1
|
Lee J, Lim CT. 3D cellular self-assembly on optical disc-imprinted nanopatterns. LAB ON A CHIP 2024; 24:4161-4171. [PMID: 39078315 DOI: 10.1039/d4lc00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
2
|
Chawathe M, Asheghali D, Minko S, Jonnalagadda S, Sidorenko A. Adaptive Hybrid Molecular Brushes Composed of Chitosan, Polylactide, and Poly(N-vinyl pyrrolidone) for Support and Guiding Human Dermal Fibroblasts. ACS APPLIED BIO MATERIALS 2020; 3:4118-4127. [DOI: 10.1021/acsabm.0c00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manasi Chawathe
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Darya Asheghali
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sriramakamal Jonnalagadda
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Sidorenko
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Alvarez-Paino M, Amer MH, Nasir A, Cuzzucoli Crucitti V, Thorpe J, Burroughs L, Needham D, Denning C, Alexander MR, Alexander C, Rose FRAJ. Polymer Microparticles with Defined Surface Chemistry and Topography Mediate the Formation of Stem Cell Aggregates and Cardiomyocyte Function. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34560-34574. [PMID: 31502820 DOI: 10.1021/acsami.9b04769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-functionalized microparticles are relevant to fields spanning engineering and biomedicine, with uses ranging from cell culture to advanced cell delivery. Varying topographies of biomaterial surfaces are also being investigated as mediators of cell-material interactions and subsequent cell fate. To investigate competing or synergistic effects of chemistry and topography in three-dimensional cell cultures, methods are required to introduce these onto microparticles without modification of their underlying morphology or bulk properties. In this study, a new approach for surface functionalization of poly(lactic acid) (PLA) microparticles is reported that allows decoration of the outer shell of the polyesters with additional polymers via aqueous atom transfer radical polymerization routes. PLA microparticles with smooth or dimpled surfaces were functionalized with poly(poly(ethylene glycol) methacrylate) and poly[N-(3-aminopropyl)methacrylamide] brushes, chosen for their potential abilities to mediate cell adhesion. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analysis indicated homogeneous coverage of the microparticles with polymer brushes while maintaining the original topographies. These materials were used to investigate the relative importance of surface chemistry and topography both on the formation of human immortalized mesenchymal stem cell (hiMSCs) particle-cell aggregates and on the enhanced contractility of cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs). The influence of surface chemistry was found to be more important on the size of particle-cell aggregates than topographies. In addition, surface chemistries that best promoted hiMSC attachment also improved hiPSC-CM attachment and contractility. These studies demonstrated a new route to obtain topo-chemical combinations on polyester-based biomaterials and provided clear evidence for the predominant effect of surface functionality over micron-scale dimpled topography in cell-microparticle interactions. These findings, thus, provide new guiding principles for the design of biomaterial interfaces to direct cell function.
Collapse
|
4
|
Long EG, Buluk M, Gallagher MB, Schneider JM, Brown JL. Human mesenchymal stem cell morphology, migration, and differentiation on micro and nano-textured titanium. Bioact Mater 2019; 4:249-255. [PMID: 31667441 PMCID: PMC6812408 DOI: 10.1016/j.bioactmat.2019.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/25/2023] Open
Abstract
Orthopedic implants rely on facilitating a robust interaction between the implant material surface and the surrounding bone tissue. Ideally, the interface will encourage osseointegration with the host bone, resulting in strong fixation and implant stability. However, implant failure can occur due to the lack of integration with bone tissue or bacterial infection. The chosen material and surface topography of orthopedic implants are key factors that influence the early events following implantation and may ultimately define the success of a device. Early attachment, rapid migration and improved differentiation of stem cells to osteoblasts are necessary to populate the surface of biomedical implants, potentially preventing biofilm formation and implant-associated infection. This article explores these early stem cell specific events by seeding human mesenchymal stem cells (MSCs) on four clinically relevant materials: polyether ether ketone (PEEK), Ti6Al4V (smooth Ti), macro-micro rough Ti6Al4V (Endoskeleton®), and macro-micro-nano rough Ti6Al4V (nanoLOCK®). The results demonstrate the incorporation of a hierarchical macro-micro-nano roughness on titanium produces a stellate morphology typical of mature osteoblasts/osteocytes, rapid and random migration, and improved osteogenic differentiation in seeded MSCs. Literature suggests rapid coverage of a surface by stem cells coupled with stimulation of bone differentiation minimizes the opportunity for biofilm formation while increasing the rate of device integration with the surrounding bone tissue.
Collapse
Affiliation(s)
- Emily G Long
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| | - Merve Buluk
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| | - Michelle B Gallagher
- Titan Spine, Inc., Mequon Research Center, 6140 W. Executive Drive, Suite A, Mequon, WI, 53092, USA
| | - Jennifer M Schneider
- Titan Spine, Inc., Mequon Research Center, 6140 W. Executive Drive, Suite A, Mequon, WI, 53092, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Ghosal K, Sarkar K. Poly(ester amide) derived from municipal polyethylene terephthalate waste guided stem cells for osteogenesis. NEW J CHEM 2019. [DOI: 10.1039/c9nj02940k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel poly(ester amide) was synthesized by using recycled poly(ethylene terephthalate) waste and soybean oil and other renewable resources for bone tissue engineering applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Gene Therapy and Tissue Engineering Lab
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|
6
|
Anderson CR, Gambinossi F, DiLillo KM, Laschewsky A, Wischerhoff E, Ferri JK, Sefcik LS. Tuning reversible cell adhesion to methacrylate-based thermoresponsive polymers: Effects of composition on substrate hydrophobicity and cellular responses. J Biomed Mater Res A 2017; 105:2416-2428. [DOI: 10.1002/jbm.a.36100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
Affiliation(s)
| | - Filippo Gambinossi
- Department of Chemical and Biomolecular Engineering; Lafayette College; Easton Pennsylvania
| | - Katarina M. DiLillo
- Department of Chemical and Biomolecular Engineering; Lafayette College; Easton Pennsylvania
| | - André Laschewsky
- Fraunhofer Institute for Applied Polymer Research; Potsdam-Golm D-14476 Germany
| | - Erik Wischerhoff
- Fraunhofer Institute for Applied Polymer Research; Potsdam-Golm D-14476 Germany
| | - James K. Ferri
- Department of Chemical and Biomolecular Engineering; Lafayette College; Easton Pennsylvania
| | - Lauren S. Sefcik
- Department of Chemical and Biomolecular Engineering; Lafayette College; Easton Pennsylvania
| |
Collapse
|
7
|
Anderson CR, Abecunas C, Warrener M, Laschewsky A, Wischerhoff E. Effects of Methacrylate-Based Thermoresponsive Polymer Brush Composition on Fibroblast Adhesion and Morphology. Cell Mol Bioeng 2017; 10:75-88. [PMID: 31719850 PMCID: PMC6811809 DOI: 10.1007/s12195-016-0464-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022] Open
Abstract
Thermoresponsive polymers are being used increasingly in cell culture applications due to their temperature dependent surface properties. Poly(MEO2MA-co-OEGMA) (PMO) brushes offer tunable physical properties via variation in the copolymer ratio, but the effects of composition on cell-substrate interactions is unclear. To this end, a series of PMO brushes (0-8% OEGMA) was fabricated and L-929 fibroblast adhesion and morphology was quantified in the presence of serum (FBS) or after functionalization via the adsorption of fibronectin (FN) and vitronectin (VN). Quantification of the adsorption of model proteins, bovine serum albumin and FN, revealed that the extent of adsorption was correlated to the amount MEO2MA content, which represents the more hydrophobic component in PMO brushes. Cells exhibited delayed attachment and spreading on all PMO substrates in the presence of FBS. After 24 h, cell attachment was comparable; however, increased spreading was correlated with increased MEO2MA content. Adsorption of FN significantly increased initial cell attachment to all PMO surfaces after 2 h. This was not observed with VN; however, both FN and VN increased cell spreading/decreased cell circularity for all PMO substrates relative to FBS. Pure MEO2MA brushes with FN exhibited increased cell spreading/decreased cell circularity relative to other PMO substrates after 2 h, and elicited the highest cell density after 24 h. These results demonstrate that increased MEO2MA content in PMO substrates facilitates cell attachment and spreading, which can be further enhanced by adsorbing FN in the absence of other proteins.
Collapse
Affiliation(s)
- Christopher R. Anderson
- Department of Chemical and Biomolecular Engineering, Acopian Engineering Center, Lafayette College, 740 High Street, Easton, PA 18042 USA
| | - Cara Abecunas
- Department of Chemical and Biomolecular Engineering, Acopian Engineering Center, Lafayette College, 740 High Street, Easton, PA 18042 USA
| | - Matthew Warrener
- Department of Chemical and Biomolecular Engineering, Acopian Engineering Center, Lafayette College, 740 High Street, Easton, PA 18042 USA
| | - André Laschewsky
- Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Erik Wischerhoff
- Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Liang Y, Li L, Scott RA, Kiick KL. Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry. Macromolecules 2017; 50:483-502. [PMID: 29151616 PMCID: PMC5687278 DOI: 10.1021/acs.macromol.6b02389] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized.
Collapse
Affiliation(s)
- Yingkai Liang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Nemours-Alfred I. duPont Hospital for Children, Department of Biomedical Research, 1600 Rockland Road, Wilmington, DE 19803, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE, 19711, USA
| |
Collapse
|
9
|
Lim JY, Park SY, Kwak S, Kim HJ, Seo Y. Enhancement of the ferroelectricity of poly(vinylidene fluoride)/multiwalled carbon nanotube composite scaffolds and its effect on the cellular metabolic activity. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.05.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Impact of starch content on protein adsorption characteristics in amphiphilic hybrid graft copolymers. Int J Biol Macromol 2016; 82:256-63. [DOI: 10.1016/j.ijbiomac.2015.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022]
|
11
|
Mzyk A, Lackner JM, Wilczek P, Lipińska L, Niemiec-Cyganek A, Samotus A, Morenc M. Polyelectrolyte multilayer film modification for chemo-mechano-regulation of endothelial cell response. RSC Adv 2016. [DOI: 10.1039/c5ra23019e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The new multilayer polyelectrolyte films (PEMs) that are able to simulate the structure and functions of the extracellular matrix have become a powerful tool for tailoring biointerfaces of “cardiovascular” implants.
Collapse
Affiliation(s)
- A. Mzyk
- Institute of Metallurgy and Materials Science
- Polish Academy of Sciences
- 30-059 Krakow
- Poland
| | - J. M. Lackner
- Joanneum Research Forschungsges mbH
- Institute of Surface Technologies and Photonics
- Functional Surfaces
- Austria
| | - P. Wilczek
- Foundation for Cardiac Surgery Development
- 41-800 Zabrze
- Poland
| | - L. Lipińska
- Institute of Electronic Materials Technology
- 01-919 Warsow
- Poland
| | | | - A. Samotus
- Foundation for Cardiac Surgery Development
- 41-800 Zabrze
- Poland
| | - M. Morenc
- Foundation for Cardiac Surgery Development
- 41-800 Zabrze
- Poland
| |
Collapse
|
12
|
Lee JW, Park JW, Khang D. Analysis of Osteoblast Differentiation on Polymer Thin Films Embedded with Carbon Nanotubes. PLoS One 2015; 10:e0129856. [PMID: 26076355 PMCID: PMC4468207 DOI: 10.1371/journal.pone.0129856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022] Open
Abstract
Osteoblast differentiation can be modulated by variations in order of nanoscale topography. Biopolymers embedded with carbon nanotubes can cause various orders of roughness at the nanoscale and can be used to investigate the dynamics of extracellular matrix interaction with cells. In this study, clear relationship between the response of osteoblasts to integrin receptor activation, their phenotype, and transcription of certain genes on polymer composites embedded with carbon nanotubes was demonstrated. We generated an ultrathin nanocomposite film embedded with carbon nanotubes and observed improved adhesion of pre-osteoblasts, with a subsequent increase in their proliferation. The expression of genes encoding integrin subunits α5, αv, β1, and β3 was significantly upregulated at the early of time-point when cells initially attached to the carbon nanotube/polymer composite. The advantage of ultrathin nanocomposite film for pre-osteoblasts was demonstrated by staining for the cytoskeletal protein vinculin and cell nuclei. The expression of essential transcription factors for osteoblastogenesis, such as Runx2 and Sp7 transcription factor 7 (known as osterix), was upregulated after 7 days. Consequently, the expression of genes that determine osteoblast phenotype, such as alkaline phosphatase, type I collagen, and osteocalcin, was accelerated on carbon nanotube embedded polymer matrix after 14 days. In conclusion, the ultrathin nanocomposite film generated various orders of nanoscale topography that triggered processes related to osteoblast bone formation.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
- * E-mail: (J-WP); (DK)
| | - Dongwoo Khang
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
- * E-mail: (J-WP); (DK)
| |
Collapse
|
13
|
Yang J, Zhang K, Zhang S, Fan J, Guo X, Dong W, Wang S, Chen Y, Yu B. Preparation of calcium phosphate cement and polymethyl methacrylate for biological composite bone cements. Med Sci Monit 2015; 21:1162-72. [PMID: 25904398 PMCID: PMC4418284 DOI: 10.12659/msm.893845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background We studied the biological safety, biomechanics, and tissue compatibility of calcium phosphate cement and Polymethyl Methacrylate composite bone cement mixed in different ratios. Material/Methods CPC and PMMA were mixed in different ratios (3: 1, 2: 1, 1: 1, 1: 2, 1: 5, 1: 10, 1: 15, and 1: 20). PMMA solvent is a general solvent containing a dissolved preparation of the composite bone cement specific to a given specimen to determine biological safety, biomechanics, and tissue compatibility. Results The CPC/PMMA (33%) group, CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group were more in line with the composite bone cement without cytotoxicity requirements. The compressive strength of the CPC/PMMA (67%) group and CPC/PMMA (75%) group was 20Mpa–30Mpa, while that of the CPC/PMMA (4.8%) group, CPC/PMMA (6.25%) group, CPC/PMMA (9.1%) group, CPC/PMMA (16.7%) group, CPC/PMMA (33%) group, and CPC/PMMA (50%) group was 40Mpa–70Mpa. Curing time was longer in the CPC group (more than 11 min) and shorter in the PMMA group (less than 2 min). The results of weight loss rate showed that there were no significant differences between the CPC/PMMA group (4.8%, 6.25%, 9.1%, 16.7%, 33%) and PMMA control group (p>0.05). With the decrease of CPC content, the rate of weight loss gradually decreased. Conclusions The CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group provide greater variability and selectivity for the composite bone cement in obtaining better application.
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Kairui Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Sheng Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jiping Fan
- Department of Orthopaedics, 421 hospital of PLA, Guangzhou, Guangdong, China (mainland)
| | - Xinhui Guo
- Department of Orthopaedics, 421 Hospital of PLA, Guangzhou, Guangdong, China (mainland)
| | - Weiqiang Dong
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shengnan Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yirong Chen
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
14
|
Gambinossi F, Sefcik LS, Wischerhoff E, Laschewsky A, Ferri JK. Engineering adhesion to thermoresponsive substrates: effect of polymer composition on liquid-liquid-solid wetting. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2518-2528. [PMID: 25569588 DOI: 10.1021/am507418m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adhesion control in liquid-liquid-solid systems represents a challenge for applications ranging from self-cleaning to biocompatibility of engineered materials. By using responsive polymer chemistry and molecular self-assembly, adhesion at solid/liquid interfaces can be achieved and modulated by external stimuli. Here, we utilize thermosensitive polymeric materials based on random copolymers of di(ethylene glycol) methyl ether methacrylate (x = MEO2MA) and oligo(ethylene glycol) methyl ether methacrylate (y = OEGMA), that is, P(MEO2MAx-co-OEGMAy), to investigate the role of hydrophobicity on the phenomenon of adhesion. The copolymer ratio (x/y) dictates macromolecular changes enabling control of the hydrophilic-to-lipophilic balance (HBL) of the polymer brushes through external triggers such as ionic strength and temperature. We discuss the HBL of the thermobrushes in terms of the surface energy of the substrate by measuring the contact angle at water-decane-P(MEO2MAx-co-OEGMAy) brush contact line as a function of polymer composition and temperature. Solid supported polyelectrolyte layers grafted with P(MEO2MAx-co-OEGMAy) display a transition in the wettability that is related to the lower critical solution temperature of the polymer brushes. Using experimental observation of the hydrophilic to hydrophobic transition by the contact angle, we extract the underlying energetics associated with liquid-liquid-solid adhesion as a function of the copolymer ratio. The change in cellular attachment on P(MEO2MAx-co-OEGMAy) substrates of variable (x/y) composition demonstrates the subtle role of compositional tuning on the ability to control liquid-liquid-solid adhesion in biological applications.
Collapse
Affiliation(s)
- Filippo Gambinossi
- Department of Chemical and Biomolecular Engineering, Lafayette College , 740 High Street, Easton18042, Pennsylvania, United States
| | | | | | | | | |
Collapse
|
15
|
Canadas RF, Cavalheiro JM, Guerreiro JD, de Almeida MCM, Pollet E, da Silva CL, da Fonseca M, Ferreira FC. Polyhydroxyalkanoates: Waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. Int J Biol Macromol 2014; 71:131-40. [DOI: 10.1016/j.ijbiomac.2014.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/11/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022]
|
16
|
Peng C, Joy A. Baylis–Hillman Reaction as a Versatile Platform for the Synthesis of Diverse Functionalized Polymers by Chain and Step Polymerization. Macromolecules 2014. [DOI: 10.1021/ma4025416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Peng
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Smith Callahan LA, Policastro GM, Bernard SL, Childers EP, Boettcher R, Becker ML. Influence of discrete and continuous culture conditions on human mesenchymal stem cell lineage choice in RGD concentration gradient hydrogels. Biomacromolecules 2013; 14:3047-54. [PMID: 23844746 PMCID: PMC5944333 DOI: 10.1021/bm4006112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells have shown lineage-specific differentiation when cultured on substrates possessing signaling groups derived from the native tissue. A distinct determinant in this process is the concentration of the signaling motif. While several groups have been working actively to determine the specific factors, concentrations, and mechanisms governing the differentiation process, many have been turning to combinatorial and gradient approaches in attempts to optimize the multiple chemical and physical parameters needed for the next advance. However, there has not been a direct comparison between the cellular behavior and differentiation of human mesenchymal stem cells cultured in gradient and discrete substrates, which quantitates the effect of differences caused by cell-produced, soluble factors due to design differences between the culture systems. In this study, the differentiation of human mesenchymal stem cells in continuous and discrete polyethylene glycol dimethacrylate (PEGDM) hydrogels containing an RGD concentration gradient from 0 to 14 mM were examined to study the effects of the different culture conditions on stem-cell behavior. Culture condition was found to affect every osteogenic (alkaline phosphatase, Runx 2, type 1 collagen, bone sailoprotein, and calcium content) and adipogenic marker (oil red and peroxisome proliferator-activated receptor gamma) examined regardless of RGD concentration. Only in the continuous gradient culture did RGD concentration affect human mesenchymal stem-cell lineage commitment with low RGD concentrations expressing higher osteogenic differentiation than high RGD concentrations. Conversely, high RGD concentrations expressed higher adipogenic differentiation than low RGD concentrations. Cytoskeletal actin organization was only affected by culture condition at low RGD concentrations, indicating that it played a limited role in the differences in lineage commitment observed. Therefore, the role of discrete versus gradient strategies in high-throughput experimentation needs to be considered when designing experiments as we show that the respective strategies alter cellular outcomes even though base scaffolds have similar material and chemical properties.
Collapse
|
18
|
Gokhale S, Xu Y, Joy A. A Library of Multifunctional Polyesters with “Peptide-Like” Pendant Functional Groups. Biomacromolecules 2013; 14:2489-93. [DOI: 10.1021/bm400697u] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sachin Gokhale
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ying Xu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
19
|
Anene-Nzelu CG, Choudhury D, Li H, Fraiszudeen A, Peh KY, Toh YC, Ng SH, Leo HL, Yu H. Scalable cell alignment on optical media substrates. Biomaterials 2013; 34:5078-87. [PMID: 23601659 DOI: 10.1016/j.biomaterials.2013.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/23/2013] [Indexed: 01/26/2023]
Abstract
Cell alignment by underlying topographical cues has been shown to affect important biological processes such as differentiation and functional maturation in vitro. However, the routine use of cell culture substrates with micro- or nano-topographies, such as grooves, is currently hampered by the high cost and specialized facilities required to produce these substrates. Here we present cost-effective commercially available optical media as substrates for aligning cells in culture. These optical media, including CD-R, DVD-R and optical grating, allow different cell types to attach and grow well on them. The physical dimension of the grooves in these optical media allowed cells to be aligned in confluent cell culture with maximal cell-cell interaction and these cell alignment affect the morphology and differentiation of cardiac (H9C2), skeletal muscle (C2C12) and neuronal (PC12) cell lines. The optical media is amenable to various chemical modifications with fibronectin, laminin and gelatin for culturing different cell types. These low-cost commercially available optical media can serve as scalable substrates for research or drug safety screening applications in industry scales.
Collapse
|
20
|
Chakrabarty S, Wang C, Zhang W, Wynne KJ. Rigid Adherent-Resistant Elastomers (RARE): Nano-, Meso-, and Microscale Tuning of Hybrid Fluorous Polyoxetane–Polyurethane Blend Coatings. Macromolecules 2013. [DOI: 10.1021/ma4001995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Souvik Chakrabarty
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Chenyu Wang
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Wei Zhang
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Kenneth J. Wynne
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| |
Collapse
|
21
|
Seo JH, Sakai K, Yui N. Adsorption state of fibronectin on poly(dimethylsiloxane) surfaces with varied stiffness can dominate adhesion density of fibroblasts. Acta Biomater 2013; 9:5493-501. [PMID: 23088883 DOI: 10.1016/j.actbio.2012.10.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
Abstract
The state of adsorbed fibronectin and the subsequent cell adhesion behavior on polydimethylsiloxane (PDMS) substrates with varied stiffness were investigated. The bulk elastic modulus as well as the macroscale and nanoscale surface repulsion forces on PDMS substrates with five different cross-linker concentrations (2.5, 5, 10, 20 and 40wt.%) were evaluated by using tensile and compression tests as well as atomic force microscopy (AFM) indentation. The PDMS substrate with 10wt.% cross-linker showed the maximum stiffness in the bulk elastic modulus and macroscale compression test. In contrast, PDMS substrates with 2.5 and 5wt.% cross-linker concentration showed the maximum stiffness in the nanoscale compression test, which indicates that the physical properties of the nanoscale outermost surface are different from the bulk and macroscale surface properties. The fibronectin-treated PDMS substrates showed almost the same amount of fibronectin adsorption. However, the outermost surface density of fibronectin was related to the macroscale surface stiffness, and the exposure of the cell-binding motif was related to the nanoscale surface stiffness. Moreover, the different adsorption state of fibronectin was further confirmed by quartz crystal microbalance-dissipation (QCM-D) monitoring. The adhesion behavior of NIH3T3 mouse fibroblasts was in turn related to the exposure of the cell-binding motif. These results suggest that the well-known differences in cell adhesion behavior on PDMS substrates with varied stiffness are primarily induced by different responses of fibronectin to the PDMS substrates.
Collapse
|
22
|
Ruediger T, Berg A, Guellmar A, Rode C, Schnabelrauch M, Urbanek A, Wagner K, Wyrwa R, Kinne RW, Sigusch BW. Cytocompatibility of polymer-based periodontal bone substitutes in gingival fibroblast and MC3T3 osteoblast cell cultures. Dent Mater 2012; 28:e239-49. [DOI: 10.1016/j.dental.2012.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/27/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
23
|
Alves A, Sousa RA, Reis RL. Processing of degradable ulvan 3D porous structures for biomedical applications. J Biomed Mater Res A 2012; 101:998-1006. [PMID: 22965453 DOI: 10.1002/jbm.a.34403] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 07/18/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022]
Abstract
The interest in ulvan within a biomedical framework increases as the knowledge of this polysaccharide evolves. Ulvan has been recently proposed as a potential biomaterial, and structures based on this polysaccharide are now being studied for different biomedical applications. In this work, a novel porous structure based on cross-linked ulvan was designed and characterized. Its mechanical performance, water-uptake ability and weight loss were assessed, morphology analyzed through scanning electron microscopy, and morphometric parameters quantified by microcomputed tomography. Cell viability and cell proliferation were evaluated in order to estimate the cytotoxicity of these structures and respective degradation products. Produced ulvan structures revealed remarkable ability to uptake water (up to ∼ 2000% of its initial dry weight) and are characterized by a highly porous and interconnected structure. Furthermore, these ulvan structures underwent nontoxic degradation, and cells remained viable through the time of culture. These results position ulvan structures as prospective blocks that can be further functionalized in order to acquire the desired stability and needed biological interactivity to be used as tissue-engineered structures. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
Collapse
Affiliation(s)
- Anabela Alves
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Taipas, Guimarães, Portugal.
| | | | | |
Collapse
|
24
|
Wang X, Boire TC, Bronikowski C, Zachman AL, Crowder SW, Sung HJ. Decoupling polymer properties to elucidate mechanisms governing cell behavior. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:396-404. [PMID: 22536977 DOI: 10.1089/ten.teb.2012.0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Determining how a biomaterial interacts with cells ("structure-function relationship") reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery.
Collapse
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
25
|
Min X, Tang M, Jiao Y, Zhou C. The Correlation between Fibronectin Adsorption and Fibroblast Cell Behaviors on Chitosan/Poly(
ϵ
-Caprolactone) Blend Films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1421-35. [DOI: 10.1163/092050611x582858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xiang Min
- a Department of Materials Science and Engineering , Jinan University , Guangzhou , 510632 , P. R. China
- b Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University , Guangzhou , 510632 , P. R. China
| | - Minjian Tang
- a Department of Materials Science and Engineering , Jinan University , Guangzhou , 510632 , P. R. China
- b Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University , Guangzhou , 510632 , P. R. China
| | - Yanpeng Jiao
- a Department of Materials Science and Engineering , Jinan University , Guangzhou , 510632 , P. R. China
- b Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University , Guangzhou , 510632 , P. R. China
| | - Changren Zhou
- a Department of Materials Science and Engineering , Jinan University , Guangzhou , 510632 , P. R. China
- b Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University , Guangzhou , 510632 , P. R. China
| |
Collapse
|
26
|
Gentilini C, Dong Y, May JR, Goldoni S, Clarke DE, Lee BH, Pashuck ET, Stevens MM. Functionalized poly(γ-Glutamic Acid) fibrous scaffolds for tissue engineering. Adv Healthc Mater 2012. [PMID: 23184745 DOI: 10.1002/adhm.201200036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poly(γ-glutamic acid) (γ-PGA) is a biocompatible, enzymatically-degradable, natural polymer with a higher resistance to hydrolysis than polyesters commonly used for tissue engineering scaffolds such as poly(L-lactide) (PLLA). Notably, γ-PGA's free carboxyl side groups allow for simple chemical functionalization, making it a versatile candidate for producing scaffolds. Here, a series of water-resistant fibrous scaffolds were engineered from ethyl (Et), propyl (Pr) and benzyl (Bn) esterifications of γ-PGA. All scaffolds were non-cytotoxic and γ-PGA-Bn showed an increase in cell adhesion of hMSCs compared to γ-PGA-Et and γ-PGA-Pr. Moreover, cells on γ-PGA-Bn showed three-fold higher viability at day 14 and significantly higher adhesion when compared with PLLA scaffolds, despite having a similar hydrophobicity. Cell attachment decreased by 40% when the polymer was only partially modified with benzyl groups (γ-PGA-Bn-77%), but was restored when integrin-binding RGD peptide was conjugated to the remaining free carboxylic groups, indicating the peptide was accessible and able to bind integrins. The mechanism behind the cell-material interactions on γ-PGA-Bn scaffolds was further investigated through protein adsorption and fibronectin conformation experiments. These results, in addition to the cell-adhesion studies, suggest an inherent effect of the benzyl modification in the mechanism of cell attachment to γ-PGA-Bn scaffolds. Finally, γ-PGA-Bn scaffolds cultured in osteogenic media were also efficient in supporting hMSCs differentiation towards an osteogenic lineage as determined by alkaline phosphatase and Runx2 gene expression. Taken together these data suggest that esterified γ-PGA polymer scaffolds are new and versatile candidates for tissue engineering applications and that, intriguingly, aromatic functionality plays a key role in the cell-scaffold interaction.
Collapse
Affiliation(s)
- Cristina Gentilini
- Department of Materials and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Regulation of the behaviors of mesenchymal stem cells by surface nanostructured titanium. Colloids Surf B Biointerfaces 2012; 97:211-20. [PMID: 22609606 DOI: 10.1016/j.colsurfb.2012.04.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 01/02/2023]
Abstract
The study describes the influence of surface nanostructured titanium substrates on the growth behaviors of mesenchymal stem cells. Surface nanostructures of titanium were produced with surface mechanical attrition treatment (SMAT) technique. The morphologies of native titanium and surface nanostructured titanium substrates were characterized by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and contact-angle measurements, respectively. A thin nanostructured layer was formed onto the surfaces of titanium substrates after SMAT treatment. The effects of the surface nanostructured titanium substrates on the adhesion, spreading, proliferation and differentiation of mesenchymal stem cells (MSCs) was examined at cellular and molecular levels in vitro. The results suggest that the surface nanostructured substrates were beneficial for the growth of MSCs, including adhesion, filament orientation, proliferation and gene expression. This approach for the fabrication of surface nanostructured titanium may be exploited in the development of high performance titanium-based implants.
Collapse
|
28
|
Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD, Smeets R. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J Craniomaxillofac Surg 2012; 40:706-18. [PMID: 22297272 DOI: 10.1016/j.jcms.2012.01.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 01/07/2023] Open
Abstract
An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging.
Collapse
Affiliation(s)
- Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang X, Heath DE, Cooper SL. Endothelial cell adhesion and proliferation to PEGylated polymers with covalently linked RGD peptides. J Biomed Mater Res A 2012; 100:794-801. [PMID: 22238050 DOI: 10.1002/jbm.a.34026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/26/2011] [Accepted: 11/10/2011] [Indexed: 11/08/2022]
Abstract
A nonfouling peptide grafted polymer was synthesized that can promote endothelial cell (EC) binding. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate, and CGRGDS peptide. The peptide was incorporated into the polymer system either by a chain transfer reaction or by coupling to an acrylate-PEG-N-hydroxysuccinimide (NHS) comonomer. The introduction of PEG chains minimizes protein adsorption. Human umbilical vein ECs and endothelial colony forming cells were cultured on these surfaces in short term and long-term studies. A difference in number and morphology of ECs was observed depending on the method of peptide incorporation. Both cell types adhered better to polymer films containing NHS coupled RGD peptide after 2 h even in the presence of albumin but significant cell detachment occurred after 4 days. Polymer solutions were electrospun into fibrous scaffolds. Both nonfouling and peptide binding characteristics were retained after processing.
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
30
|
Ni M, Zimmermann PK, Kandasamy K, Lai W, Li Y, Leong MF, Wan AC, Zink D. The use of a library of industrial materials to determine the nature of substrate-dependent performance of primary adherent human cells. Biomaterials 2012; 33:353-64. [DOI: 10.1016/j.biomaterials.2011.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/23/2011] [Indexed: 12/30/2022]
|
31
|
Kou PM, Pallassana N, Bowden R, Cunningham B, Joy A, Kohn J, Babensee JE. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates. Biomaterials 2011; 33:1699-713. [PMID: 22136715 DOI: 10.1016/j.biomaterials.2011.10.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/24/2011] [Indexed: 12/27/2022]
Abstract
Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response toward the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R(prediction)(2) = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R(prediction)(2) = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection.
Collapse
Affiliation(s)
- Peng Meng Kou
- Wallace H Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Bailey BM, Hui V, Fei R, Grunlan MA. Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)(). ACTA ACUST UNITED AC 2011; 21:18776-18782. [PMID: 22956857 DOI: 10.1039/c1jm13943f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are widely utilized to probe cell-material interactions and ultimately for a material-guided approach to tissue regeneration. In this study, PEG-DA hydrogels were fabricated via solvent-induced phase separation (SIPS) to obtain hydrogels with a broader range of tunable physical properties including morphology (e.g. porosity), swelling and modulus (G'). In contrast to conventional PEG-DA hydrogels prepared from an aqueous precursor solution, the reported SIPS protocol utilized a dichloromethane (DCM) precursor solution which was sequentially photopolymerized, dried and hydrated. Physical properties were further tailored by varying the PEG-DA wt% concentration (5 wt%-25 wt%) and M(n) (3.4k and 6k g mol (-1)). SIPS produced PEG-DA hydrogels with a macroporous morphology as well as increased G' values versus the corresponding conventional PEG-DA hydrogels. Notably, since the total swelling was not significantly changed versus the corresponding conventional PEG-DA hydrogels, pairs or series of hydrogels represent scaffolds in which morphology and hydration or G' and hydration are uncoupled. In addition, PEG-DA hydrogels prepared via SIPS exhibited enhanced degradation rates.
Collapse
Affiliation(s)
- Brennan Margaret Bailey
- Texas A&M University, Department of Biomedical Engineering, Materials Science and Engineering Program, 3120 TAMU College Station, TX, USA. ; Tel: (+979) 845-2406
| | | | | | | |
Collapse
|
33
|
Micro- and nanoengineering approaches to control stem cell-biomaterial interactions. J Funct Biomater 2011; 2:88-106. [PMID: 24956299 PMCID: PMC4030934 DOI: 10.3390/jfb2030088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/11/2011] [Accepted: 06/21/2011] [Indexed: 01/23/2023] Open
Abstract
As our population ages, there is a greater need for a suitable supply of engineered tissues to address a range of debilitating ailments. Stem cell based therapies are envisioned to meet this emerging need. Despite significant progress in controlling stem cell differentiation, it is still difficult to engineer human tissue constructs for transplantation. Recent advances in micro- and nanofabrication techniques have enabled the design of more biomimetic biomaterials that may be used to direct the fate of stem cells. These biomaterials could have a significant impact on the next generation of stem cell based therapies. Here, we highlight the recent progress made by micro- and nanoengineering techniques in the biomaterials field in the context of directing stem cell differentiation. Particular attention is given to the effect of surface topography, chemistry, mechanics and micro- and nanopatterns on the differentiation of embryonic, mesenchymal and neural stem cells.
Collapse
|