1
|
Abe K. Biological and biochemical studies on cell surface functions in microorganisms used in brewing and fermentation industry. Biosci Biotechnol Biochem 2025; 89:649-667. [PMID: 39993924 DOI: 10.1093/bbb/zbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
When brewing microorganisms, which include bacteria and fungi, act on solid cereal substrates, the microbial cell surface interacts with the substrate. When microorganisms use sugars and amino acids released by hydrolysis of the substrate, this occurs on the cell surface. Throughout my career, I have focused on functional studies of cell surface molecules such as solute transporters, cell wall components, and bio-surfactants and applied the knowledge obtained to the development of fermentation technologies. In this review, I describe (i) catabolite control by sugar transporters and energy generation coupled with amino acid decarboxylation in lactic acid bacteria; (ii) recruitment of a polyesterase by the fungal bio-surfactant proteins to polyesters and subsequent promotion of polyester hydrolysis; and (iii) hyphal aggregation via cell wall α-1,3-glucan and galactosaminogalactan in aspergilli and the development of a novel liquid culture method with hyphal dispersed mutants lacking these two polysaccharides.
Collapse
Affiliation(s)
- Keietsu Abe
- Laboratory of Fermentation Microbiology, Department of Agrochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
3
|
Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin. Nat Commun 2022; 13:7138. [PMID: 36414665 PMCID: PMC9681837 DOI: 10.1038/s41467-022-34908-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The process of recycling poly(ethylene terephthalate) (PET) remains a major challenge due to the enzymatic degradation of high-crystallinity PET (hcPET). Recently, a bacterial PET-degrading enzyme, PETase, was found to have the ability to degrade the hcPET, but with low enzymatic activity. Here we present an engineered whole-cell biocatalyst to simulate both the adsorption and degradation steps in the enzymatic degradation process of PETase to achieve the efficient degradation of hcPET. Our data shows that the adhesive unit hydrophobin and degradation unit PETase are functionally displayed on the surface of yeast cells. The turnover rate of the whole-cell biocatalyst toward hcPET (crystallinity of 45%) dramatically increases approximately 328.8-fold compared with that of purified PETase at 30 °C. In addition, molecular dynamics simulations explain how the enhanced adhesion can promote the enzymatic degradation of PET. This study demonstrates engineering the whole-cell catalyst is an efficient strategy for biodegradation of PET.
Collapse
|
4
|
Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms 2022; 10:microorganisms10081498. [PMID: 35893556 PMCID: PMC9394342 DOI: 10.3390/microorganisms10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Collapse
|
5
|
Rim M, Kang DG, Jung D, Lim SI, Lee KM, Godman NP, McConney ME, De Sio L, Ahn SK, Jeong KU. Remote-controllable and encryptable smart glasses: a photoresponsive azobenzene molecular commander determines the molecular alignments of liquid crystal soldiers. NANOSCALE 2022; 14:8271-8280. [PMID: 35586949 DOI: 10.1039/d2nr01382g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the development of optically encryptable smart glass that can control the molecular alignment of liquid crystals (LCs), an azobenzene-based reactive molecule (ARM) capable of trans-cis photoisomerization is newly designed and synthesized. Photo-triggered LC-commandable smart glasses are successfully constructed by the surface functionalization technique using 3-aminopropyltriethoxysilane (APTMS) coupling agent and an ARM. The surface functionalization with the ARM is verified by spectroscopic analysis and various observations including changes in the wettability and surface morphology. Using the ARM-treated substrate, the LC command cell which can effectively switch the molecular orientation of nematic LC (E7) by the irradiation of UV and visible light is demonstrated. The results of optical investigation demonstrate the directional correlation between light and photoisomerization, revealing the tilt mechanism of azobenzene units. The capability to control the molecular orientation of LCs remotely and selectively allows the development of remote-controllable and encryptable smart glasses.
Collapse
Affiliation(s)
- Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Dong-Gue Kang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Dayoung Jung
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seok-In Lim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Kyung Min Lee
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Nicholas P Godman
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Michael E McConney
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Luciano De Sio
- Department of Medico-Surgical Science and Biotechnologies, Center for Biophotonics, Sapienza University of Rome, Latina 04100, Italy
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
6
|
A label-free lateral offset spliced coreless fiber MZI biosensor based on hydrophobin HGFI for TNF-α detection. OPTOELECTRONICS LETTERS 2022; 18:263-268. [PMID: 35693480 PMCID: PMC9170553 DOI: 10.1007/s11801-022-2061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/24/2022] [Indexed: 11/06/2022]
Abstract
A real-time label-free lateral offset spliced coreless fiber (CF) Mach-Zehnder interferometer (MZI) biosensor functionalized with hydrophobin Grifola frondosa I (HGFI) was proposed for the detection of cytokine tumour necrosis factor alpha (TNF-α). The nanolayer self-assembled on the optical fiber surfaces by HGFI rendered the immobilization of probe TNF-α antibody and recognition of antigen TNF-α. Trifluoroacetic acid was utilized to remove the HGFI layer from the glass surface, which was validated by field emission scanning electron microscopy (FESEM) and water contact angle (WCA). Results demonstrated that the processes of HGFI modification, antibody immobilization and specific antibody detection can be monitored in real time. The proposed biosensor exhibited good specificity, repeatability and low detection limit for TNF-α, extending its application in inflammation and disease monitoring.
Collapse
|
7
|
Petkov JT, Penfold J, Thomas RK. Surfactant self-assembly structures and multilayer formation at the solid-solution interface induces by electrolyte, polymers and proteins. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Fan H, Wang B, Zhang Y, Zhu Y, Song B, Xu H, Zhai Y, Qiao M, Sun F. A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nat Commun 2021; 12:7257. [PMID: 34907237 PMCID: PMC8671466 DOI: 10.1038/s41467-021-27596-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/27/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) has become a powerful tool to resolve high-resolution structures of biomacromolecules in solution. However, air-water interface induced preferred orientations, dissociation or denaturation of biomacromolecules during cryo-vitrification remains a limiting factor for many specimens. To solve this bottleneck, we developed a cryo-EM support film using 2D crystals of hydrophobin HFBI. The hydrophilic side of the HFBI film adsorbs protein particles via electrostatic interactions and sequesters them from the air-water interface, allowing the formation of sufficiently thin ice for high-quality data collection. The particle orientation distribution can be regulated by adjusting the buffer pH. Using this support, we determined the cryo-EM structures of catalase (2.29 Å) and influenza haemagglutinin trimer (2.56 Å), which exhibited strong preferred orientations using a conventional cryo-vitrification protocol. We further show that the HFBI film is suitable to obtain high-resolution structures of small proteins, including aldolase (150 kDa, 3.28 Å) and haemoglobin (64 kDa, 3.6 Å). Our work suggests that HFBI films may have broad future applications in increasing the success rate and efficiency of cryo-EM.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yan Zhang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China.
- School of Life Science, Shanxi University, Shanxi, China.
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, 101400, Beijing, China.
- Bioland Laboratory, 510005, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Wang B, Han Z, Song B, Yu L, Ma Z, Xu H, Qiao M. Effective drug delivery system based on hydrophobin and halloysite clay nanotubes for sustained release of doxorubicin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Mokhtari-Abpangoui M, Lohrasbi-Nejad A, Zolala J, Torkzadeh-Mahani M, Ghanbari S. Improvement Thermal Stability of D-Lactate Dehydrogenase by Hydrophobin-1 and in Silico Prediction of Protein-Protein Interactions. Mol Biotechnol 2021; 63:919-932. [PMID: 34109551 DOI: 10.1007/s12033-021-00342-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Hydrophobins are small surface-active proteins. They can connect to hydrophobic or hydrophilic regions and oligomerize in solution to form massive construction. In nature, these proteins are produced by filamentous fungi at different stages of growth. So far, researchers have used them in various fields of biotechnology. In this study, recombinant hydrophobin-1 (rHFB1, 7.5 kDa) was used to stabilize recombinant D-lactate dehydrogenase (rD-LDH, 35 kDa). rD-LDH is a sensitive enzyme deactivated and oxidized by external agents such as O2 and lights. So, its stabilization with rHFB1 can be the best index to demonstrate the positive effect of rHFB1 on preserving and improving enzyme's activity. The unique ability of rHFB1 for interacting with hydrophobic regions of rD-LDH was predicted by protein-protein docking study with ClusPro and PIC servers and confirmed by fluorescence experiments, and Colorless Native-PAGE. Measurement of thermodynamic parameters allows for authenticating the role of rHFB1 as a thermal stabilizer in the protein-protein complex (rD-LDH@rHFB1). Interaction between rHFB1 and rD-LDH improved half-life of enzyme 2.25-fold at 40 °C. Investigation of the kinetic parameters proved that the presence of rHFB1 along with the rD-LDH enhancement strongly the affinity of the enzyme for pyruvate. Furthermore, an increase of Kcat/Km for complex displayed the effect of rHFB1 for improving the enzyme's catalytic efficiency.
Collapse
Affiliation(s)
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Jafar Zolala
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Saba Ghanbari
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
11
|
Effective adsorption of nisin on the surface of polystyrene using hydrophobin HGFI. Int J Biol Macromol 2021; 173:399-408. [PMID: 33454334 DOI: 10.1016/j.ijbiomac.2021.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
Herein, a new method was demonstrated for effective immobilization of the antibacterial peptide nisin on Grifola frondosa hydrophobin (HGFI), without the need of any additional complex reaction. Hydrophobin can self-assemble as a monolayer to form continuous negative-charged surfaces with enhanced wettability and biocompatibility. Adding nisin solution to such hydrophobin surface created antibacterial surfaces. The quantification analysis revealed that more nisin could be adsorbed on the HGFI-coated than to control polystyrene surfaces at different pH values. This suggested that electronic attraction and wettability may play important roles in this process. The transmission electron microscopy, atomic force microscopy and fourier transform infrared (FTIR) analysis indicated the adsorption mode of nisin on the HGFI film, i.e., hydrophobins served as an adhesive layer for binding charged peptides to interfaces. The antibacterial activity of the treated surface was investigated via counting, a nucleic acid release test, scanning electron microscopy, and biofilm detection. These results indicated the excellent antibacterial activity of nisin adsorbed on the HGFI-coated surfaces. The activity retention of adsorbed nisin was demonstrated by immersing the modified substrates in a flowed liquid condition.
Collapse
|
12
|
Sorrentino I, Gargano M, Ricciardelli A, Parrilli E, Buonocore C, de Pascale D, Giardina P, Piscitelli A. Development of anti-bacterial surfaces using a hydrophobin chimeric protein. Int J Biol Macromol 2020; 164:2293-2300. [PMID: 32768482 DOI: 10.1016/j.ijbiomac.2020.07.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
The search for new approaches for developing antimicrobial surfaces is a challenge of great urgency to prevent and control microbial growth on surfaces. The strategy herein proposed relies on the design of a new, simple and general tool for creating antimicrobial surfaces, based on a hydrophobin chimeric protein which fuses the adhesive self-assembling class I hydrophobin Vmh2 from Pleurotus ostreatus to the human antimicrobial peptide LL-37. The recombinant LL37-Vmh2 protein displayed both the adhesive and the antimicrobic properties of its members, and when deposited on polystyrene surface, a positive effect due to the fusion was observed in terms of both efficacy and versatility of the coating. Indeed, the chimeric protein significantly enlarges the range of pathogens affected by Vmh2 layer rendering it able to inhibit three Gram-positive and two Gram-negative pathogens, selected among the renowned biofilm producer bacteria. Confocal Laser Scanning Microscopy analysis performed on Staphylococcus epidermidis biofilms formed on coated surfaces proved that, besides inhibiting biofilm formation, the LL37-Vmh2 coating also displayed biocidal activity, since dead cells were present in the biofilm layer. The reported results open new perspectives in various fields of application of LL37, and of antimicrobial peptides in general. LL37-Vmh2 increases the inventory of chimeric hydrophobins, further proving their effectiveness and versatility in surface functionalization.
Collapse
Affiliation(s)
- Ilaria Sorrentino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Marika Gargano
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | | - Ermengilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | | - Donatella de Pascale
- Institute of Protein Biochemistry, CNR, Napoli, Italy; Marine Biotechnology Department, Stazione Zoologica "Anthon Dorn", Napoli, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | |
Collapse
|
13
|
Zhang H, Yang L, Zhu X, Wang Y, Yang H, Wang Z. A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Adv Healthc Mater 2020; 9:e2000364. [PMID: 32406199 DOI: 10.1002/adhm.202000364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Rapid and sensitive detection of thrombin is imperative for the early diagnosis, prevention, and treatment of thrombin-related diseases. Here, an ultrasensitive and rapid thrombin biosensor is developed based on rationally designed trifunctional protein HTs, comprising three functional units, including a far-red fluorescent protein smURFP, hydrophobin HGFI, and a thrombin cleavage site (TCS). smURFP is used as a detection signal to eliminate any interference from the autofluorescence of sample matrix to increase detection sensitivity. HGFI serve as an adhesive unit to allow rapid immobilization of HTs on a multiwall plate. The TCS linking HGFI and smURFP function as a sensing element to recognize and detect thrombin. HTs immobilization is symmetrically optimized and characterized. Thrombin assay reveals the specific recognition of active thrombin in samples and the hydrolysis of the immobilized HTs, resulting in a decrease in the fluorescence intensity of the sample in a thrombin concentration-dependent manner. The limit of detection (LOD) is as low as 0.2 am in the serum. To the authors' knowledge, this is the lowest LOD ever reported for any thrombin biosensor. This study sheds light on the engineering of multifunctional proteins for biosensing.
Collapse
Affiliation(s)
- Huayue Zhang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Lu Yang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Xiaqing Zhu
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Yanyan Wang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Haitao Yang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
- Center for Anti‐Infective Research & DevelopmentTianjin International Joint Academy of Biotechnology and Medicine Tianjin 300457 China
| | - Zefang Wang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
- Center for Anti‐Infective Research & DevelopmentTianjin International Joint Academy of Biotechnology and Medicine Tianjin 300457 China
| |
Collapse
|
14
|
Yang J, Wang B, Ge L, Yang X, Wang X, Dai Y, Niu B, Xu H, Qiao M. The enhancement of surface activity and nanoparticle stability through the alteration of charged amino acids of HGFI. Colloids Surf B Biointerfaces 2019; 175:703-712. [DOI: 10.1016/j.colsurfb.2018.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
|
15
|
Development of a biosensing platform based on a laccase-hydrophobin chimera. Appl Microbiol Biotechnol 2019; 103:3061-3071. [PMID: 30783720 DOI: 10.1007/s00253-019-09678-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023]
Abstract
A simple and stable immobilization of a laccase from Pleurotus ostreatus was obtained through genetic fusion with a self-assembling and adhesive class I hydrophobin. The chimera protein was expressed in Pichia pastoris and secreted into the culture medium. The crude culture supernatant was directly used for coatings of polystyrene multi-well plates without additional treatments, a procedure that resulted in a less time-consuming and chemicals reduction. Furthermore, the gene fusion yielded a positive effect with respect to the wild-type recombinant enzyme in terms of both immobilization and stability. The multi-well plate with the immobilized chimera was used to develop an optical biosensor to monitor two phenolic compounds: L-DOPA ((S)-2-amino-3-(3,4-dihydroxyphenyl) propanoic acid) and caffeic acid (3-(3,4-dihydroxyphenyl)-2-propenoic acid); the estimation of which is a matter of interest in the pharmaceutics and food field. The method was based on the use of the analytes as competing inhibitors of the laccase-mediated ABTS oxidation. The main advantages of the developed biosensor are the ease of preparation, the use of small sample volumes, and the simultaneous analysis of multiple samples on a single platform.
Collapse
|
16
|
Liu Y, Nevanen TK, Paananen A, Kempe K, Wilson P, Johansson LS, Joensuu JJ, Linder MB, Haddleton DM, Milani R. Self-Assembling Protein-Polymer Bioconjugates for Surfaces with Antifouling Features and Low Nonspecific Binding. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3599-3608. [PMID: 30566323 DOI: 10.1021/acsami.8b19968] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new method is demonstrated for preparing antifouling and low nonspecific adsorption surfaces on poorly reactive hydrophobic substrates, without the need for energy-intensive or environmentally aggressive pretreatments. The surface-active protein hydrophobin was covalently modified with a controlled radical polymerization initiator and allowed to self-assemble as a monolayer on hydrophobic surfaces, followed by the preparation of antifouling surfaces by Cu(0)-mediated living radical polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA) performed in situ. By taking advantage of hydrophobins to achieve at the same time the immobilization of protein A, this approach allowed to prepare surfaces for IgG1 binding featuring greatly reduced nonspecific adsorption. The success of the surface modification strategy was investigated by contact angle, XPS, and AFM characterization, while the antifouling performance and the reduction of nonspecific binding were confirmed by QCM-D measurements.
Collapse
Affiliation(s)
- Yingying Liu
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| | - Tarja K Nevanen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| | - Arja Paananen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| | - Kristian Kempe
- Department of Chemistry , University of Warwick , CV4 7AL Coventry , United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , VIC 3052 , Parkville , Australia
| | - Paul Wilson
- Department of Chemistry , University of Warwick , CV4 7AL Coventry , United Kingdom
| | | | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| | | | - David M Haddleton
- Department of Chemistry , University of Warwick , CV4 7AL Coventry , United Kingdom
| | - Roberto Milani
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| |
Collapse
|
17
|
Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:161-185. [DOI: 10.1007/978-981-13-9791-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Wang SY, Fang LF, Cheng L, Jeon S, Kato N, Matsuyama H. Improved antifouling properties of membranes by simple introduction of zwitterionic copolymers via electrostatic adsorption. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Li B, Wang X, Li Y, Paananen A, Szilvay GR, Qin M, Wang W, Cao Y. Single-Molecule Force Spectroscopy Reveals Self-Assembly Enhanced Surface Binding of Hydrophobins. Chemistry 2018; 24:9224-9228. [PMID: 29687928 DOI: 10.1002/chem.201801730] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 01/26/2023]
Abstract
Hydrophobins have raised lots of interest as powerful surface adhesives. However, it remains largely unexplored how their strong and versatile surface adhesion is linked to their unique amphiphilic structural features. Here, we develop an AFM-based single-molecule force spectroscopy assay to quantitatively measure the binding strength of hydrophobin to various types of surfaces both in isolation and in preformed protein films. We find that individual class II hydrophobins (HFBI) bind strongly to hydrophobic surfaces but weakly to hydrophilic ones. After self-assembly into protein films, they show much stronger binding strength to both surfaces due to the cooperativity of different interactions at nanoscale. Such self-assembly enhanced surface binding may serve as a general design principle for synthetic bioactive adhesives.
Collapse
Affiliation(s)
- Bing Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Ying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Arja Paananen
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, 02044 VTT, Espoo, Finland
| | - Géza R Szilvay
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, 02044 VTT, Espoo, Finland
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
20
|
Jiang L, Gao J, Song D, Qiao M, Tang D, Chen S, Shi J, Kong D, Wang S. An electrospun poly(ε-caprolactone) scaffold modified with matrix metalloproteinase for cellularization and vascularization. J Mater Chem B 2018; 6:2795-2802. [PMID: 32254232 DOI: 10.1039/c7tb02879b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid in vivo cellularization of implanted grafts is crucial to tissue regeneration in tissue engineering. The compositions and structures of the extracellular matrix (ECM) are important in regulating cell attachment, proliferation and migration. ECM remodeling, especially degradation, is closely related to cell migration under physiological and pathological conditions. Matrix metalloproteinases-1 (MMP-1, Collagenase I) could degrade collagen I in the ECM. So we put forward the hypothesis that ECM degradation regulated by MMP-1 might facilitate rapid cellularization in tissue engineering. In the cell invasion test, collagenase of certain concentration (0.01 mg mL-1) could significantly promote the migration of smooth muscle cells (SMCs). Then electrospun poly(ε-caprolactone) (PCL) grafts were modified with collagenase through immobilization by hydrophobin (HFBI). Surface characterization of the material confirmed the successful immobilization of collagenase. The ingrowth of SMCs into the collagenase-modified membrane was more than that into the untreated membrane. Results of subcutaneous implantation in rats indicated that the modified graft was beneficial for vascularization by promoting capillary formation. The results showed that the collagenase modified grafts could enhance SMC migration and this strategy may be a promising and attractive method for cellularization and vascularization in tissue engineering.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Linke C, Drusch S. Pickering emulsions in foods - opportunities and limitations. Crit Rev Food Sci Nutr 2017; 58:1971-1985. [DOI: 10.1080/10408398.2017.1290578] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christina Linke
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Germany
| |
Collapse
|
22
|
Pacelli S, Basu S, Whitlow J, Chakravarti A, Acosta F, Varshney A, Modaresi S, Berkland C, Paul A. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev 2017; 120:50-70. [PMID: 28734899 PMCID: PMC5705585 DOI: 10.1016/j.addr.2017.07.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023]
Abstract
A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the body's repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell-based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration. Another effective way to regulate stem cell activity is to leverage the inherent chemotactic properties of extracellular matrix (ECM)-based materials to build versatile cell-instructive platforms. This review introduces the concept of endogenous stem cell recruitment, and provides a comprehensive overview of the strategies available to achieve effective cardiovascular and bone tissue regeneration.
Collapse
Affiliation(s)
- Settimio Pacelli
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Sayantani Basu
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Jonathan Whitlow
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Aparna Chakravarti
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Francisca Acosta
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Cory Berkland
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.
| | - Arghya Paul
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
23
|
Artini M, Cicatiello P, Ricciardelli A, Papa R, Selan L, Dardano P, Tilotta M, Vrenna G, Tutino ML, Giardina P, Parrilli E. Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces. BIOFOULING 2017; 33:601-611. [PMID: 28686037 DOI: 10.1080/08927014.2017.1338690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Staphylococcus epidermidis is a significant nosocomial pathogen in predisposed hosts because of its capability of forming a biofilm on indwelling medical devices. The initial stage of biofilm formation has a key role in S. epidermidis abiotic surface colonization. Recently, many strategies have been developed to create new anti-biofilm surfaces able to control bacterial adhesion mechanisms. In this work, the self-assembled amphiphilic layers formed by two fungal hydrophobins (Vmh2 and Pac3) have proven to be able to reduce the biofilm formed by different strains of S. epidermidis on polystyrene surfaces. The reduction in the biofilm thickness on the coated surfaces and the preservation of cell vitality have been demonstrated through confocal laser scanning microscope analysis. Moreover, the anti-biofilm efficiency of the self-assembled layers on different medically relevant materials has also been demonstrated using a CDC biofilm reactor.
Collapse
Affiliation(s)
- Marco Artini
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Paola Cicatiello
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| | - Annarita Ricciardelli
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| | - Rosanna Papa
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Laura Selan
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Principia Dardano
- c Institute for Microelectronics and Microsystems, Unit of Naples , National Research Council , Naples , Italy
| | - Marco Tilotta
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Gianluca Vrenna
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Maria Luisa Tutino
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| | - Paola Giardina
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| | - Ermenegilda Parrilli
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| |
Collapse
|
24
|
Rapid and ultrasensitive detection of active thrombin based on the Vmh2 hydrophobin fused to a Green Fluorescent Protein. Biosens Bioelectron 2017; 87:816-822. [DOI: 10.1016/j.bios.2016.09.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022]
|
25
|
Sammer D, Krause K, Gube M, Wagner K, Kothe E. Hydrophobins in the Life Cycle of the Ectomycorrhizal Basidiomycete Tricholoma vaccinum. PLoS One 2016; 11:e0167773. [PMID: 27936063 PMCID: PMC5147985 DOI: 10.1371/journal.pone.0167773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Hydrophobins-secreted small cysteine-rich, amphipathic proteins-foster interactions of fungal hyphae with hydrophobic surfaces, and are involved in the formation of aerial hyphae. Phylogenetic analyses of Tricholoma vaccinum hydrophobins showed a grouping with hydrophobins of other ectomycorrhizal fungi, which might be a result of co-evolution. Further analyses indicate angiosperms as likely host trees for the last common ancestor of the genus Tricholoma. The nine hydrophobin genes in the T. vaccinum genome were investigated to infer their individual roles in different stages of the life cycle, host interaction, asexual and sexual development, and with respect to different stresses. In aerial mycelium, hyd8 was up-regulated. In silico analysis predicted three packing arrangements, i.e., ring-like, plus-like and sheet-like structure for Hyd8; the first two may assemble to rodlets of hydrophobin covering aerial hyphae, whereas the third is expected to be involved in forming a two-dimensional network of hydrophobins. Metal stress induced hydrophobin gene hyd5. In early steps of mycorrhization, induction of hyd4 and hyd5 by plant root exudates and root volatiles could be shown, followed by hyd5 up-regulation during formation of mantle, Hartig' net, and rhizomorphs with concomitant repression of hyd8 and hyd9. During fruiting body formation, mainly hyd3, but also hyd8 were induced. Host preference between the compatible host Picea abies and the low compatibility host Pinus sylvestris could be linked to a stronger induction of hyd4 and hyd5 by the preferred host and a stronger repression of hyd8, whereas the repression of hyd9 was comparable between the two hosts.
Collapse
Affiliation(s)
- Dominik Sammer
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias Gube
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Katharina Wagner
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
26
|
Analysis of the ionic interaction between the hydrophobin RodA and two cutinases of Aspergillus nidulans obtained via an Aspergillus oryzae expression system. Appl Microbiol Biotechnol 2016; 101:2343-2356. [PMID: 27917435 DOI: 10.1007/s00253-016-7979-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Hydrophobins are amphipathic secretory proteins with eight conserved cysteine residues and are ubiquitous among filamentous fungi. In the fungus Aspergillus oryzae, the hydrophobin RolA and the polyesterase CutL1 are co-expressed when the sole available carbon source is the biodegradable polyester polybutylene succinate-co-adipate (PBSA). RolA promotes the degradation of PBSA by attaching to the particle surface, changing its structure and interacting with CutL1 to concentrate CutL1 on the PBSA surface. We previously reported that positively charged residues in RolA and negatively charged residues in CutL1 are cooperatively involved in the ionic interaction between RolA and CutL1. We also reported that hydrophobin RodA of the model fungus Aspergillus nidulans, which was obtained via an A. oryzae expression system, interacted via ionic interactions with CutL1. In the present study, phylogenetic and alignment analyses revealed that the N-terminal regions of several RolA orthologs contained positively charged residues and that the corresponding negatively charged residues on the surface of CutL1 that were essential for the RolA-CutL1 interaction were highly conserved in several CutL1 orthologs. A PBSA microparticle degradation assay, a pull-down assay using a dispersion of Teflon particles, and a kinetic analysis using a quartz crystal microbalance revealed that recombinant A. nidulans RodA interacted via ionic interactions with two recombinant A. nidulans cutinases. Together, these results imply that ionic interactions between hydrophobins and cutinases may be common among aspergilli and other filamentous fungi.
Collapse
|
27
|
Piscitelli A, Pennacchio A, Longobardi S, Velotta R, Giardina P. Vmh2 hydrophobin as a tool for the development of “self-immobilizing” enzymes for biosensing. Biotechnol Bioeng 2016; 114:46-52. [DOI: 10.1002/bit.26049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alessandra Piscitelli
- Department of Chemical Sciences; Università degli Studi di Napoli Federico II; Complesso Universitario Monte S. Angelo; via Cinthia Naples 4 80126 Italy
| | - Anna Pennacchio
- Department of Chemical Sciences; Università degli Studi di Napoli Federico II; Complesso Universitario Monte S. Angelo; via Cinthia Naples 4 80126 Italy
| | - Sara Longobardi
- Department of Chemical Sciences; Università degli Studi di Napoli Federico II; Complesso Universitario Monte S. Angelo; via Cinthia Naples 4 80126 Italy
| | - Raffaele Velotta
- Department of Physics; Università degli Studi di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Paola Giardina
- Department of Chemical Sciences; Università degli Studi di Napoli Federico II; Complesso Universitario Monte S. Angelo; via Cinthia Naples 4 80126 Italy
| |
Collapse
|
28
|
Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones. SENSORS 2016; 16:s16050602. [PMID: 27128920 PMCID: PMC4883293 DOI: 10.3390/s16050602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 02/05/2023]
Abstract
Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon functionalization of solid supports with a combination of hydrophobins either lacking or exposing the α-factor, pheromone-specific antibodies were bound to the surface. Increasing concentrations of the pheromone competitively detached the antibodies, thus allowing for quantification of the pheromone. By adjusting the percentage of pheromone-exposing hydrophobins, the sensitivity of the assay could be precisely predefined. The assay proved to be highly robust against changes in sample matrix composition. Due to the high stability of hydrophobin layers, the functionalized surfaces could be repeatedly used without affecting the sensitivity. Furthermore, by using an inverse setup, the sensitivity was increased by three orders of magnitude, yielding a novel kind of biosensor for the yeast pheromone with the lowest limit of detection reported so far. This assay was applied to study the pheromone secretion of diverse yeast strains including a whole-cell biosensor strain of Schizosaccharomyces pombe modulating α-factor secretion in response to an environmental signal.
Collapse
|
29
|
Yamasaki R, Haruyama T. Formation Mechanism of Flattened Top HFBI Domical Droplets. J Phys Chem B 2016; 120:3699-704. [DOI: 10.1021/acs.jpcb.6b01306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryota Yamasaki
- Advanced
Catalytic Transformation Program for Carbon Utilization (ACT-C), Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
| | - Tetsuya Haruyama
- Advanced
Catalytic Transformation Program for Carbon Utilization (ACT-C), Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
| |
Collapse
|
30
|
Abstract
Filamentous fungi play an important role not only in the bio-manufacturing of value-added products, but also in bioenergy and environmental research. The bioprocess manipulation of filamentous fungi is more difficult than that of other microbial species because of their different pellet morphologies and the presence of tangled mycelia under different cultivation conditions. Fungal pellets, which have the advantages of harvest ease, low fermentation broth viscosity and high yield of some proteins, have been used for a long time. Many attempts have been made to establish the relationship between pellet and product yield using quantitative approaches. Fungal pellet formation is attributed to the combination of electrostatic interactions, hydrophobicity and specific interactions from spore wall components. Electrostatic interactions result from van der Waals forces and negative charge repulsion from carboxyl groups in the spore wall structure. Electrostatic interactions are also affected by counter-ions (cations) and the physiologic conditions of spores that modify the carboxyl groups. Fungal aggregates are promoted by the hydrophobicity generated by hydrophobins, which form a hydrophobic coat that covers the spore. The specific interactions of spore wall components contribute to spore aggregation through salt bridging. A model of spore aggregation was proposed based on these forces. Additionally, some challenges were addressed, including the limitations of research techniques, the quantitative determination of forces and the complex information of biological systems, to clarify the mechanism of fungal pellet formation.
Collapse
Affiliation(s)
- Jianguo Zhang
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology and
| | - Jining Zhang
- b Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| |
Collapse
|
31
|
Pigliacelli C, D’Elicio A, Milani R, Terraneo G, Resnati G, Baldelli Bombelli F, Metrangolo P. Hydrophobin-stabilized dispersions of PVDF nanoparticles in water. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Wang Z, Gong X, Ngai T. Measurements of long-range interactions between protein-functionalized surfaces by total internal reflection microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3101-3107. [PMID: 25719226 DOI: 10.1021/acs.langmuir.5b00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions.
Collapse
Affiliation(s)
- Zhaohui Wang
- †Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Xiangjun Gong
- ‡School of Materials Science and Engineering, South China University of Technology, Guangzhou, China 510640
| | - To Ngai
- †Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
33
|
Lienemann M, Grunér MS, Paananen A, Siika-aho M, Linder MB. Charge-Based Engineering of Hydrophobin HFBI: Effect on Interfacial Assembly and Interactions. Biomacromolecules 2015; 16:1283-92. [DOI: 10.1021/acs.biomac.5b00073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Lienemann
- VTT Technical Research Centre of Finland, Tietotie 2, Fi-02150 Espoo, Finland
| | - Mathias S. Grunér
- VTT Technical Research Centre of Finland, Tietotie 2, Fi-02150 Espoo, Finland
- Department
of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, P.O.
Box 16100, Fi-00076 Aalto, Finland
| | - Arja Paananen
- VTT Technical Research Centre of Finland, Tietotie 2, Fi-02150 Espoo, Finland
| | - Matti Siika-aho
- VTT Technical Research Centre of Finland, Tietotie 2, Fi-02150 Espoo, Finland
| | - Markus B. Linder
- Department
of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, P.O.
Box 16100, Fi-00076 Aalto, Finland
| |
Collapse
|
34
|
Takahashi T, Tanaka T, Tsushima Y, Muragaki K, Uehara K, Takeuchi S, Maeda H, Yamagata Y, Nakayama M, Yoshimi A, Abe K. Ionic interaction of positive amino acid residues of fungal hydrophobin RolA with acidic amino acid residues of cutinase CutL1. Mol Microbiol 2015; 96:14-27. [DOI: 10.1111/mmi.12915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Toru Takahashi
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Takumi Tanaka
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Yusei Tsushima
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Kimihide Muragaki
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Kenji Uehara
- Laboratory of Enzymology; Department of Molecular and Cell Biology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Shunsuke Takeuchi
- Laboratory of Enzymology; Department of Molecular and Cell Biology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Hiroshi Maeda
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Department of Applied Molecular Biology and Biochemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo 183-8509 Japan
| | - Youhei Yamagata
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Department of Applied Molecular Biology and Biochemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo 183-8509 Japan
| | - Mayumi Nakayama
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Akira Yoshimi
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Keietsu Abe
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| |
Collapse
|
35
|
Lee S, Røn T, Pakkanen KI, Linder M. Hydrophobins as aqueous lubricant additive for a soft sliding contact. Colloids Surf B Biointerfaces 2014; 125:264-9. [PMID: 25466456 DOI: 10.1016/j.colsurfb.2014.10.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/07/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
Abstract
Two type II fungal hydrophobins, HFBI and FpHYD5, have been studied as aqueous lubricant additive at a nonpolar, compliant sliding contact (self-mated poly(dimethylsiloxane) (PDMS) contact) at two different concentrations, 0.1 mg/mL and 1.0 mg/mL. The two hydrophobins are featured as non-glycosylated (HFBI, m.w. ca. 7 kDa) vs glycosylated (FpHYD5, m.w. ca. 10 kDa) proteins. Far UV CD spectra of the two hydrophobins were very similar, suggesting overall structural similarity, but showed a noticeable difference according to the concentration. This is proposed to be related to the formation of multimers at 1.0 mg/mL. Despite 10-fold difference in the bulk concentration, the adsorbed masses of the hydrophobins onto PDMS surface obtained from the two solutions (0.1 and 1.0 mg/mL) were nearly identical, suggesting that a monolayer of the hydrophobins are formed from 0.1 mg/mL solution. PDMS-PDMS sliding interface was effectively lubricated by the hydrophobin solutions, and showed a reduction in the coefficient of friction by as much as ca. two orders of magnitude. Higher concentration solution (1.0 mg/mL) provided a superior lubrication, particularly in low-speed regime, where boundary lubrication characteristic is dominant via 'self-healing' mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO-PPO-PEO, with a similar molecular weight. This is ascribed to higher amount of adsorption of the hydrophobins to hydrophobic surfaces from aqueous solution.
Collapse
Affiliation(s)
- Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Troels Røn
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kirsi I Pakkanen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Markus Linder
- Technical Research Centre of Finland, VTT Biotechnology, FIN-02044 VTT, Finland; Department of Biotechnology and Chemical Technology, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
36
|
Peng C, Liu J, Zhao D, Zhou J. Adsorption of hydrophobin on different self-assembled monolayers: the role of the hydrophobic dipole and the electric dipole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11401-11. [PMID: 25185838 DOI: 10.1021/la502595t] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, the adsorptions of hydrophobin (HFBI) on four different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, COOH-SAM, and NH2-SAM) were investigated by parallel tempering Monte Carlo and molecular dynamics simulations. Simulation results indicate that the orientation of HFBI adsorbed on neutral surfaces is dominated by a hydrophobic dipole. HFBI adsorbs on the hydrophobic CH3-SAM through its hydrophobic patch and adopts a nearly vertical hydrophobic dipole relative to the surface, while it is nearly horizontal when adsorbed on the hydrophilic OH-SAM. For charged SAM surfaces, HFBI adopts a nearly vertical electric dipole relative to the surface. HFBI has the narrowest orientation distribution on the CH3-SAM, and thus can form an ordered monolayer and reverse the wettability of the surface. For HFBI adsorption on charged SAMs, the adsorption strength weakens as the surface charge density increases. Compared with those on other SAMs, a larger area of the hydrophobic patch is exposed to the solution when HFBI adsorbs on the NH2-SAM. This leads to an increase of the hydrophobicity of the surface, which is consistent with the experimental results. The binding of HFBI to the CH3-SAM is mainly through hydrophobic interactions, while it is mediated through a hydration water layer near the surface for the OH-SAM. For the charged SAM surfaces, the adsorption is mainly induced by electrostatic interactions between the charged surfaces and the oppositely charged residues. The effect of a hydrophobic dipole on protein adsorption onto hydrophobic surfaces is similar to that of an electric dipole for charged surfaces. Therefore, the hydrophobic dipole may be applied to predict the probable orientations of protein adsorbed on hydrophobic surfaces.
Collapse
Affiliation(s)
- Chunwang Peng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou, Guangdong 510640, P. R. China
| | | | | | | |
Collapse
|
37
|
Longobardi S, Gravagnuolo AM, Rea I, De Stefano L, Marino G, Giardina P. Hydrophobin-coated plates as matrix-assisted laser desorption/ionization sample support for peptide/protein analysis. Anal Biochem 2014; 449:9-16. [DOI: 10.1016/j.ab.2013.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 01/03/2023]
|
38
|
Hoffmann H, Reger M. Emulsions with unique properties from proteins as emulsifiers. Adv Colloid Interface Sci 2014; 205:94-104. [PMID: 24161225 DOI: 10.1016/j.cis.2013.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Many proteins are surface active molecules and form stable emulsions. In these emulsions, the protein covered oil droplets behave as sticky droplets even when they are ionically charged. As a result of the stickiness of the droplets the emulsions have gel-like properties. The stickiness is due to the multipolar nature of the proteins in contrast to the bipolar nature of surfactants or other amphiphilic compounds that form emulsions with repulsive droplets. Stable emulsions are also formed from particles like clays to which proteins are adsorbed. These hybrid compounds form even more stable emulsions with stronger elastic properties than clays and proteins on their own. These so called pickering emulsions have paste-like properties and do not flow. The scaffolding network of the crosslinked protein bilayers on the droplets is so strong that both the water and the oil can be removed from the emulsions by freeze drying without collapse of the scaffold. The resulting sponge can be used again for the uptake of both water and oil. Emulsions which are prepared from different proteins differ mainly in their elastic properties.
Collapse
|
39
|
Szcepanowska H, Mathia TG, Belin P. Morphology of fungal stains on paper characterized with multi-scale and multi-sensory surface metrology. SCANNING 2014; 36:76-85. [PMID: 23630072 DOI: 10.1002/sca.21095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Pigmentation of paper induced by fungi is one of the most complex phenomenons because it involves living organisms growing on a heterogeneous paper substrate. A novel approach to the study of interfaces of fungi and paper in black stains produced by pigmented Dematiaceous fungi with meristematic growth was undertaken applying surface metrology techniques: confocal laser scanning microscope (CLSM) white-light, confocal chromatic aberration profilometer (LCA) and scanning electron microscope in variable pressure (SEM-VP); fungal morphology was examined with transmitted light microscopy (TLM). The role of paper topography and surface morphology in fungi-induced biodeterioration was investigated elucidating some of the dynamic interactions of fungi with paper, spatial distribution of biological deposits, inclusions in paper matrix, and patterns of fungal growth on paper thus contributing to a better understanding of biodeterioration of paper-based cultural heritage. So far, to the authors' knowledge, there are no published reports on the investigation of interfaces of bio-stains and paper utilizing surface metrology techniques.
Collapse
|
40
|
Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA, Romani L, Latgé JP. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003716. [PMID: 24244155 PMCID: PMC3828178 DOI: 10.1371/journal.ppat.1003716] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/22/2013] [Indexed: 01/12/2023] Open
Abstract
α-(1,3)-Glucan is a major component of the cell wall of Aspergillus fumigatus, an opportunistic human fungal pathogen. There are three genes (AGS1, AGS2 and AGS3) controlling the biosynthesis of α-(1,3)-glucan in this fungal species. Deletion of all the three AGS genes resulted in a triple mutant that was devoid of α-(1,3)-glucan in its cell wall; however, its growth and germination was identical to that of the parental strain in vitro. In the experimental murine aspergillosis model, this mutant was less pathogenic than the parental strain. The AGS deletion resulted in an extensive structural modification of the conidial cell wall, especially conidial surface where the rodlet layer was covered by an amorphous glycoprotein matrix. This surface modification was responsible for viability reduction of conidia in vivo, which explains decrease in the virulence of triple agsΔ mutant. Aspergillus fumigatus is the predominant mold pathogen of humans, responsible for life-threatening systemic infections in patients with depressed immunity. Because of its external localization and specific composition, the fungal cell wall represents a target for recognition by and interaction with the host immune cells. In A. fumigatus, α-(1,3)-glucan is a key component of the extracellular matrix, which encloses the cell wall β-(1,3)-glucan-chitin fibrillar core. Interestingly, the deletion of the genes responsible for α-(1,3)-glucan synthesis resulted in a mutant that exhibited wild type phenotype in vitro; while the altered cell wall organization resulted in this fungus being avirulent in vivo. This study confirms that any modification in the cell wall components is associated with compensatory reactions developed by the fungus to counteract stress on the cell wall that may result in unexpected fungal response when challenged with the host immune system.
Collapse
Affiliation(s)
- Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, Paris, France
- * E-mail:
| | - Silvia Bozza
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), University of Jena, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), Jena, Germany
| | | | - Viviane Balloy
- Unité de Défence Innée et Inflammation, Institut Pasteur, Inserm U874, Paris, France
| | | | - Robert W. Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Michel Chignard
- Unité de Défence Innée et Inflammation, Institut Pasteur, Inserm U874, Paris, France
| | - Axel A. Brakhage
- Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), University of Jena, Jena, Germany
| | - Luigina Romani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
41
|
Sun C. Preparation of solid surfaces for native chemical ligation in the quartz crystal microbalance. SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chengjun Sun
- College of Materials and Textile Engineering; Jiaxing University; Jiaxing Zhejiang 314001 China
| |
Collapse
|
42
|
Takatsuji Y, Yamasaki R, Iwanaga A, Lienemann M, Linder MB, Haruyama T. Solid-support immobilization of a "swing" fusion protein for enhanced glucose oxidase catalytic activity. Colloids Surf B Biointerfaces 2013; 112:186-91. [PMID: 23974004 DOI: 10.1016/j.colsurfb.2013.07.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/10/2013] [Accepted: 07/26/2013] [Indexed: 02/04/2023]
Abstract
The strategic surface immobilization of a protein can add new functionality to a solid substrate; however, protein activity, e.g., enzymatic activity, can be drastically decreased on immobilization onto a solid surface. The concept of a designed and optimized "molecular interface" is herein introduced in order to address this problem. In this study, molecular interface was designed and constructed with the aim of attaining high enzymatic activity of a solid-surface-immobilized a using the hydrophobin HFBI protein in conjunction with a fusion protein of HFBI attached to glucose oxidase (GOx). The ability of HFBI to form a self-organized membrane on a solid surface in addition to its adhesion properties makes it an ideal candidate for immobilization. The developed fusion protein was also able to form an organized membrane, and its structure and immobilized state on a solid surface were investigated using QCM-D measurements. This method of immobilization showed retention of high enzymatic activity and the ability to control the density of the immobilized enzyme. In this study, we demonstrated the importance of the design and construction of molecular interface for numerous purposes. This method of protein immobilization could be utilized for preparation of high throughput products requiring structurally ordered molecular interfaces, in addition to many other applications.
Collapse
Affiliation(s)
- Yoshiyuki Takatsuji
- Department of Biological Functions and Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, 808-0196, Japan; JST ACT-C, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Green AJ, Littlejohn KA, Hooley P, Cox PW. Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.04.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
O'Mahony S, O'Dwyer C, Nijhuis CA, Greer JC, Quinn AJ, Thompson D. Nanoscale dynamics and protein adhesivity of alkylamine self-assembled monolayers on graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7271-7282. [PMID: 23301836 DOI: 10.1021/la304545n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Atomic-scale molecular dynamics computer simulations are used to probe the structure, dynamics, and energetics of alkylamine self-assembled monolayer (SAM) films on graphene and to model the formation of molecular bilayers and protein complexes on the films. Routes toward the development and exploitation of functionalized graphene structures are detailed here, and we show that the SAM architecture can be tailored for use in emerging applications (e.g., electrically stimulated nerve fiber growth via the targeted binding of specific cell surface peptide sequences on the functionalized graphene scaffold). The simulations quantify the changes in film physisorption on graphene and the alkyl chain packing efficiency as the film surface is made more polar by changing the terminal groups from methyl (-CH3) to amine (-NH2) to hydroxyl (-OH). The mode of molecule packing dictates the orientation and spacing between terminal groups on the surface of the SAM, which determines the way in which successive layers build up on the surface, whether via the formation of bilayers of the molecule or the immobilization of other (macro)molecules (e.g., proteins) on the SAM. The simulations show the formation of ordered, stable assemblies of monolayers and bilayers of decylamine-based molecules on graphene. These films can serve as protein adsorption platforms, with a hydrophobin protein showing strong and selective adsorption by binding via its hydrophobic patch to methyl-terminated films and binding to amine-terminated films using its more hydrophilic surface regions. Design rules obtained from modeling the atomic-scale structure of the films and interfaces may provide input into experiments for the rational design of assemblies in which the electronic, physicochemical, and mechanical properties of the substrate, film, and protein layer can be tuned to provide the desired functionality.
Collapse
Affiliation(s)
- S O'Mahony
- Theory Modelling and Design Centre, Tyndall National Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
45
|
Paslay LC, Falgout L, Savin DA, Heinhorst S, Cannon GC, Morgan SE. Kinetics and Control of Self-Assembly of ABH1 Hydrophobin from the Edible White Button Mushroom. Biomacromolecules 2013; 14:2283-93. [DOI: 10.1021/bm400407c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Leo Falgout
- Department of Materials
Science and Engineering, The University of Illinois, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
46
|
Stanimirova RD, Gurkov TD, Kralchevsky PA, Balashev KT, Stoyanov SD, Pelan EG. Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6053-6067. [PMID: 23611592 DOI: 10.1021/la4005104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Here, we combine experiments with Langmuir trough and atomic force microscopy (AFM) to investigate the reasons for the special properties of layers from the protein HFBII hydrophobin spread on the air-water interface. The hydrophobin interfacial layers possess the highest surface dilatational and shear elastic moduli among all investigated proteins. The AFM images show that the spread HFBII layers are rather inhomogeneous, (i.e., they contain voids, monolayer and multilayer domains). A continuous compression of the layer leads to filling the voids and transformation of a part of the monolayer into a trilayer. The trilayer appears in the form of large surface domains, which can be formed by folding and subduction of parts from the initial monolayer. The trilayer appears also in the form of numerous submicrometer spots, which can be obtained by forcing protein molecules out of the monolayer and their self-assembly into adjacent pimples. Such structures are formed because not only the hydrophobic parts, but also the hydrophilic parts of the HFBII molecules can adhere to each other in the water medium. If a hydrophobin layer is subjected to oscillations, its elasticity considerably increases, up to 500 mN/m, which can be explained with compaction. The relaxation of the layer's tension after expansion or compression follows the same relatively simple law, which refers to two-dimensional diffusion of protein aggregates within the layer. The characteristic diffusion time after compression is longer than after expansion, which can be explained with the impedence of diffusion in the more compact interfacial layer. The results shed light on the relation between the mesoscopic structure of hydrophobin interfacial layers and their unique mechanical properties that find applications for the production of foams and emulsions of extraordinary stability; for the immobilization of functional molecules at surfaces, and as coating agents for surface modification.
Collapse
Affiliation(s)
- Rumyana D Stanimirova
- Department of Chemical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | | | | | | | | | | |
Collapse
|
47
|
Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 2013; 50:69-77. [PMID: 23500041 DOI: 10.1016/j.ejps.2013.02.023] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/20/2012] [Accepted: 02/27/2013] [Indexed: 11/27/2022]
Abstract
Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery.
Collapse
Affiliation(s)
- Hanna Valo
- Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Poly(ɛ-caprolactone) modified with fusion protein containing self-assembled hydrophobin and functional peptide for selective capture of human blood outgrowth endothelial cells. Colloids Surf B Biointerfaces 2013; 101:361-9. [DOI: 10.1016/j.colsurfb.2012.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
|
49
|
Ma C, Wu B, Zhang G. Protein-protein resistance investigated by quartz crystal microbalance. Colloids Surf B Biointerfaces 2012; 104:5-10. [PMID: 23298581 DOI: 10.1016/j.colsurfb.2012.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 11/17/2022]
Abstract
By use of quartz crystal microbalance with dissipation (QCM-D), we have investigated the adsorption of proteins such as fibrinogen, bovine serum albumin or lysozyme on the surface of soy protein film in PBS buffer solution in real time. Our studies demonstrate that the proteins can be adsorbed on soy protein film at a pH between the isoelectric point (pI(sp)) of soy protein film and that (pI(fp)) of the foreign protein, where the adsorption decreases with the concentration of added salt. Beyond the pH range, soy protein generally resists the adsorption of the foreign protein due to electrostatic repulsion, which is slightly affected by the concentration of the added salt in the range we investigated. At a pH close to pI(sp) or pI(fp), the proteins can also be adsorbed on soy protein film due to hydrophobic interactions. The present study reveals that the protein resistance of soy protein film is determined by electrostatic interactions, hydrophobic interactions and hydrogen bonding between the foreign protein and soy protein.
Collapse
Affiliation(s)
- Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | |
Collapse
|
50
|
Littlejohn KA, Hooley P, Cox PW. Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|