sufficient to understand the nucleosides. Deoxythymidine (but not other pyrimidines) significantly populates the syn orientation. Guanine favors the syn orientation more than adenine. The ribose favors the syn orientation significantly more than the deoxyribose. The NORTH pucker coexists with the syn conformers. A hydrogen bond is frequently formed between the 5'-OH group and the syn bases, despite competition by water. The rate of the anti/syn transitions with purines is on the nanosecond time scale, confirming a long held assumption underpinning the interpretation of ultrasonic relaxation studies. Therefore, our knowledge of the structure and dynamics of nucleosides in solvent is only limited by the accuracy of the potential used to simulate them, and it is shown that such simulations provide a distinct and unique test of nucleic acid force fields. This confirmed that the widely distributed CHARMM27 force field is, overall, well-balanced with a particularly good representation of the ribose. Specific improvements, however, are suggested for the deoxyribose and torsion gamma.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Center for Structural Biochemistry, Department of Biosciences, Karolinska Institutet, S-141 57 Huddinge, Sweden
| | | |
Collapse
|
34
|
Lim W. Solitary excitations in B-Z DNA transition: a theoretical and numerical study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:031918. [PMID: 17500737 DOI: 10.1103/physreve.75.031918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Indexed: 05/15/2023]
Abstract
The molecular mechanism of B-Z DNA transition remains elusive since the elucidation of the left-handed Z-DNA structure using atomic resolution crystallographic study. Numerous proposals for the molecular mechanism have been advanced, but none has provided a satisfactory explanation for the process. A nonlinear DNA model is proposed which enables one to derive various hypothesized molecular mechanisms, namely the Harvey model, Zang and Olson model, and the stretched intermediate model, by imposing certain constraints and conditions on the model. These constraints raise the need to reevaluate experimental investigations on B-Z DNA transition.
Collapse
Affiliation(s)
- Wilber Lim
- Department of Physics, Faculty of Science, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.
| |
Collapse
|
35
|
Shih CC, Georghiou S. Large-amplitude fast motions in double-stranded DNA driven by solvent thermal fluctuations. Biopolymers 2006; 81:450-63. [PMID: 16419073 DOI: 10.1002/bip.20444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nature of the internal dynamics of double-stranded DNA in aqueous environment remains to be established. We consider the motions to stem from thermal fluctuations/dissipations of the harmonic modes of beads (bases and sugars) in a cylindrical geometry that are tracked through the stochastic Langevin trajectories; these are characterized by parameters obtained from published data. The present approach has allowed a comparative study of the dynamics for DNA lengths in the range of 20-600 base pairs. For this range, we find that rotational motions about directions parallel to the helix axis (opening, twist) and perpendicular to it (propeller-twist, roll) contribute significantly to the dynamics. For a 20-mer at a solvent viscosity of 1 cP, the calculated fluorescence anisotropy profile exhibits a fast decay in the subnanosecond range due to large-amplitude fluctuations at the mesoscopic level. This feature reproduces the experimental behavior well, and suggests a possible way for the initiation of biological processes: they may be suddenly triggered on this scale through the occurrence of favorable thermal fluctuations. This analysis also reveals that, as is the case for a 20-mer, the dynamics of longer N-mers are dominated by internal motions, and are modulated by the viscosity of the solvent, in agreement with our previous experimental observations. Moreover, the model indicates that occurrence of partially concerted rotations of the bases due to thermal fluctuations can possibly be sustained over a DNA length of the order of 100 A at 1 ns, suggesting a possible mechanism for action-at-a-distance in transcription.
Collapse
Affiliation(s)
- Chia C Shih
- Department of Physics, University of Tennessee, Knoxville, TN 37996-1200, USA.
| | | |
Collapse
|
36
|
Banavali NK, Roux B. Free energy landscape of A-DNA to B-DNA conversion in aqueous solution. J Am Chem Soc 2005; 127:6866-76. [PMID: 15869310 DOI: 10.1021/ja050482k] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interconversion between the well-characterized A- and B-forms of DNA is a structural transition for which the intermediate states and the free energy difference between the two endpoints are not known precisely. In the present study, the difference between the Root Mean Square Distance (RMSD) from canonical A-form and B-form DNA is used as an order parameter to characterize this free energy difference using umbrella sampling molecular dynamics (MD) simulations with explicit solvent. The constraint imposed along this order parameter allows relatively unrestricted evolution of the intermediate structures away from both canonical A- and B-forms. The free energy difference between the A- and B-forms for the hexamer DNA sequence CTCGAG in aqueous solution is conservatively estimated to be at least 2.8 kcal/mol. A continuum of intermediate structures with no well-defined local minima links the two forms. The absence of any major barriers in the free energy surface is consistent with spontaneous conversion of the A-form DNA to B-form DNA in unconstrained simulations. The extensive sampling in the MD simulations (>0.1 mus) also allowed quantitative energetic characterization of local backbone conformational variables such as sugar pseudorotation angles and BI/BII state equilibria and their dependence on base identity. The absolute minimum in the calculated free energy profile corresponds closely to the crystal structure of the hexamer sequence, indicating that the present method has the potential to identify the most stable state for an arbitrary DNA sequence in water.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Physiology, Biophysics, and Systems Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
37
|
Abstract
Empirical force field-based studies of biological macromolecules are becoming a common tool for investigating their structure-activity relationships at an atomic level of detail. Such studies facilitate interpretation of experimental data and allow for information not readily accessible to experimental methods to be obtained. A large part of the success of empirical force field-based methods is the quality of the force fields combined with the algorithmic advances that allow for more accurate reproduction of experimental observables. Presented is an overview of the issues associated with the development and application of empirical force fields to biomolecular systems. This is followed by a summary of the force fields commonly applied to the different classes of biomolecules; proteins, nucleic acids, lipids, and carbohydrates. In addition, issues associated with computational studies on "heterogeneous" biomolecular systems and the transferability of force fields to a wide range of organic molecules of pharmacological interest are discussed.
Collapse
Affiliation(s)
- Alexander D Mackerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, USA.
| |
Collapse
|
38
|
Range K, McGrath MJ, Lopez X, York DM. The structure and stability of biological metaphosphate, phosphate, and phosphorane compounds in the gas phase and in solution. J Am Chem Soc 2004; 126:1654-65. [PMID: 14871095 DOI: 10.1021/ja0356277] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional calculations of a series of metaphosphates, acyclic and cyclic phosphates and phosphoranes relevant to RNA catalysis are presented. Solvent effects calculated with three well-established solvation models are analyzed and compared. The structure and stability of the compounds are characterized in terms of thermodynamic quantities for isomerization and ligand substitution reactions, gas-phase proton affinities, and microscopic solution pK(a)() values. The large dataset of compounds allows the estimation of bond energies to determine the relative strengths of axial and equatorial P-O phosphorane single bonds and P-O single and double bonds in metaphosphates and phosphates. The relative apicophilicty of hydroxyl and methoxy ligands in phosphoranes are characterized. The results presented here provide quantitative insight into RNA catalysis and serve as a first step toward the construction of a high-level quantum database for development of new semiempirical Hamiltonian models for biological reactions
Collapse
Affiliation(s)
- Kevin Range
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | | | | | | |
Collapse
|
39
|
Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T, Liedl KR. Dynamics of DNA: BI and BII Phosphate Backbone Transitions. J Phys Chem B 2004. [DOI: 10.1021/jp037079p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Trieb
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Christine Rauch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Bernd Wellenzohn
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Fajar Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| |
Collapse
|
40
|
Djuranovic D, Hartmann B. Conformational characteristics and correlations in crystal structures of nucleic acid oligonucleotides: evidence for sub-states. J Biomol Struct Dyn 2003; 20:771-88. [PMID: 12744707 DOI: 10.1080/07391102.2003.10506894] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.
Collapse
Affiliation(s)
- D Djuranovic
- Laboratoire de Biochimie Theorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue P. et M. Curie, Paris 75005, France.
| | | |
Collapse
|
41
|
Banavali NK, MacKerell AD. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J Mol Biol 2002; 319:141-60. [PMID: 12051942 DOI: 10.1016/s0022-2836(02)00194-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Structural distortions of DNA are essential for its biological function due to the genetic information of DNA not being physically accessible in the duplex state. Base flipping is one of the simplest structural distortions of DNA and may represent an initial event in strand separation required to access the genetic code. Flipping is also utilized by DNA-modifying and repair enzymes to access specific bases. It is typically thought that base flipping (or base-pair opening) occurs via the major groove whereas minor groove flipping is only possible when mediated by DNA-binding proteins. Here, umbrella sampling with a novel center-of-mass pseudodihedral reaction coordinate was used to calculate the individual potentials of mean force (PMF) for flipping of the Watson-Crick (WC) paired C and G bases in the CCATGCGCTGAC DNA dodecamer. The novel reaction coordinate allowed explicit investigation of the complete flipping process via both the minor and major groove pathways. The minor and major groove barriers to flipping are similar for C base flipping while the major groove barrier is slightly lower for G base flipping. Minor groove flipping requires distortion of the WC partner while the flipping base pulls away from its partner during major groove flipping. The flipped states are represented by relatively flat free energy surfaces, with a small, local minimum observed for the flipped G base. Conserved patterns of phosphodiester backbone dihedral distortions during flipping indicate their essential role in the flipping process. During flipping, the target base tracks along the respective grooves, leading to hydrogen-bonding interactions with neighboring base-pairs. Such hydrogen-bonding interactions with the neighboring sequence suggest a novel mechanism of sequence dependence in DNA dynamics.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
42
|
Foloppe N, Nilsson L, MacKerell AD. Ab initio conformational analysis of nucleic acid components: intrinsic energetic contributions to nucleic acid structure and dynamics. Biopolymers 2002; 61:61-76. [PMID: 11891629 DOI: 10.1002/1097-0282(2001)61:1<61::aid-bip10047>3.0.co;2-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In recent years, the use of high-level ab initio calculations has allowed for the intrinsic conformational properties of nucleic acid building blocks to be revisited. This has provided new insights into the intrinsic conformational energetics of these compounds and its relationship to nucleic acids structure and dynamics. In this article we review recent developments and present new results. New data include comparison of various levels of theory on conformational properties of nucleic acid building blocks, calculations on the abasic sugar, known to occur in vivo in DNA, on the TA conformation of DNA observed in the complex with the TATA box binding protein, and on inosine. Tests of the Hartree-Fock (HF), second-order Møller-Plesset (MP2), and Density Functional Theory/Becke3, Lee, Yang and Par (DFT/B3LYP) levels of theory show the overall shape of backbone torsional energy profiles (for gamma, epsilon, and chi) to be similar for the different levels, though some systematic differences are identified between the MP2 and DFT/B3LYP profiles. The east pseudorotation energy barrier in deoxyribonucleosides is also sensitive to the level of theory, with the HF and DFT/B3LYP east barriers being significantly lower (approximately 2.5 kcal/mol) than the MP2 counterpart (approximately 4.0 kcal/mol). Additional calculations at various levels of theory suggest that the east barrier in deoxyribonucleosides is between 3.0 and 4.0 kcal/mol. In the abasic sugar, the west pseudorotation energy barrier is found to be slightly lower than the east barrier and the south pucker is favored more than in standard nucleosides. Results on the TA conformation suggest that, at the nucleoside level, this conformation is significantly destabilized relative to the global energy minimum, or relative to the A- and B-DNA conformations. Deoxyribocytosine would destabilize the TA conformation more than other bases relative to the A-DNA conformation, but not relative to the B-DNA conformation.
Collapse
Affiliation(s)
- N Foloppe
- Center for Structural Biology, Department of Bioscience, Karolinska Institutet, S-141 57, Huddinge, Sweden
| | | | | |
Collapse
|
43
|
Abstract
The CHARMM27 all-atom force field for nucleic acids represents a highly optimized model for investigations of nucleic acids via empirical force field calculations. The force field satisfactorily treats the A, B, and Z forms of DNA as well as RNA, and it also useful for nucleosides and nucleotides. In addition, it is compatible with the CHARMM force fields for proteins and lipids, allowing for simulation studies of heterogeneous systems.
Collapse
Affiliation(s)
- A D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N. Pine Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
44
|
Foloppe N, Hartmann B, Nilsson L, MacKerell AD. Intrinsic conformational energetics associated with the glycosyl torsion in DNA: a quantum mechanical study. Biophys J 2002; 82:1554-69. [PMID: 11867468 PMCID: PMC1301954 DOI: 10.1016/s0006-3495(02)75507-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The glycosyl torsion (chi) in nucleic acids has long been recognized to be a major determinant of their conformational properties. chi torsional energetics were systematically mapped in deoxyribonucleosides using high-level quantum mechanical methods, for north and south sugar puckers and with gamma in the g(+) and trans conformations. In all cases, the syn conformation is found higher in energy than the anti. When gamma is changed from g(+) to trans, the anti orientation of the base is strongly destabilized, and the energy difference and barrier between anti and syn are significantly decreased. The barrier between anti and syn in deoxyribonucleosides is found to be less than 10 kcal/mol and tends to be lower with purines than with pyrimidines. With gamma = g(+)/chi = anti, a south sugar yields a significantly broader energy well than a north sugar with no energy barrier between chi values typical of A or B DNA. Contrary to the prevailing view, the syn orientation is not more stable with south puckers than with north puckers. The syn conformation is significantly more energetically accessible with guanine than with adenine in 5-nucleotides but not in nucleosides. Analysis of nucleic acid crystal structures shows that gamma = trans/chi = anti is a minor but not negligible conformation. Overall, chi appears to be a very malleable structural parameter with the experimental chi distributions reflecting, to a large extent, the associated intrinsic torsional energetics.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Center for Structural Biology, Department of Bioscience, Karolinska Institutet, S-141 57, Huddinge, Sweden
| | | | | | | |
Collapse
|
45
|
Packer MJ, Hunter CA. Sequence-structure relationships in DNA oligomers: a computational approach. J Am Chem Soc 2001; 123:7399-406. [PMID: 11472171 DOI: 10.1021/ja003385u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A collective-variable model for DNA structure is used to predict the conformation of a set of 30 octamer, decamer, and dodecamer oligomers for which high-resolution crystal structures are available. The model combines an all-atom base pair representation with an empirical backbone, emphasizing the role of base stacking in fixing sequence-dependent structure. We are able to reproduce trends in roll and twist to within 5 degrees across a large database of both A- and B-DNA oligomers. A genetic algorithm approach is used to search for global minimum structures and this is augmented by a grid search to identify local minimums. We find that the number of local minimums is highly sequence dependent, with certain sequences having a set of minimums that span the entire range between canonical A- and B-DNA conformations. Although the global minimum does not always agree with the crystal structure, for 24 of the 30 oligomers, we find low-energy local minimums that match the experimental step parameters. Discrepancies throw some light on the role of crystal packing in determining the solid-state conformation of double-helical DNA.
Collapse
Affiliation(s)
- M J Packer
- Contribution from the Krebs Institute for Biomolecular Science, Department of Chemistry, University of Sheffield, Sheffield, S3 7HF England.
| | | |
Collapse
|
46
|
Banavali NK, MacKerell AD. Reevaluation of stereoelectronic contributions to the conformational properties of the phosphodiester and N3'-phosphoramidate moieties of nucleic acids. J Am Chem Soc 2001; 123:6747-55. [PMID: 11448177 DOI: 10.1021/ja010295w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The anomeric effect in the phosphodiester backbone of nucleic acids is a stereoelectronic effect that has conventionally been linked to interactions between lone pairs on the O(ester) atoms and P-O(ester) antibonding orbitals. The present study demonstrates that the anomeric effect in the phosphodiester backbone is significantly more complex than portrayed by this description. The presence of multiple lone pairs and antibonding orbitals around the phosphorus atom leads to additional contributions to the anomeric effect, especially involving the anionic oxygen lone pairs. On the basis of the structural changes and Natural Bond Orbital analysis it is shown that a complex balance between stereoelectronic effects involving both the ester and anionic oxygen lone pairs governs the conformational properties of the phosphodiester backbone. The N3'-phosphoramidate DNA backbone differs from the phosphodiester backbone due to the N3'-H moiety having only a single lone pair instead of the two lone pairs present on the O3' atom substituted. The present study uses N3'-phosphoramidate as a control to understand the changes in stereoelectronic effects as a result of changes in the structure and conformation. Two previously uncharacterized properties of the N3'-phosphoramidate backbone are also observed and explained through the complex balance of the postulated electronic delocalizations. The first observation is that the N3'-H moiety in N3'-phosphoramidate is a flexible moiety that can change the orientation of its hydrogen through inversion without a significant energetic penalty in both the gas phase and the aqueous phase. The second observation is that the stabilization of the C3'-endo conformation in N3'-phosphoramidate is primarily due to aqueous solvation rather than intrinsic gas-phase effects involving the reduced electronegativity of the 3'-substituent.
Collapse
Affiliation(s)
- N K Banavali
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
47
|
Bosch D, Foloppe N, Pastor N, Pardo L, Campillo M. Calibrating nucleic acids torsional energetics in force-field: insights from model compounds. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(00)00685-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
|
49
|
Rauhut G. Recent Advances in Computing Heteroatom-Rich Five- and Six-Membered Ring Systems. ADVANCES IN HETEROCYCLIC CHEMISTRY 2001. [DOI: 10.1016/s0065-2725(01)81010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
50
|
Wang P, Brank AS, Banavali NK, Nicklaus MC, Marquez VE, Christman JK, MacKerell AD. Use of Oligodeoxyribonucleotides with Conformationally Constrained Abasic Sugar Targets To Probe the Mechanism of Base Flipping byHhaI DNA (Cytosine C5)-methyltransferase. J Am Chem Soc 2000. [DOI: 10.1021/ja001989s] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|