1
|
Abe M, Ohata T, Yamada T, Yada S, Yoshimura T. Effect of Diglycerol Derivatives on Interfacial Adsorption and Micelle Properties of Potassium Dodecanoate. ACS OMEGA 2025; 10:11231-11240. [PMID: 40160796 PMCID: PMC11947778 DOI: 10.1021/acsomega.4c10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
In this study, mixtures of potassium dodecanoate (C11COOK) and diglycerol derivatives with poly(oxyethylene) (EO) or poly(oxypropylene) (PO) chains (2GlyEO9 and 2GlyPO9) were prepared. Their adsorption behavior at the air/water interface and aggregation properties in aqueous solution were investigated by using surface tension and small-angle X-ray scattering analyses. Our observations revealed that at concentrations above the critical micelle concentration, C11COOK adsorbs and desorbs from the interface in C11COOK/2GlyPO9 and C11COOK/2GlyEO9 mixtures, respectively. A hydrophobic interaction was observed between the alkyl chain of C11COOK and the PO chain of the diglycerol derivatives in the C11COOK/2GlyPO9 mixture. However, there was no interaction between the alkyl chain of C11COOK and the EO chain of the diglycerol derivatives in the C11COOK/2GlyEO9 mixture. Moreover, the aggregates of the mixtures of C11COOK and diglycerol derivatives collapsed in aqueous solutions, regardless of the structure of the added diglycerol derivatives due to the penetration of diglycerol derivatives with EO and PO chains into the micelles or their adsorption onto the micelle surface. Therefore, different interactions occur between C11COOK and 2GlyEO9 or 2GlyPO9, resulting in distinct interfacial adsorption and micelle formation behaviors, especially the difference in diglycerol derivative adducts observed in interfacial adsorption. 2GlyPO9 disrupts the C11COOK micelles in solution and improves surface properties such as static and dynamic surface tension, resulting in a lower pump pressure of pump foamers.
Collapse
Affiliation(s)
- Miki Abe
- Department
of Chemistry, Faculty of Science, Nara Women’s
University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Tetsuya Ohata
- Sakamoto
Yakuhin Kogyo Co., Ltd., 3-1-62 Ayumino, Izumi, Osaka 594-1157, Japan
| | - Takeshi Yamada
- Sakamoto
Yakuhin Kogyo Co., Ltd., 3-1-62 Ayumino, Izumi, Osaka 594-1157, Japan
| | - Shiho Yada
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tomokazu Yoshimura
- Department
of Chemistry, Faculty of Science, Nara Women’s
University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
2
|
Patil VN, Basu M, Hassan PA, Dutta B, Patil V, Bhawal SS. Aggregation behavior of choline taurocholate micelles and application of these bile salt derivatives in cholesterol dissolution. J Mol Liq 2024; 411:125733. [DOI: 10.1016/j.molliq.2024.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Sarker P, Su X, Rojas OJ, Khan SA. Colloidal interactions between nanochitin and surfactants: Connecting micro- and macroscopic properties by isothermal titration calorimetry and rheology. Carbohydr Polym 2024; 341:122341. [PMID: 38876727 DOI: 10.1016/j.carbpol.2024.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
This study elucidates the intricate interactions between chitin nanocrystals (ChNC) and surfactants of same hydrophobic tail (C12) but different head groups types (anionic, cationic, nonionic): sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and polyoxyethylene(23)lauryl ether (Brij-35). Isothermal Titration Calorimetry (ITC) and rheology are used to study the complex ChNC-surfactant interactions in aqueous media, affected by adsorption, self-assembly and micellization. The ITC results demonstrate that the surfactant head group significantly influences the dynamics and nature of the involved phenomena. Cationic DTAB's reveal minimal interaction with ChNC, non-ionic Brij-25's interact moderately at low concentrations driven by hydrophobic effects while SDS's interacts strongly and show complex interaction patterns that fall across four distinct regimes with SDS addition. We attribute such behavior to initiate through electrostatic attraction and terminate in surfactant micelle formation on ChNC surfaces. ITC also elucidates the impact of ChNC concentration on key parameters including critical aggregation concentration (CAC) and saturation concentration (C2). Dynamic rheological analysis indicates the molecular interactions translate to non-linear variations in the elastic modulus (G') upon SDS addition mirroring that observed in ITC experiments. Such a direct correlation between molecular interactions and macroscopic rheological properties provides insights to aid in the creation of nanocomposites with tailored properties.
Collapse
Affiliation(s)
- Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiaoya Su
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando J Rojas
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
4
|
Fesseha YA, Manayia AH, Liu PC, Su TH, Huang SY, Chiu CW, Cheng CC. Photoreactive silver-containing supramolecular polymers that form self-assembled nanogels for efficient antibacterial treatment. J Colloid Interface Sci 2024; 654:967-978. [PMID: 37898080 DOI: 10.1016/j.jcis.2023.10.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
In this study, an efficient synthetic strategy and potential route to obtain a photo-reactive silver-containing cytosine-functionalized polypropylene glycol polymer (Ag-Cy-PPG) was developed by combining a hydrophilic oligomeric polypropylene glycol (PPG) backbone with dual pH-sensitive/photo-reactive cytosine-silver-cytosine (Cy-Ag-Cy) linkages. The resulting photo-responsive Ag-Cy-PPG holds great promise as a multifunctional biomedical material that generates spherical-like nanogels in water; the nanogels exhibit high antibacterial activity and thus may significantly enhance the efficacy of antibacterial treatment. Due to the formation of photo-dimerized Cy-Ag-Cy cross-linkages after UV irradiation, Ag-Cy-PPG converts into water-soluble cross-linked nanogels that possess a series of interesting chemical and physical properties, such as intense and stable fluorescence behavior, highly sensitive pH-responsive characteristics, on/off switchable phase transition behavior, and well-controlled release of silver ions (Ag+) in mildly acidic aqueous solution. Importantly, antibacterial tests clearly demonstrated that irradiated Ag-Cy-PPG nanogels exhibited strong antibacterial activity at low doses (MIC values of < 50 μg/mL) against gram-positive and gram-negative bacterial pathogens, whereas non-irradiated Ag-Cy-PPG nanogels did not inhibit the viability of bacterial pathogens. These results indicate that irradiated Ag-Cy-PPG nanogels undergo a highly sensitive structural change in the bacterial microenvironment due to their relatively unstable π-conjugated structures (compared to non-irradiated nanogels); this change results in a rapid structural response that promotes intracellular release of Ag+ and induces potent antibacterial ability. Overall, this newly created metallo-supramolecular system may potentially provide an efficient route to dramatically enhance the therapeutic effectiveness of antibacterial treatments.
Collapse
Affiliation(s)
- Yohannes Asmare Fesseha
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Abere Habtamu Manayia
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ping-Cheng Liu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ting-Hsuan Su
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Sin-Yu Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
5
|
Prasser Q, Fuhs T, Torger B, Neubert R, Brendler E, Vogt C, Mertens F, Plamper FA. Nonequilibrium Colloids: Temperature-Induced Bouquet Formation of Flower-like Micelles as a Time-Domain-Shifting Macromolecular Heat Alert. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57950-57959. [PMID: 37676903 PMCID: PMC10739602 DOI: 10.1021/acsami.3c09590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change requires enhanced autonomous temperature monitoring during logistics/transport. A cheap approach comprises the use of temperature-sensitive copolymers that undergo temperature-induced irreversible coagulation. The synthesis/characterization of pentablock copolymers (PBCP) starting from poloxamer PEO130-b-PPO44-b-PEO130 (poly(ethylene oxide)130-b-poly(propylene oxide)44-b-poly(ethylene oxide)130) and adding two terminal qPDMAEMA85 (quaternized poly[(2-dimethylamino)ethyl methacrylate]85) blocks is presented. Mixing of PBCP solutions with hexacyanoferrate(III)/ferricyanide solutions leads to a reduction of the decane/water interfacial tension accompanied by a co/self-assembly toward flower-like micelles in cold water because of the formation of an insoluble/hydrophobic qPDMAEMA/ferricyanide complex. In cold water, the PEO/PPO blocks provide colloidal stability over months. In hot water, the temperature-responsive PPO block is dehydrated, leading to a pronounced temperature dependence of the oil-water interfacial tension. In solution, the sticky PPO segments exposed at the micellar corona cause a colloidal clustering above a certain threshold temperature, which follows Smoluchowski-type kinetics. This coagulation remains for months even after cooling, indicating the presence of a kinetically trapped nonequilibrium state for at least one of the observed micellar structures. Therefore, the system memorizes a previous suffering of heat. This phenomenon is linked to an exchange of qPDMAEMA-blocks bridging the micellar cores after PPO-induced clustering. The addition of ferrous ions hampers the exchange, leading to the reversible coagulation of Prussian blue loaded micelles. Hence, the Fe2+ addition causes a shift from history monitoring to the sensing of the present temperature. Presumably, the system can be adapted for different temperatures in order to monitor transport and storage in a simple way. Hence, these polymeric "flowers" could contribute to preventing waste and sustaining the quality of goods (e.g., food) by temperature-induced bouquet formation, where an irreversible exchange of "tentacles" between the flowers stabilizes the bouquet at other temperatures as well.
Collapse
Affiliation(s)
- Quirin Prasser
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Thomas Fuhs
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Bernhard Torger
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Richard Neubert
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Erica Brendler
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Carla Vogt
- Institute
of Analytical Chemistry, TU Bergakademie
Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
| | - Florian Mertens
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
- Center
for Efficient High Temperature Processes and Materials Conversion
ZeHS, TU Bergakademie Freiberg, Winklerstraße 5, Freiberg 09599, Germany
| | - Felix A. Plamper
- Institute
of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09599, Germany
- Center
for Efficient High Temperature Processes and Materials Conversion
ZeHS, TU Bergakademie Freiberg, Winklerstraße 5, Freiberg 09599, Germany
- Freiberg
Center for Water Research ZeWaF, TU Bergakademie
Freiberg, Winklerstraße 5, Freiberg 09599, Germany
| |
Collapse
|
6
|
Manayia AH, Ilhami FB, Huang SY, Su TH, Huang CW, Chiu CW, Lee DJ, Lai JY, Cheng CC. Photoreactive Mercury-Containing Metallosupramolecular Nanoparticles with Tailorable Properties That Promote Enhanced Cellular Uptake for Effective Cancer Chemotherapy. Biomacromolecules 2023; 24:943-956. [PMID: 36645325 DOI: 10.1021/acs.biomac.2c01369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A new potential route to enhance the efficiency of supramolecular polymers for cancer chemotherapy was successfully demonstrated by employing a photosensitive metallosupramolecular polymer (Hg-BU-PPG) containing an oligomeric poly(propylene glycol) backbone and highly sensitive pH-responsive uracil-mercury-uracil (U-Hg-U) bridges. This route holds great promise as a multifunctional bioactive nano-object for development of more efficient and safer cancer chemotherapy. Owing to the formation of uracil photodimers induced by ultraviolet irradiation, Hg-BU-PPG can form a photo-cross-linked structure and spontaneously forms spherical nanoparticles in aqueous solution. The irradiated nanoparticles possess many unique characteristics, such as unique fluorescence behavior, highly sensitive pH-responsiveness, and intriguing phase transition behavior in aqueous solution as well as high structural stability and antihemolytic activity in biological media. More importantly, a series of cellular studies clearly confirmed that the U-Hg-U photo-cross-links in the irradiated nanoparticles substantially enhance their selective cellular uptake by cancer cells via macropinocytosis and the mercury-loaded nanoparticles subsequently induce higher levels of cytotoxicity in cancer cells (compared to non-irradiated nanoparticles), without harming normal cells. These results are mainly attributed to cancer cell microenvironment-triggered release of mercury ions from disassembled nanoparticles, which rapidly induce massive levels of apoptosis in cancer cells. Overall, the pH-sensitive U-Hg-U photo-cross-links within this newly discovered supramolecular system are an indispensable factor that offers a potential path to remarkably enhance the selective therapeutic effects of functional nanoparticles toward cancer cells.
Collapse
Affiliation(s)
- Abere Habtamu Manayia
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya60231, Indonesia
| | - Sin-Yu Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Ting-Hsuan Su
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Cheng-Wei Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung807618, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei10617, Taiwan, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan32043, Taiwan.,Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan32023, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| |
Collapse
|
7
|
Rehman N, Ul Haq MI, Ullah H, Sadiq M, Abbas khan, Mian IU. Effect of polylactic acid on the micellization of SDS and CTAB: physicochemical studies on surfactants aggregation. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
This study reports the aggregation behavior of polylactic acid (PLA) with ionic surfactants e.g. sodium dodecyl sulphate (SDS) and hexadecyltrimethylammonium bromide (CTAB) at different temperatures. Surface tension and conductivity techniques were used to investigate these physicochemical properties. Surface tension measurements were carried out to find out critical micelle concentration (CMC), free energy change of micellization (ΔG
m), free energy change of adsorption (ΔG
ads) and surface excess concentration (Γ). Conductivity measurements were used to determine CMC, degree of ionization (α) and degree of counter ion binding (β). The values of α and β obtained for SDS were (0.389 and 0.611 respectively), while for CTAB the values of α and β were (0.239 and 0.761 respectively). This type of electrostatic interactions is very important which can be applied in various industrial applications (e.g. pharmaceutical, industrial foaming, oil recovery etc.).
Collapse
Affiliation(s)
- Noor Rehman
- Department of Chemistry , Shaheed Banazir Bhutto University , (18000) Sheringal , Dir (Upper) , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Irshad Ul Haq
- Department of Chemistry , Shaheed Banazir Bhutto University , (18000) Sheringal , Dir (Upper) , Khyber Pakhtunkhwa , Pakistan
| | - Hidayat Ullah
- Department of Chemistry , Shaheed Banazir Bhutto University , (18000) Sheringal , Dir (Upper) , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Sadiq
- Department of Chemistry , University of Malakand , 18800 , Lower Dir , Khyber Pakhtunkhwa , Pakistan
| | - Abbas khan
- Department of Chemistry , Abdul Wali Khan Uiversity , Mardan , Khyber Pakhtunkhwa , Pakistan
| | - Inam Ullah Mian
- Department of Chemistry , University of Malakand , 18800 , Lower Dir , Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
8
|
Blagodatskikh IV, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE, Orlov VN, Shabelnikova YL, Khokhlov AR. Peculiarities of the interaction of sodium dodecyl sulfate with chitosan in acidic and alkaline media. Int J Biol Macromol 2022; 214:192-202. [PMID: 35709870 DOI: 10.1016/j.ijbiomac.2022.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
In this work, the interaction between the negatively charged surfactant sodium dodecyl sulfate (SDS) and partially N-reacetylated chitosan (RA-CHI), which is soluble at pH range up to pH 12, is studied in a wide pH range including alkaline media by light scattering (LS) and isothermic titration calorimetry (ITC). It is shown that in the weakly alkaline medium (pH 7.4), RA-CHI/SDS interaction is exothermic and cooperative. This interaction is found to be coupled with proton transfer from the buffer substance to chitosan as it is revealed by the dependence of the measured heat release on the ionization enthalpy of the buffer. At higher pH values (pH > 8), another mechanism of interaction is observed that include SDS micellization induced by hydrophobic interactions with polymer segments, so that no phase separation occurred in these mixtures. The results obtained can contribute to expand the knowledge about application of chitosan for preparation of pharmaceutical and cosmetic compositions containing anionic surfactants.
Collapse
Affiliation(s)
- Inesa V Blagodatskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia.
| | - Oxana V Vyshivannaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia
| | - Victor N Orlov
- A. N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskie Gory, 1-40, Moscow 119992, Russia
| | - Yana L Shabelnikova
- Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Academician Osipyan St. 6, 142432 Chernogolovka, Moscow Region, Russia
| | - Alexey R Khokhlov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova St. 28, Moscow 119991, Russia; Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
9
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|
10
|
|
11
|
Lee SY, Jeon SI, Sim SB, Byun Y, Ahn CH. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release. Acta Biomater 2021; 131:286-301. [PMID: 34246803 DOI: 10.1016/j.actbio.2021.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
Injectable hydrogels have been studied as drug delivery systems because of their minimal invasiveness and sustained drug release properties. Pluronic F127, consisting of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers, exhibits thermo-responsive properties and hence is injectable due to its rapid sol-gel transition. Unmodified Pluronic F127-based hydrogels, however, have limited long-term stability and controllable release of drugs entrapped within them. In this study, host-guest interactions between adamantane-conjugated Pluronic F127 (F127-Ad) and polymerized β-cyclodextrin (CDP) were employed to develop a hydrogel-based protein delivery system. Single or multiple adamantane units were successfully introduced at the termini of Pluronic F127 with a 100% conversion yield, and the synthesized F127-Ad polymer produced a physically crosslinked micelle-packing structure when mixed with CDP. As the number of adamantanes at the terminal ends of Pluronic F127 increased, the critical gelation concentration of F127-Ad/CDP hydrogel decreased from 15 to 6% (w/v). The F127/CDP hydrogel was able to maintain its structure even with lower polymer content, and its injectability improved with a reduction of the hydrogel viscosity. The long-term stability of F127/CDP hydrogels was evaluated in vitro and in vivo, and it was demonstrated that the subcutaneously injected hydrogel did not disintegrate for up to 30 d. Throughout the drug release test using gelatin and insulin as model drugs, it was demonstrated that their release rates could be regulated via complexation between the protein drugs and the β-cyclodextrin molecules inside the hydrogel. In conclusion, the F127-Ad/CDP hydrogel is expected to be a versatile protein delivery system with controllable durability and drug release characteristics. STATEMENT OF SIGNIFICANCE: Pluronic F127 is one of the widely studied polymeric materials for thermo-sensitive injectable hydrogels due to its high biocompatibility and rapid sol-gel transition. Since the Pluronic F127-based hydrogel has some limitations in its long-term stability and mechanical property, it is inevitable to modify its structure for the application to drug delivery. In this study, mono- or multi- adamantane-conjugated Pluronic F127s were synthesized and mixed with β-cyclodextrin polymers to form hydrogels with host-guest interaction-mediated micelle-packing structures. The host-guest interaction introduced into the hydrogel system endowed it a sustained protein drug release behavior as well as high durability in vitro and in vivo. By increasing the number of adamantane molecules at the end of the Pluronic F127, both the stability and injectability of the hydrogel could be also modulated.
Collapse
Affiliation(s)
- Seung Yong Lee
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seong Ik Jeon
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung Bo Sim
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Prameela GKS, Phani Kumar BVN, Subramanian J, Tsuchiya K, Pan A, Aswal VK, Abe M, Mandal AB, Moulik SP. Interaction between sodium dodecylsulfate (SDS) and pluronic L61 in aqueous medium: assessment of the nature and morphology of the formed mixed aggregates by NMR, EPR, SANS and FF-TEM measurements. Phys Chem Chem Phys 2021; 23:13170-13180. [PMID: 34079976 DOI: 10.1039/d0cp06227h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of copolymer L61 i.e., (EO)2(PO)32(EO)2 (where EO and PO are ethylene and propylene oxides, respectively) with surfactant SDS (sodium dodecylsulfate) in relation to their self-aggregation, dynamics and microstructures has been physicochemically studied in detail employing the Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR), Small-Angle Neutron Scattering (SANS), and Freeze-Fracture Transmission Electron Microscopy (FF-TEM) methods. The NMR self-diffusion study indicated a synergistic interaction between SDS and L61 forming L61-SDS mixed complex aggregates, and deuterium (2H) NMR pointed out the nonspherical nature of these aggregates with increasing [L61]. EPR spectral analysis of the motional parameters of 5-doxyl steraric acid (5-DSA) as a spin probe provided information on the microviscosity of the local environment of the L61-SDS complex aggregates. SANS probed the geometrical aspects of the SDS-L61 assemblies as a function of both [L61] and [SDS]. Progressive evolution of the mixed-aggregate geometries from globular to prolate ellipsoids with axial ratios ranging from 2 to 10 with increasing [L61] was found. Such morphological changes were further corroborated with the results of 2H NMR and FF-TEM measurements. The strategy of the measurements, and data analysis for a concerted conclusion have been presented.
Collapse
Affiliation(s)
- G K S Prameela
- Inorganic & Physical Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - B V N Phani Kumar
- NMR, CATERS, CSIR - Central Leather Research Institute, Adyar, Chennai-600020, India
| | - J Subramanian
- Inorganic & Physical Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - K Tsuchiya
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - A Pan
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - M Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - A B Mandal
- Inorganic & Physical Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai-600020, India.
| | - S P Moulik
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
13
|
Bignotti F, Baldi F, Grassi M, Abrami M, Spagnoli G. Hydrophobically-Modified PEG Hydrogels with Controllable Hydrophilic/Hydrophobic Balance. Polymers (Basel) 2021; 13:polym13091489. [PMID: 34066409 PMCID: PMC8124857 DOI: 10.3390/polym13091489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
This work reports on a novel method to synthesize hydrophobically-modified hydrogels by curing epoxy monomers with amines. The resulting networks contain hydrophilic poly(ethylene glycol) (PEG) segments, poly(propylene glycol) (PPG) segments, and C18 alkyl segments. By varying the content of C18 segments, networks with different hydrophilic-lipophilic balance (HLB) are obtained. All networks show an amphiphilic behavior, swelling considerably both in organic solvents and in aqueous media. In the latter they display a thermosensitive behavior, which is highly affected by the network HLB and the pH of the solution. A decrease in HLB results in an increment of the polymer weight content (wp) due to hydrophobic association. Furthermore, a reduction in HLB induces a remarkable increase in initial modulus, elongation at break and tensile strength, especially when wp becomes greater than about 10%. Low field nuclear magnetic resonance (LF-NMR) experiments evidence that, when HLB decreases, a sudden and considerable increase in hydrogel heterogeneity takes place due to occurrence of extensive physical crosslinking. Available data suggest that in systems with wp ≳ 10% a continuous physical network superimposes to the pre-existing chemical network and leads to a sort of double network capable of considerably improving hydrogel toughness.
Collapse
Affiliation(s)
- Fabio Bignotti
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, I-25123 Brescia, Italy; (F.B.); (G.S.)
- Correspondence:
| | - Francesco Baldi
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, I-25123 Brescia, Italy; (F.B.); (G.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Building B, via Valerio 6, I-34127 Trieste, Italy; (M.G.); (M.A.)
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Building B, via Valerio 6, I-34127 Trieste, Italy; (M.G.); (M.A.)
| | - Gloria Spagnoli
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, I-25123 Brescia, Italy; (F.B.); (G.S.)
| |
Collapse
|
14
|
Mohr R, Wagner M, Zarbakhsh S, Frey H. The Unique Versatility of the Double Metal Cyanide (DMC) Catalyst: Introducing Siloxane Segments to Polypropylene Oxide by Ring-Opening Copolymerization. Macromol Rapid Commun 2020; 42:e2000542. [PMID: 33251713 DOI: 10.1002/marc.202000542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Indexed: 11/07/2022]
Abstract
The combination of hydrophobic polydimethylsiloxane (PDMS) blocks with hydrophilic polyether segments plays a key role for silicone surfactants. Capitalizing on the double metal cyanide (DMC) catalyst, the direct (i.e., statistical) copolymerization of cyclic siloxanes and epoxides is shown to be feasible. The solvent-free one-pot copolymerization of hexamethylcyclotrisiloxane and propylene oxide results in the formation of gradient propylene oxide (PPO)-PDMS copolymers. Copolymers with up to 46% siloxane content with low dispersities (Ð < 1.2) are obtained in the molecular weight range of 2100-2900 g mol-1 . The polymerization kinetics are investigated by pressure monitoring and in situ 1 H and in situ 29 Si NMR spectroscopy. Contact angle measurements reveal the impact of siloxane incorporation manifest in strongly increased hydrophobicity of PPO-PDMS copolymers and a glass transition of -95 °C for 46% SiO content. This unusual copolymerization offers promise for the synthesis of silicone/polyether polyols.
Collapse
Affiliation(s)
- Rebecca Mohr
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Manfred Wagner
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, Mainz, D-55128, Germany
| | - Sirus Zarbakhsh
- BASF SE, RAP/LO, Carl-Bosch-Straße 38, Ludwigshafen am Rhein, D-67056, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz, D-55128, Germany
| |
Collapse
|
15
|
Bintang Ilhami F, Huang SY, Chen JK, Kao CY, Cheng CC. Multifunctional adenine-functionalized supramolecular micelles for highly selective and effective cancer chemotherapy. Polym Chem 2020. [DOI: 10.1039/c9py01557d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenine-functionalized supramolecular micelles are rapidly endocytosed by cancer cells and enable selective induction of tumor cell death, without harming normal cells.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Graduate Institute of Biomedical Engineering
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Chen-Yu Kao
- Graduate Institute of Biomedical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Advanced Membrane Materials Research Center
| |
Collapse
|
16
|
Skvarnavičius G, Dvareckas D, Matulis D, Petrauskas V. Thermodynamics of Interactions Between Charged Surfactants and Ionic Poly(amino acids) by Isothermal Titration Calorimetry. ACS OMEGA 2019; 4:17527-17535. [PMID: 31656925 PMCID: PMC6812127 DOI: 10.1021/acsomega.9b02425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/18/2019] [Indexed: 05/04/2023]
Abstract
Interactions between charges play a role in protein stability and contribute to the energetics of binding between various charged ligands. Ionic surfactants are charged molecules, whose interactions with proteins are still rather poorly understood despite their wide applications. Here, we show by isothermal titration calorimetry that cationic alkylammonium surfactants bind to negatively charged polyaspartate and polyglutamate homopolymers stoichiometrically, i.e., one surfactant molecule per charged amino acid. Similarly, negatively charged alkyl sulfates (e.g., sodium dodecyl sulfate) and alkane sulfonates bind stoichiometrically to positively charged polylysine, polyornithine, and polyarginine homopolymers. In these reactions, the interacting counterparts form ion pairs and the resulting electrostatically neutral complex coprecipitates from solution. The enthalpies and heat capacities are determined for various pairs of ionic surfactants and charged amino acid homopolymers. These results show the energetic contributions of ionic headgroups and the CH2 group to surfactant interactions with proteins.
Collapse
|
17
|
Degen P, Paulus M, Zwar E, Jakobi V, Dogan S, Tolan M, Rehage H. Surfactant‐mediated formation of alginate layers at the water‐air interface. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Elena Zwar
- Faculty of ChemistryTU Dortmund Dortmund Germany
| | - Victoria Jakobi
- Analytical Chemistry—BiointerfacesRuhr‐University Bochum Bochum Germany
| | - Susanne Dogan
- Faculty of Physics/DELTATU Dortmund Dortmund Germany
| | - Metin Tolan
- Faculty of Physics/DELTATU Dortmund Dortmund Germany
| | - Heinz Rehage
- Faculty of ChemistryTU Dortmund Dortmund Germany
| |
Collapse
|
18
|
He Y, Wang S, Li J, Liang H, Wei X, Peng D, Jiang Z, Li B. Interaction between konjac glucomannan and tannic acid: Effect of molecular weight, pH and temperature. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Cheng CC, Muhabie AA, Huang SY, Wu CY, Gebeyehu BT, Lee AW, Lai JY, Lee DJ. Dual stimuli-responsive supramolecular boron nitride with tunable physical properties for controlled drug delivery. NANOSCALE 2019; 11:10393-10401. [PMID: 31111133 DOI: 10.1039/c8nr09537j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The new concept of modifying and tailoring the properties of existing two-dimensional (2D) nanomaterials by invoking the assembly of supramolecular networks upon association with a adenine-functionalized macromer (A-PPG) has significant potential to facilitate the development of highly water-dispersible few-layered 2D nanosheets. In this study, we propose that water-soluble A-PPG directly self-assembles into a long-period stacking-ordered lamellar structure over the surface of hexagonal boron nitride (BN) in aqueous solution, due to the efficient non-covalent interactions between A-PPG and BN nanosheets. The layer number of BN nanosheets can be easily tuned by altering the mass ratio of the A-PPG and BN blend, and the resulting exfoliated nanosheets also exhibit excellent temperature/pH-responsive behavior, biocompatibility and extremely high drug-loading capacity (up to 36.2%), features that are highly desirable yet exceedingly rare in traditional 2D nanomaterials. Importantly, in vitro drug release studies showed the drug-loaded nanosheets function as a stable nanocarrier with excellent stability and drug entrapment under normal physiological conditions. Increasing the environmental temperature to 40 °C or decreasing the pH to 5.5 triggered rapid release of the encapsulated drug from the drug-loaded nanosheets, suggesting this newly developed material has potential as a novel multi-responsive 2D nanocarrier to safely deliver drugs and effectively facilitate controlled drug release under specific microenvironmental conditions. This study provides new insight towards the promising application of this system in controlled release drug delivery systems.
Collapse
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Luo S, Jiang N, Wang Y. Effects of Molecular Structure and Temperature on Micellization of Cationic Ammonium Gemini Surfactants in Aqueous Solution. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siqi Luo
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences, Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Nan Jiang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences, Beijing 100190 China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry Chinese Academy of Sciences, Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
21
|
Gebeyehu BT, Lee AW, Huang SY, Muhabie AA, Lai JY, Lee DJ, Cheng CC. Highly stable photosensitive supramolecular micelles for tunable, efficient controlled drug release. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wu F, Zhao Z, Chen C, Cao T, Li C, Shao Y, Zhang Y, Qiu D, Shi Q, Fan QH, Liu D. Self-Collapsing of Single Molecular Poly-Propylene Oxide (PPO) in a 3D DNA Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703426. [PMID: 29323469 DOI: 10.1002/smll.201703426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/19/2017] [Indexed: 06/07/2023]
Abstract
On the basis of DNA self-assembly, a thermal responsive polymer polypropylene oxide (PPO) is evenly inserted into a rigid 3D DNA network for the study of single molecular self-collapsing process. At low temperature, PPO is hydrophilic and dispersed uniformly in the network; when elevating temperature, PPO becomes hydrophobic but can only collapse on itself because of the fixation and separation of DNA rigid network. The process has been characterized by rheological test and Small Angle X-Ray Scattering test. It is also demonstrated that this self-collapsing process is reversible and it is believed that this strategy could provide a new tool to study the nucleation-growing process of block copolymers.
Collapse
Affiliation(s)
- Fen Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhiyong Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Chun Chen
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyang Cao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chuang Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Shao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yiyang Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dong Qiu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Gebeyehu BT, Huang SY, Lee AW, Chen JK, Lai JY, Lee DJ, Cheng CC. Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Ai-Wei Lee
- Department
of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Juin-Yih Lai
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| | - Duu-Jong Lee
- Department
of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| | | |
Collapse
|
25
|
Grozdova ID, Badun GA, Chernysheva MG, Orlov VN, Romanyuk AV, Melik-Nubarov NS. Increase in the length of poly(ethylene oxide) blocks in amphiphilic copolymers facilitates their cellular uptake. J Appl Polym Sci 2017. [DOI: 10.1002/app.45492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Irene D. Grozdova
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| | - Gennadiy A. Badun
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| | - Maria G. Chernysheva
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| | - Victor N. Orlov
- A. N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 40, Moscow 119991 Russia
| | - Andrey V. Romanyuk
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| | - Nikolay S. Melik-Nubarov
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| |
Collapse
|
26
|
Cheng CC, Huang JJ, Muhable AA, Liao ZS, Huang SY, Lee SC, Chiu CW, Lee DJ. Supramolecular fluorescent nanoparticles functionalized with controllable physical properties and temperature-responsive release behavior. Polym Chem 2017. [DOI: 10.1039/c7py00276a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular polymers can encapsulate chromophoric pyrene to form multifunctional pyrene-loaded micelles for efficient controlled pyrene release.
Collapse
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Jyun-Jie Huang
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Adem Ali Muhable
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Zhi-Sheng Liao
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Shun-Chieh Lee
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Department of Chemical Engineering
| |
Collapse
|
27
|
Cheng CC, Liang MC, Liao ZS, Huang JJ, Lee DJ. Self-Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600370] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/09/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
| | - Mei-Chih Liang
- Department of Biological Science and Technology; National Chiao Tung University; Hsinchu 30050 Taiwan
| | - Zhi-Sheng Liao
- Graduate Institute of Applied Science and Technology; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
| | - Jyun-Jie Huang
- Graduate Institute of Applied Science and Technology; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering; National Taiwan University; Taipei 10617 Taiwan
- Department of Chemical Engineering; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
- R&D Center for Membrane Technology; Chung Yuan Christian University; Chungli Taoyuan 32043 Taiwan
| |
Collapse
|
28
|
Patel SG, Bummer PM. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study. Int J Pharm 2016; 516:131-143. [PMID: 27789368 DOI: 10.1016/j.ijpharm.2016.10.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/13/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
This report examines the energetics of aggregate formation between hydroxypropyl methylcellulose (HPMC) and model ionic surfactants including sodium dodecyl sulfate (SDS) at pharmaceutically relevant concentrations using the isothermal titration calorimetry (ITC) technique and a novel treatment of calorimetric data that accounts for the various species formed. The influence of molecular weight of HPMC, temperature and ionic strength of solution on the aggregate formation process was explored. The interaction between SDS and HPMC was determined to be an endothermic process and initiated at a critical aggregation concentration (CAC). The SDS-HPMC interactions were observed to be cooperative in nature and dependent on temperature and ionic strength of the solution. Molecular weight of HPMC significantly shifted the interaction parameters between HPMC and SDS such that at the highest molecular weight (HPMC K-100M;>240kDa), although the general shape of the titration curve (enthalpogram) was observed to remain similar, the critical concentration parameters (CAC, polymer saturation concentration (Csat) and critical micelle concentration (CMC)) were significantly altered and shifted to lower concentrations of SDS. Ionic strength was also observed to influence the critical concentration parameters for the SDS-HPMC aggregation and decreased to lower SDS concentrations with increasing ionic strength for both anionic and cationic surfactant-HPMC systems. From these data, other thermodynamic parameters of aggregation such as ΔHagg°, ΔGagg°, Hagg°, ΔSagg°, and ΔCp were calculated and utilized to postulate the hydrophobic nature of SDS-HPMC aggregate formation. The type of ionic surfactant head group (anionic vs. cationic i.e., dodecyltrimethylammonium bromide (DTAB)) was found to influence the strength of HPMC-surfactant interactions wherein a distinct CAC signifying the strength of HPMC-DTAB interactions was not observed. The interpretation of the microcalorimetric data at different temperatures and ionic strengths while varying properties of polymer and surfactant was a very effective tool in investigating the nature and energetics of HPMC and ionic surfactant interactions.
Collapse
Affiliation(s)
- Salin Gupta Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States.
| | - Paul M Bummer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| |
Collapse
|
29
|
Chabba S, Vashishat R, Mahajan RK. Influence of head group on the interactional behavior of cationic surface active ionic liquids with pluronic F108 in aqueous medium. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28252] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Lin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| |
Collapse
|
31
|
Albuquerque LJC, Annes K, Milazzotto MP, Mattei B, Riske KA, Jäger E, Pánek J, Štěpánek P, Kapusta P, Muraro PIR, De Freitas AGO, Schmidt V, Giacomelli C, Bonvent JJ, Giacomelli FC. Efficient Condensation of DNA into Environmentally Responsive Polyplexes Produced from Block Catiomers Carrying Amine or Diamine Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:577-586. [PMID: 26677726 DOI: 10.1021/acs.langmuir.5b04080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The intracellular delivery of nucleic acids requires a vector system as they cannot diffuse across lipid membranes. Although polymeric transfecting agents have been extensively investigated, none of the proposed gene delivery vehicles fulfill all of the requirements needed for an effective therapy, namely, the ability to bind and compact DNA into polyplexes, stability in the serum environment, endosome-disrupting capacity, efficient intracellular DNA release, and low toxicity. The challenges are mainly attributed to conflicting properties such as stability vs efficient DNA release and toxicity vs efficient endosome-disrupting capacity. Accordingly, investigations aimed at safe and efficient therapies are still essential to achieving gene therapy clinical success. Taking into account the mentioned issues, herein we have evaluated the DNA condensation ability of poly(ethylene oxide)113-b-poly[2-(diisopropylamino)ethyl methacrylate]50 (PEO113-b-PDPA50), poly(ethylene oxide)113-b-poly[2-(diethylamino)ethyl methacrylate]50 (PEO113-b-PDEA50), poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly[oligo(ethylene glycol)methyl ether methacrylate10-co-2-(diethylamino)ethyl methacrylate47-co-2-(diisopropylamino)ethyl methacrylate47] (POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47), and poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly{oligo(ethylene glycol)methyl ether methacrylate10-co-2-methylacrylic acid 2-[(2-(dimethylamino)ethyl)methylamino]ethyl ester44} (POEGMA70-b-P(OEGMA10-co-DAMA44). Block copolymers PEO113-b-PDEA50 and POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47) were evidenced to properly condense DNA into particles with a desirable size for cellular uptake via endocytic pathways (R(H) ≈ 65-85 nm). The structure of the polyplexes was characterized in detail by scattering techniques and atomic force microscopy. The isothermal titration calorimetric data revealed that the polymer/DNA binding is endothermic; therefore, the process in entropically driven. The combination of results supports that POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47) condenses DNA more efficiently and with higher thermodynamic outputs than does PEO113-b-PDEA50. Finally, circular dichroism spectroscopy indicated that the conformation of DNA remained the same after complexation and that the polyplexes are very stable in the serum environment.
Collapse
Affiliation(s)
- Lindomar J C Albuquerque
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André 09210-170, Brazil
| | - Kelly Annes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André 09210-170, Brazil
| | - Marcella P Milazzotto
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André 09210-170, Brazil
| | - Bruno Mattei
- Departamento de Biofísica, Universidade Federal de São Paulo , São Paulo 04021-001, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo , São Paulo 04021-001, Brazil
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry AS CR , 162 06 Prague, Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry AS CR , 162 06 Prague, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry AS CR , 162 06 Prague, Czech Republic
| | - Peter Kapusta
- J. Heyrovsky Institute of Physical Chemistry, 182 23 Prague, Czech Republic
| | - Paulo I R Muraro
- Departamento de Química, Universidade Federal de Santa Maria , Santa Maria 97105-900, Brazil
| | - Augusto G O De Freitas
- Departamento de Química, Universidade Federal de Santa Maria , Santa Maria 97105-900, Brazil
| | - Vanessa Schmidt
- Departamento de Química, Universidade Federal de Santa Maria , Santa Maria 97105-900, Brazil
| | - Cristiano Giacomelli
- Departamento de Química, Universidade Federal de Santa Maria , Santa Maria 97105-900, Brazil
| | - Jean-Jacques Bonvent
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André 09210-170, Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André 09210-170, Brazil
| |
Collapse
|
32
|
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem Rev 2015; 116:2170-243. [PMID: 26713458 DOI: 10.1021/acs.chemrev.5b00441] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Collapse
Affiliation(s)
- Jana Herzberger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Kerstin Niederer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Hannah Pohlit
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Department of Dermatology, University Medical Center , Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Jan Seiwert
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
33
|
Wu F, Song Y, Zhao Z, Zhang S, Yang Z, Li Z, Li M, Fan QH, Liu D. Preparation and Self-Assembly of Supramolecular Coil–Rod–Coil Triblock Copolymer PPO–dsDNA–PPO. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Yongshun Song
- School
of Physics, University of Chinese Academy of Science, Beijing 100049, China
| | | | | | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | - Ming Li
- School
of Physics, University of Chinese Academy of Science, Beijing 100049, China
| | | | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Sulatha MS, Natarajan U. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density. J Phys Chem B 2015; 119:12526-39. [PMID: 26355463 DOI: 10.1021/acs.jpcb.5b04680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.
Collapse
Affiliation(s)
- Muralidharan S Sulatha
- Molecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology Madras , Chennai 600036, India
| | - Upendra Natarajan
- Molecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
35
|
Patel U, Dharaiya N, Parikh J, Aswal VK, Bahadur P. Effect of amphiphilic and non-amphiphilic polymers on micellar behaviour of nonionic surfactant Triton X-100. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Ooi J, Traini D, Boyd BJ, Gaisford S, Young PM. Determination of physical and chemical stability in pressurised metered dose inhalers: potential new techniques. Expert Opin Drug Deliv 2015; 12:1661-75. [PMID: 26067386 DOI: 10.1517/17425247.2015.1046834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Pressurised metered dose inhalers (pMDIs) are subject to rigorous physical and chemical stability tests during formulation. Due to the time and cost associated with product development studies, there is a need for online techniques to fast screen new formulations in terms of physical and chemical (physico-chemical) stability. The problem with achieving this is that pMDIs are by their definition, pressurised, making the direct observation of physico-chemical properties in situ difficult. AREAS COVERED This review highlights the characterisation tools that can enhance the product development process for pMDIs. Techniques investigated include: laser diffraction, Raman spectroscopy, isothermal ampoule calorimetry, titration calorimetry and gas perfusion calorimetry. The operational principles behind each technique are discussed and complemented with examples from the literature. EXPERT OPINION Laser diffraction is well placed to analyse real-time physical stability as a function of particle size; however, its use is restricted to suspension pMDIs. Raman spectroscopy can be potentially used to attain both suspension and solution pMDI spectra in real time; however, the majority of experiments are ex-valve chemical composition mapping. Calorimetry is an effective technique in capturing both chemical and physical degradations of APIs in real time but requires redevelopment to withstand pressure for the purposes of pMDI screening.
Collapse
Affiliation(s)
- Jesslynn Ooi
- a 1 University of Sydney, The Woolcock Institute of Medical Research, Australia and School of Medicine, Respiratory Technology, Discipline of Pharmacology , Sydney, Australia +61 2 9114 0350 ;
| | - Daniela Traini
- a 1 University of Sydney, The Woolcock Institute of Medical Research, Australia and School of Medicine, Respiratory Technology, Discipline of Pharmacology , Sydney, Australia +61 2 9114 0350 ;
| | - Ben J Boyd
- b 2 Monash University, Monash Institute of Pharmaceutical Sciences , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Simon Gaisford
- c 3 University College London, School of Pharmacy , 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Paul M Young
- a 1 University of Sydney, The Woolcock Institute of Medical Research, Australia and School of Medicine, Respiratory Technology, Discipline of Pharmacology , Sydney, Australia +61 2 9114 0350 ;
| |
Collapse
|
37
|
Olesen NE, Westh P, Holm R. Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry: A case study on bile salts. J Colloid Interface Sci 2015; 453:79-89. [PMID: 25978555 DOI: 10.1016/j.jcis.2015.03.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 01/04/2023]
Abstract
The aggregation number (n), thermodynamic potentials (ΔG, ΔH, ΔS) and critical micelle concentration (CMC) for 6 natural bile salts were determined on the basis of both original and previously published isothermal titration calorimetry (ITC) data. Different procedures to estimate parameters of micelles with ITC were compared to a mass-action model (MAM) of reaction type: n⋅S⇌Mn. This analysis can provide guidelines for future ITC studies of systems behaving in accordance with this model such as micelles and proteins that undergo self-association to oligomers. Micelles with small aggregation numbers, as those of bile salts, are interesting because such small aggregates cannot be characterized as a separate macroscopic phase and the widely applied pseudo-phase model (PPM) is inaccurate. In the present work it was demonstrated that the aggregation number of micelles was constant at low concentrations enabling determination of the thermodynamic potentials by the MAM. A correlation between the aggregation number and the heat capacity was found, which implies that the dehydrated surface area of bile salts increases with the aggregation number. This is in accordance with Tanford's principles of opposing forces where neighbouring molecules in the aggregate are better able to shield from the surrounding hydrophilic environment when the aggregation number increases.
Collapse
Affiliation(s)
- Niels Erik Olesen
- Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Peter Westh
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - René Holm
- Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark.
| |
Collapse
|
38
|
Wu F, Zhang Y, Yang Z. An Overview of Self-Assembly and Morphological Regulation of Amphiphilic DNA Organic Hybrids. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201400846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Muller J, Marchandeau F, Prelot B, Zajac J, Robin JJ, Monge S. Self-organization in water of well-defined amphiphilic poly(vinyl acetate)-b-poly(vinyl alcohol) diblock copolymers. Polym Chem 2015. [DOI: 10.1039/c5py00091b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-organization of well-defined poly(vinyl acetate)-b-poly(vinyl alcohol) (PVAc-b-PVA) amphiphilic diblock copolymers with different hydrophilic block sizes was reported.
Collapse
Affiliation(s)
- Julien Muller
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires
- Université de Montpellier
- 34095 Montpellier
- France
| | - Franck Marchandeau
- Institut Charles Gerhardt Montpellier
- UMR-5253 CNRS-UM-ENSCM – Agrégats
- Interfaces
- Matériaux pour l'Energie
- Université de Montpellier
| | - Bénédicte Prelot
- Institut Charles Gerhardt Montpellier
- UMR-5253 CNRS-UM-ENSCM – Agrégats
- Interfaces
- Matériaux pour l'Energie
- Université de Montpellier
| | - Jerzy Zajac
- Institut Charles Gerhardt Montpellier
- UMR-5253 CNRS-UM-ENSCM – Agrégats
- Interfaces
- Matériaux pour l'Energie
- Université de Montpellier
| | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires
- Université de Montpellier
- 34095 Montpellier
- France
| | - Sophie Monge
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires
- Université de Montpellier
- 34095 Montpellier
- France
| |
Collapse
|
40
|
Zhao Z, Chen C, Dong Y, Yang Z, Fan QH, Liu D. Thermally Triggered Frame-Guided Assembly. Angew Chem Int Ed Engl 2014; 53:13468-70. [DOI: 10.1002/anie.201408231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Indexed: 11/06/2022]
|
41
|
Zhao Z, Chen C, Dong Y, Yang Z, Fan QH, Liu D. Thermally Triggered Frame-Guided Assembly. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Tang Y, Wang R, Wang Y. Constructing Gemini-Like Surfactants with Single-Chain Surfactant and Dicarboxylic Acid Sodium Salts. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1632-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Naskar B, Mondal S, Moulik SP. Amphiphilic activities of anionic sodium cholate (NaC), zwitterionic 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and their mixtures: A comparative study. Colloids Surf B Biointerfaces 2013; 112:155-64. [DOI: 10.1016/j.colsurfb.2013.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 11/30/2022]
|
44
|
Peng B, Han X, Liu H, Tam KC. Binding of cationic surfactants to a thermo-sensitive copolymer below and above its cloud point. J Colloid Interface Sci 2013; 412:17-23. [DOI: 10.1016/j.jcis.2013.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 12/14/2022]
|
45
|
Vapor pressure osmometry, volumetry and conductometry investigations on the interaction of sodium dodecyl sulfate with poly(ethylene glycol) and poly(propylene glycol) in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Han Y, Wang W, Tang Y, Zhang S, Li Z, Wang Y. Coassembly of poly(ethylene glycol)-block-poly(glutamate sodium) and gemini surfactants with different spacer lengths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9316-9323. [PMID: 23834076 DOI: 10.1021/la4019713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The coassembly of poly(ethylene glycol)-b-poly(glutamate sodium) copolymer (PEG113-PGlu100) with cationic gemini surfactants alkanediyl-α,ω-bis-(dodecyldimethylammonium bromide) [C12H25(CH3)2N(CH2)SN(CH3)2C12H25]Br2 (designated as C12CSC12Br2, S = 3, 6, and 12) have been studied by isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, small-angle X-ray scattering, zeta potential, and size measurement. It has been shown that the electrostatic interaction of C12CSC12Br2 with the anionic carboxylate groups of PEG113-PGlu100 leads to complexation, and the C12CSC12Br2/PEG113-PGlu100 complexes are soluble even at the electroneutral point. The complexes display the feature of superamphiphiles and assemble into ordered nanosheets with a sandwich-like packing. The gemini molecules which were already bound with PGlu chains associate through hydrophobic interaction and constitute the middle part of the nanosheets, whereas the top and bottom of the nanosheets are hydrophilic PEG chains. The size and morphology of the nanosheets are affected by the spacer length of the gemini surfactants. The average sizes of the aggregates at the electroneutral point are 81, 68, and 90 nm for C12C3C12Br2/PEG113-PGlu100, C12C6C12Br2/PEG113-PGlu100, and C12C12C12Br2/PEG113-PGlu100, respectively. Both C12C3C12Br2/PEG113-PGlu100 and C12C12C12Br2/PEG113-PGlu100 mainly generate hexagonal nanosheets, while the C12C6C12Br2/PEG113-PGlu100 system only induces round nanosheets.
Collapse
Affiliation(s)
- Yuchun Han
- Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
47
|
Tikariha D, Ghosh KK, Quagliotto P. Micellization of Gemini Surfactants in Polymer Solutions. TENSIDE SURFACT DET 2013. [DOI: 10.3139/113.110065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The micellization behavior of three cationic gemini surfactants, C16H33N+(CH3)2(CH2)SN+(CH3)2C16H33, 2Br− (s = 4, 6, 10) have been studied in the presence of 1% (w/v) and 5% (w/v) polyethylene glycol-600 (PEG-600) by conductivity measurements at 300–320 K. From the conductivity data the critical micelle concentration, the degree of counterion ionization (α) and the thermodynamics of micellization ΔGo
m, ΔHo
m, ΔSo
m, of the gemini surfactants have been determined. The micellar parameters show a significant dependence on the spacer length and as well as amount of polymer.
Collapse
Affiliation(s)
- D. Tikariha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India
| | - K. K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India
| | - P. Quagliotto
- Dipartimento di Chimica Generale ed Organica Applicata e Centro di Eccellenza NIS, Università degli Studi di Torino, Corso Massimo D'Azeglio 48, 10125, Torino, Italy
| |
Collapse
|
48
|
Peng B, Han X, Liu H, Berry RC, Tam KC. Interactions between surfactants and polymer-grafted nanocrystalline cellulose. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2012.12.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Atomistic insights into solvation dynamics and conformational transformation in thermo-sensitive and non-thermo-sensitive oligomers. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Han Y, Xia L, Zhu L, Zhang S, Li Z, Wang Y. Association behaviors of dodecyltrimethylammonium bromide with double hydrophilic block co-polymer poly(ethylene glycol)-block-poly(glutamate sodium). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15134-15140. [PMID: 23057580 DOI: 10.1021/la303646r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The association behaviors of single-chain surfactant dodecyltrimethylammonium bromide (DTAB) with double hydrophilic block co-polymers poly(ethylene glycol)-b-poly(sodium glutamate) (PEG(113)-PGlu(50) or PEG(113)-PGlu(100)) were investigated using isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, ζ potential, and particle size measurements. The electrostatic interaction between DTAB and the oppositely charged carboxylate groups of PEG-PGlu induces the formation of super-amphiphiles, which further self-assemble into ordered aggregates. Dependent upon the charge ratios between DTAB and the glutamic acid residue of the co-polymer, the mixture solutions can change from transparent to opalescent without precipitation. Dependent upon the chain length of the PGlu block, the mixture of DTAB and PEG-PGlu diblocks can form two different aggregates at their corresponding electroneutral point. Spherical and rod-like aggregates are formed in the PEG(113)-PGlu(50)/DTAB mixture, while the vesicular aggregates are observed in the PEG(113)-PGlu(100)/DTAB mixture solution. Because the PEG(113)-PGlu(100)/DTAB super-amphiphile has more hydrophobic components than that of the PEG(113)-PGlu(50)/DTAB super-amphiphile, the former prefers forming the ordered aggregates with higher curvature, such as spherical and rod aggregates, but the latter prefers forming vesicular aggregates with lower curvature.
Collapse
Affiliation(s)
- Yuchun Han
- Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | |
Collapse
|