1
|
Zhang J, Hu G, Guo H, Yang W, Li X, Ni Y, He M, Ding P, Yu Y. Amino modifications exacerbate the developmental abnormalities of polystyrene microplastics via mitochondria-mediated apoptosis pathway in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178031. [PMID: 39689476 DOI: 10.1016/j.scitotenv.2024.178031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment and have been identified as a potential threat to ecosystems. However, the mechanisms of toxicity of modified MPs remain unknown. This study investigated the developmental toxicity of amino-modified polystyrene microplastics (PS-NH2) with environmentally relevant concentrations ranging from 0.1 to 100 μg/L in the early developmental stages of zebrafish. Adding amino functional groups resulted in significant alterations in the surface morphology and zeta potential of traditional polystyrene microplastics (PS-MPs). Zebrafish larvae exposed to PS-NH2 exhibited increased developmental toxicity compared to PS-MPs, as indicated by reduced body length, heart rate, and spontaneous movement. The expression of cat1, sod1, gstr1, nrf2a, nrf2b, and HO-1, as well as alterations in ROS, SOD, CAT, and MDA levels, all demonstrated oxidative damage caused by PS-NH2 exposure. Mitochondrial dysfunction was also induced, as evidenced by changes in the expression of cox4i1, ndufs1, and uqcrc1, as well as changes in the levels of ATP, cytochrome c, NAD, and NADH. Furthermore, PS-NH2 exposure disrupted apoptosis regulation, increasing apoptotic cells and caspase activity, along with changes in caspase-3 and bcl-2 expression. Molecular docking showed that PS-NH2 interacts with bcl-2 with high binding energy. This study contributes to understanding the toxic effects and mechanisms of charge-modified MPs in zebrafish.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenhui Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yuyang Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Miao He
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
2
|
Zhao W, Ma H, Gao Z, Li D, Lin Y, Wu C, Wei L. Uncovering the toxic effects and adaptive mechanisms of aminated polystyrene nanoplastics on microbes in sludge anaerobic digestion system: Insight from extracellular to intracellular. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136163. [PMID: 39418906 DOI: 10.1016/j.jhazmat.2024.136163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The impacts of polystyrene nanoplastics (PS NPs) with amino functional groups on sludge anaerobic digestion process and the underlying microbial feedbacks remains unclear. Herein, PS NPs coated with and without amino functional groups were employed to explore their impacts on the sludge digestion performance. Experimental results showed that aminated PS NPs (PS-NH2) deteriorated the methane yield and hydrolysis rate. The Derjaguin-Landau-Verwey-Overbeek theory analysis suggested that the PS-NH2 decreased the interaction energy barrier, making it easier to contact with sludge and disrupting the structure of extracellular polymeric substances. Metagenomic analysis showed that the abundance of functional microbes (e.g., Longilinea, Leptolinea, and Methanosarcina) decreased, accompanied with lower network complexity and fewer keystone taxa. Molecular docking revealed that PS-NH2 occupy the antioxidant enzyme active binding sites through hydrogen bonding and hydrophobic interactions, impairing degradation of reactive oxygen species. The severe intracellular oxidative stress up-regulated genes associated with quorum sensing (e.g., luxI and luxR) and protein biosynthesis (e.g., algA, trpG and trpE), and further inducing compact tryptophan-like proteins as a defense against NPs. These findings provide new understanding of the toxic effects from PS-NH2 in biological systems and offer valuable insights into the regulation strategies aimed at alleviating NPs inhibition.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment (Ministry of Education), Jilin Jianzhu University, Changchun 130118, China
| | - Chuandong Wu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Liu H, Tan X, Li X, Wu Y, Lei S, Wang Z. Amino-modified nanoplastics at predicted environmental concentrations cause transgenerational toxicity through activating germline EGF signal in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174766. [PMID: 39004367 DOI: 10.1016/j.scitotenv.2024.174766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In the real environment, some chemical functional groups are unavoidably combined on the nanoplastic surface. Reportedly, amino-modified polystyrene nanoparticles (PS-A NPs) exposure in parents can induce severe transgenerational toxicity, but the underlying molecular mechanisms remain largely unclear. Using Caenorhabditis elegans as the animal model, this study was performed to investigate the role of germline epidermal growth factor (EGF) signal on modulating PS-A NPs' transgenerational toxicity. As a result, 1-10 μg/L PS-A NPs exposure transgenerationally enhanced germline EGF ligand/LIN-3 and NSH-1 levels. Germline RNAi of lin-3 and nsh-1 was resistant against PS-A NPs' transgenerational toxicity, implying the involvement of EGF ligand activation in inducing PS-A NPs' transgenerational toxicity. Furthermore, LIN-3 overexpression transgenerationally enhanced EGF receptor/LET-23 expression in the progeny, and let-23 RNAi in F1-generation notably suppressed PS-A NPs' transgenerational toxicity in the exposed worms overexpressing germline LIN-3 at P0 generation. Finally, LET-23 functioned in neurons and intestine for regulating PS-A NPs' transgenerational toxicity. LET-23 acted at the upstream DAF-16/FOXO within the intestine in response to PS-A NPs' transgenerational toxicity. In neurons, LET-23 functioned at the upstream of DAF-7/DBL-1, ligands of TGF-β signals, to mediate PS-A NPs' transgenerational toxicity. Briefly, this work revealed the exposure risk of PS-A NPs' transgenerational toxicity, which was regulated through activating germline EGF signal in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaochao Tan
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Wu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuhan Lei
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Yu Y, Xie D, Yang Y, Tan S, Li H, Dang Y, Xiang M, Chen H. Carboxyl-modified polystyrene microplastics induces neurotoxicity by affecting dopamine, glutamate, serotonin, and GABA neurotransmission in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130543. [PMID: 36493651 DOI: 10.1016/j.jhazmat.2022.130543] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are ubiquitous in various environmental media and have potential toxicity. However, the neurotoxicity of carboxyl-modified polystyrene microplastics (PS-COOH) and their mechanisms remain unclear. In this study, Caenorhabditis elegans was used as a model to examine the neurotoxicity of polystyrene microplastic (PS) and PS-COOH concentrations ranging from 0.1 to 100 μg/L. Locomotion behavior, neuron development, neurotransmitter level, and neurotransmitter-related gene expression were selected as assessment endpoints. Exposure to low concentrations (1 μg/L) of PS-COOH caused more severe neurotoxicity than exposure to pristine PS. In transgenic nematodes, exposure to PS-COOH at 10-100 μg/L significantly increased the fluorescence intensity of dopaminergic, glutamatergic, serotonergic, and aminobutyric acid (GABA)ergic neurons compared to that of the control. Further studies showed that exposure to 100 μg/L PS-COOH can significantly affect the levels of glutamate, serotonin, dopamine, and GABA in nematodes. Likewise, in the present study, the expression of genes involved in neurotransmission was altered in worms. These results suggest that PS-COOH exerts neurotoxicity by affecting neurotransmission of dopamine, glutamate, serotonin, and GABA. This study provides new insights into the underlying mechanisms and potential risks associated with PS-COOH.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Yue Yang
- Xi 'an Jiaotong University Second Affiliated Hospital, Xi 'an 710004, China
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Sun L, Liao K, Wang D. Comparison of transgenerational reproductive toxicity induced by pristine and amino modified nanoplastics in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144362. [PMID: 33434799 DOI: 10.1016/j.scitotenv.2020.144362] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 05/21/2023]
Abstract
Certain modifications can aggravate the toxicity of nanoplastics. However, the influence of surface amino modification on transgenerational impairment induced by nanoplastics remains largely unclear. Pristine nanopolystyrene (NPS) and amino modified NPS (NPS-NH2) were used to determine their transgenerational toxicity in Caenorhabditis elegans. Exposure to 100 μg/L pristine NPS in parents (P0) cause a decrease in reproductive capacity in the F1-F3 generations and the damage on gonad development in the F1-F2 generations. In contrast, exposure to 10 μg/L NPS-NH2 caused toxicity on reproductive capacity and gonad development in the F1 generation. The toxic effects of NPS-NH2 on reproductive capacity and gonad development in the F1-F3 generations were more severe than those of pristine NPS. Moreover, amino modification could increase transgenerational toxicity of NPS in inducing apoptosis of germline and in affecting expressions of ced-1, ced-4, and ced-9. Our data demonstrate that surface modification of NPS with amino groups enhances transgenerational reproductive toxicity of NPS in C. elegans.
Collapse
Affiliation(s)
- Lingmei Sun
- Medical School, Southeast University, Nanjing 210009, China
| | - Kai Liao
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Singh G, Bremmell K, Griesser HJ, Kingshott P. Colloid-probe AFM studies of the surface functionality and adsorbed proteins on binary colloidal crystal layers. RSC Adv 2017. [DOI: 10.1039/c6ra28491d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate the applicability of colloid-probe AFM to detect different surface chemistries on binary colloidal crystal layers of different chemical and protein patterns.
Collapse
Affiliation(s)
- Gurvinder Singh
- Interdisciplinary Nanoscience Centre
- Faculty of Science
- Aarhus University
- Denmark
- Department of Materials Science and Engineering
| | - Kristen Bremmell
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide 5000
- Australia
| | - Hans J. Griesser
- Future Industries Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - Peter Kingshott
- Interdisciplinary Nanoscience Centre
- Faculty of Science
- Aarhus University
- Denmark
- Department of Chemistry and Biotechnology
| |
Collapse
|
7
|
Foti L, Sionek A, Stori EM, Soares PP, Pereira MM, Krieger MA, Petzhold CL, Schreiner WH, Soares MJ, Goldenberg S, Saul CK. Electrospray induced surface activation of polystyrene microbeads for diagnostic applications. J Mater Chem B 2015; 3:2725-2731. [DOI: 10.1039/c4tb01884b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proposed electrochemical reaction mechanism: (a) highly charged microbeads approach the electrolyte; (b) microbeads sink and are solvated by water molecules; (c) water oxidation reaction disrupts PS surface bonds; (d) oxygen is incorporated into the polymer chains.
Collapse
Affiliation(s)
- Leonardo Foti
- Instituto de Biologia Molecular do Paraná
- 81350-010 – Curitiba
- Brazil
| | - Andre Sionek
- Departamento de Física – UFPR
- 81531-990 – Curitiba
- Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ladj R, Magouroux T, Eissa M, Dubled M, Mugnier Y, Dantec RL, Galez C, Valour JP, Fessi H, Elaissari A. Aminodextran-coated potassium niobate (KNbO3) nanocrystals for second harmonic bio-imaging. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Dispenza C, Rigogliuso S, Grimaldi N, Sabatino M, Bulone D, Bondì M, Ghersi G. Structure and biological evaluation of amino-functionalized PVP nanogels for fast cellular internalization. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Freichels H, Wagner M, Okwieka P, Meyer RG, Mailänder V, Landfester K, Musyanovych A. (Oligo)mannose functionalized hydroxyethyl starch nanocapsules: en route to drug delivery systems with targeting properties. J Mater Chem B 2013; 1:4338-4348. [DOI: 10.1039/c3tb20138d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Dispenza C, Sabatino MA, Grimaldi N, Bulone D, Bondì ML, Casaletto MP, Rigogliuso S, Adamo G, Ghersi G. Minimalism in radiation synthesis of biomedical functional nanogels. Biomacromolecules 2012; 13:1805-17. [PMID: 22571354 DOI: 10.1021/bm3003144] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.
Collapse
Affiliation(s)
- Clelia Dispenza
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abdel-Razik HH, Kenawy ER. Synthesis, characterization, and amidoximation of diaminomaleodinitrile-functionalized polyethylene terephthalate grafts for collecting heavy metals from wastewater. J Appl Polym Sci 2012. [DOI: 10.1002/app.34832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Tripathi BP, Dubey NC, Choudhury S, Stamm M. Antifouling and tunable amino functionalized porous membranes for filtration applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34172g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
|
15
|
PREPARATION OF AMINO-FUNCTIONALIZED POLYSTYRENE NANOPARTICLES BY PHOTOINITIATED EMULSION POLYMERIZATION. ACTA POLYM SIN 2010. [DOI: 10.3724/sp.j.1105.2010.09484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Design of Highly Functional Antiferritin-Immunolatex by Hybridization of Antiferritin/Mixed-PEG Polymers onto Polystyrene Submicroparticles. ACTA ACUST UNITED AC 2010. [DOI: 10.1021/bk-2010-1054.ch013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Kim S, Pyo HB, Ko SH, Ah CS, Kim A, Kim WJ. Fabrication of anionic sulfate-functionalized nanoparticles as an immunosensor by protein immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:7355-7364. [PMID: 20205399 DOI: 10.1021/la9043717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anionic sulfate (SO(4)(-))-functionalized polystyrene (PS) nanoparticles were prepared by the thermal decomposition of potassium persulfate (KPS) in the presence of sodium tetraborate via emulsion polymerization. The presence of a SO(4)(-) group at a solid/liquid interface of a particle surface was confirmed by a zeta potential value of -40.6 mV as well as the shifting of S 2p spectra toward a lower-binding-energy region around 162.7 eV (2p(3/2)) and 164.4 eV (2p(1/2)) in X-ray photoelectron spectroscopy (XPS) analysis. The electrostatic attraction between positively charged antibodies of human immunoglobulin G (hIgG) and cardiac troponin I (cTnI) and negatively charged particle surfaces was accomplished. The atomic force microscopy (AFM) measurement and bicinchoninic acid (BCA) assay results show binding structure between hIgG and antibodies of hIgG (anti-hIgG) with a gradual increase in particle diameter to 152.6 nm (bare), 170.2 nm (hIgG), and 178.9 nm (hIgG/anti-hIgG). Surface coverage densities of 331.4 ng/cm(2) (hIgG) and 320.3 ng/cm(2) (cTnI) and the binding capacity of hIgG to HyLite-750-labeled Fab-specific anti-hIgG (approximately 81.2%) indicate that the majority of hIgG was immobilized with a Y-shaped orientation. The sandwich immunoassay results provide the evidence that the immunological activity of cTnI on the PS nanoparticle surface was retained because the binding activity of the cTnI-PS nanoparticle/cTnI (antigen)/detection cTnI-antibody reaction showed a 5-fold higher activity than that of the cTnI-PS nanoparticle/human serum albumin (HSA)/detection cTnI antibody used as a negative control.
Collapse
Affiliation(s)
- Sanghee Kim
- Electronics and Telecommunications Research Institute, 131 Gajeong-Dong, Daejeon 305-700, Korea
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Yuan X, Fabregat D, Yoshimoto K, Nagasaki Y. Efficient Inhibition of Interfacial Nonspecific Interaction to Create Practically Utilizable High Ferritin-Response Immunolatex. Anal Chem 2009; 81:10097-105. [DOI: 10.1021/ac902055w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaofei Yuan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Tsukuba Advanced Research Alliance (TARA), Master School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, Satellite Laboratory of International Center for Materials Nanoarchitectonics (MANA) in National Institute for
| | - Dolça Fabregat
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Tsukuba Advanced Research Alliance (TARA), Master School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, Satellite Laboratory of International Center for Materials Nanoarchitectonics (MANA) in National Institute for
| | - Keitaro Yoshimoto
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Tsukuba Advanced Research Alliance (TARA), Master School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, Satellite Laboratory of International Center for Materials Nanoarchitectonics (MANA) in National Institute for
| | - Yukio Nagasaki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Tsukuba Advanced Research Alliance (TARA), Master School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, Satellite Laboratory of International Center for Materials Nanoarchitectonics (MANA) in National Institute for
| |
Collapse
|
20
|
|
21
|
Liu G, Liu P. Preparation of carboxyl-coated polystyrene nanoparticles using oleic acid. IET Nanobiotechnol 2009; 3:23-7. [PMID: 19485550 DOI: 10.1049/iet-nbt.2008.0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Novel carboxyl group-decorated crosslinked polystyrene nanoparticles were prepared via the soapless emulsion polymerisation of styrene and divinyl benzene with oleic acid as functional comonomer. The existence of the surface carboxyl group was verified by zeta potential analysis. Particle sizes of the functional nanoparticles prepared with the proposed method were found to be in the range of 60-100 nm by transmission electron microscopy and dynamic light scattering analyses. Functionalised nanoparticles are proposed as carriers for biomolecules or drugs.
Collapse
Affiliation(s)
- G Liu
- Lanzhou University, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou, Gansu, People's Republic of China
| | | |
Collapse
|
22
|
Wu G, Paz MD, Chiussi S, Serra J, González P, Wang YJ, Leon B. Excimer laser chemical ammonia patterning on PET film. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:597-606. [PMID: 18853239 DOI: 10.1007/s10856-008-3600-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 09/23/2008] [Indexed: 05/26/2023]
Abstract
Laser is a promising technique used for biopolymer surface modification with micro and/or nano features. In this work, a 193 nm excimer laser was used for poly (ethylene terephthalate) (PET) surfaces chemical patterning. The ablation threshold of the PET film used in the experiments was 62 mJ/cm(2) measured before surface modification. Surface chemical patterning was performed by irradiating PET film in a vacuum chamber filled with ammonia at the flux of 10, 15, 20, 25 ml/min. Roughness of the surface characterized by profilometry showed that there were no significant observed change after modification comparing original film. But the hydrophilicity of the surface increased after patterning and a minimum water contact angle was obtained at the gas flux of 20 ml/min. FT-IR/ATR results showed the distinct amino absorption bands presented at 3352 cm(-1)and 1613 cm(-1) after modification and XPS binding energies of C(1s) at 285.5 eV and N(1s) at 399.0 eV verified the existence of C-N bond formation on the PET film surface. Tof-SIMS ions mapping used to identify the amine containing fragments corroborates that amino grafting mainly happened inside the laser irradiation area of the PET surface. A hypothesized radical reaction mechanism proposes that the collision between radicals in ammonia and on the PET surface caused by the incident laser provokes the grafting of amino groups.
Collapse
Affiliation(s)
- G Wu
- Department of Applied Physics, University of Vigo, Rua Maxwell, Vigo, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Yuan X, Yoshimoto K, Nagasaki Y. High-Performance Immunolatex Possessing a Mixed-PEG/Antibody Coimmobilized Surface: Highly Sensitive Ferritin Immunodiagnostics. Anal Chem 2009; 81:1549-56. [DOI: 10.1021/ac802282c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaofei Yuan
- Graduate School of Pure and Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Tsukuba Advanced Research Alliance (TARA), and Master School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, and Satellite Laboratory of International Center for Materials Nanoarchitechtonics (MANA) in National Institute for Materials Science (NIMS), Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573
| | - Keitaro Yoshimoto
- Graduate School of Pure and Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Tsukuba Advanced Research Alliance (TARA), and Master School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, and Satellite Laboratory of International Center for Materials Nanoarchitechtonics (MANA) in National Institute for Materials Science (NIMS), Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573
| | - Yukio Nagasaki
- Graduate School of Pure and Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Tsukuba Advanced Research Alliance (TARA), and Master School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan, and Satellite Laboratory of International Center for Materials Nanoarchitechtonics (MANA) in National Institute for Materials Science (NIMS), Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573
| |
Collapse
|
24
|
Olsen A, Lee HC, Hatzopoulos M, van Duijneveldt JS, Vincent B. Synthesis of amphoteric polystyrene particles using mixed initiators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:3801-3806. [PMID: 18302436 DOI: 10.1021/la703613p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The synthesis of amphoteric polystyrene latex particles, using a mixture of cationic (amidinium based) and anionic (carboxylic acid based) initiators in a surfactant-free emulsion polymerization reaction is investigated; this extends work described in an earlier paper by Bolt et al. Electrophoretic mobility measurements show the effect of the initiator concentration ratio on the isoelectric point (IEP) of the particles. A good correlation with theoretical predictions is obtained. Particle size and polydispersity are determined as a function of the lag time between the addition of each initiator. An increase in particle size and polydispersity is observed at short lag times. It is shown that this is due to the ratio of the cationic to anionic surface charge approaching unity during the reaction. At long lag times an increase in polydispersity may occur due to late-stage, secondary nucleation upon addition of the second initiator. Increasing the reaction pH to reduce the degree of ionization of the cationic initiator greatly reduces the polydispersity and has a significant effect on the IEP of the particles. This effect is ascribed to the burial of a fraction of the neutral amidine groups below the particle surface due to their increased solubility in the monomer. Slow addition of the second initiator was found to reduce the polydispersity of the particles, while maintaining an IEP value consistent with that expected for the ratio of initiators added.
Collapse
Affiliation(s)
- Aaron Olsen
- School of Chemistry, University of Bristol, Bristol, U.K
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Ni H, Kawaguchi H, Endo T. Preparation of Amphoteric Microgels of Poly(acrylamide/methacrylic acid/dimethylamino ethylene methacrylate) with a Novel pH−Volume Transition. Macromolecules 2007. [DOI: 10.1021/ma070358g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henmei Ni
- Biomaterials Center, National Institute for Materials (NIMS), 1-1 Namiki, Tsukuba City, Ibaraki 305, Japan, Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Yokohama 223, Japan, and Henkel Research Center of Advanced Technology, Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan
| | - Haruma Kawaguchi
- Biomaterials Center, National Institute for Materials (NIMS), 1-1 Namiki, Tsukuba City, Ibaraki 305, Japan, Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Yokohama 223, Japan, and Henkel Research Center of Advanced Technology, Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan
| | - Takeshi Endo
- Biomaterials Center, National Institute for Materials (NIMS), 1-1 Namiki, Tsukuba City, Ibaraki 305, Japan, Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Yokohama 223, Japan, and Henkel Research Center of Advanced Technology, Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan
| |
Collapse
|
27
|
Musyanovych A, Rossmanith R, Tontsch C, Landfester K. Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl- and amino-functionalized polystyrene particles prepared by miniemulsion polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5367-76. [PMID: 17411078 DOI: 10.1021/la0635193] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Carboxyl and amino-functionalized polystyrene latex particles were synthesized by the miniemulsion copolymerization of styrene and acrylic acid or 2-aminoethyl methacrylate hydrochloride (AEMH). The reaction was started by using an oil-soluble initiator, such as 2,2'-azobis(2-methylbutyronitrile) (V-59). The effect of the functional monomer content and type of surfactant (non-ionic versus ionic) on the particle size and particle size distribution was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). A bimodal particle size distribution was observed for functionalized latex particles prepared in the presence of the non-ionic surfactant (i.e., Lutensol AT-50) when 1 wt % of acrylic acid or 3 wt % of AEMH as a comonomer was employed. The copolymer particle nucleation was studied by using a highly hydrophobic fluorescent dye. From the obtained results, the formation of bimodal particle size distribution may be attributed to a budding-like effect, which takes place during the earlier stage of polymerization and is caused by the additional stabilizing energy originated from the ionic groups of a functional polymer. The reaction mechanism of particle formation in the presence of non-ionic and ionic surfactants has been proposed. The amount of the surface functional groups was determined from polyelectrolyte titration data.
Collapse
Affiliation(s)
- Anna Musyanovych
- Department of Organic Chemistry III--Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
28
|
Cui X, Zhong S, Zhang H, Gu Q, Li J, Wang H. Preparation and characterization of polytetrafluoroethylene-polyacrylate core–shell nanoparticles. POLYM ADVAN TECHNOL 2007. [DOI: 10.1002/pat.914] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Zhang SW, Zhou SX, Weng YM, Wu LM. Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and gamma-methacryloxypropyltrimethoxysilane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:4674-9. [PMID: 16649781 DOI: 10.1021/la053106m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The polystyrene latex nanoparticles bearing silanol groups on their surfaces were successfully synthesized via miniemulsion polymerization using gamma-methacryloxypropyltrimethoxysilane (MPS) as the functional comonomer and oil-soluble AIBN as the initiator at neutral conditions. FTIR and 29Si NMR spectra showed that the condensation of silanol groups was suppressed effectively. zeta potential and XPS analyses demonstrated that the silanol groups were enriched at the surfaces of the latex particles and could be tailored by MPS concentration. These silanol-functionalized latex particles could be easily coated with silica or other inorganic or organic compounds to prepare novel hybrid particles and hollow microspheres.
Collapse
Affiliation(s)
- Sheng-Wen Zhang
- Department of Materials Science and the Advanced Coatings Research Center of China Educational Ministry, Fudan University, Shanghai 200433, PR China
| | | | | | | |
Collapse
|
30
|
Kinetics of the batch cationic emulsion polymerization of styrene: A comparative study with the anionic case. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/pola.21540] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|