1
|
Ashtiani S, Přibyl T, Schneider J, Khoshnamvand M, Průša F, Ruml T, Floreková J, Gardenӧ D, Zelenka J, Sofer Z, Friess K. Unveiling the effect of surface modification of spherical PVDF nanoparticles via ZIF-8 and NH 2 functional groups on gas adsorption and cell nanotoxicity. ENVIRONMENTAL RESEARCH 2025; 274:121234. [PMID: 40023384 DOI: 10.1016/j.envres.2025.121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
This study presents a facile, robust, and sustainable approach to enable spherical PVDF nanoparticles to serve as a multifunctional, versatile application platform. We focused on enhancing the PVDF nanoparticle performance by uniformly decorating the surface with zeolite imidazole framework nanoparticles (ZIF-8) and modification with -NH2 functional groups. The synthesis methods, results of material characterization techniques (SEM-EDS, FTIR, BET, XRD), and testing methods (gas sorption, confocal and holotomographic microscopy) are discussed to support the proposed concept. The decoration of PVDF nanoparticles resulted in non-selectively increased sorption capacity by a factor of 10 compared to the pristine PVDF particles for the CO2/N2 gas pair. In contrast, surface amination selectively increases CO2 sorption threefold compared to pristine PVDF, while the N2 sorption decreased. Higher CO2 sorption of modified samples agreed with BET analysis, which revealed increased sorption capacity after both modifications (PVDF-ZIF-8386.52 m2/g, PVDF-NH2 217. 86 m2/g and PVDF 87.14 m2/g). The nanotoxicity testing revealed intracellular uptake and moderate nanotoxicity of both PVDF (average particle size 0.3 μm, IC50 of 0.56 ± 0.02 mg/mL) and PVDF-ZIF-8 (size 1.1 μm, IC50 of 0.44 ± 0.01 mg/mL) particles in macrophages RAW 264.7, while not in other cell lines (MRC-5, and HeLa). Nevertheless, the toxicity was observed only at extreme concentrations (approx. > 0.5 mg/mL) absent in the environment, thus mitigating the risk of potential contamination of the environment by PVDF-ZIF-8 nanoparticles with adverse effects on living organisms and human health. Obtained results demonstrate the potential for tailoring PVDF nanoparticles to enhance their performance and ensure their safety, thereby opening promising avenues for their application in gaseous and aqueous media.
Collapse
Affiliation(s)
- Saeed Ashtiani
- Department of Physical Chemistry, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic.
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic
| | - Josef Schneider
- Department of Physical Chemistry, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic
| | - Mehdi Khoshnamvand
- Caspian Sea Ecology Research Center (CSERC), Agricultural Research, Education and Extension Organization, Sari, Iran
| | - Filip Průša
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic
| | - Jana Floreková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic
| | - Dániel Gardenӧ
- Department of Physical Chemistry, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic
| | - Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology, Prague 6, Technická 5, 16628, Prague, Czech Republic
| |
Collapse
|
2
|
Chakraborty T, Yadav D, Sahu LK, Pandey MK, Saxena S, Shukla S. CB[6]/ZnO chelated superoleophobic-hydrophilic PVDF membranes for one-step remediation of multi-contaminant in wastewater. CHEMOSPHERE 2024; 368:143637. [PMID: 39490754 DOI: 10.1016/j.chemosphere.2024.143637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Industrial wastewater, despite undergoing primary and secondary treatments with conventional methods, continues to pose challenges due to the presence of multiple contaminants. Membrane separation has emerged as an effective solution to streamline the treatment process, yet it often results in surface fouling. This study introduces a single platform designed for simultaneous removal of dyes, oils, and proteins during the tertiary treatment stage, thereby eliminating the need for multiple separation steps. To enhance membrane robustness and address common fouling issues, polyvinylidene fluoride-montmorillonite-cucurbit[6]uril/zinc oxide (PV-M-CB[6]ZnO) mixed-matrix membranes have been developed. The incorporation of montmorillonite (M), cucurbit[6]uril (CB[6]) host-guest encapsulation, and zinc metal chelation significantly improves the membrane's capability in eliminating cationic dyes, treating oil-water emulsions, and separating bovine serum albumin. With an optimal CB[6]/ZnO loading of 1.6 wt%, the PV-M-CB[6]ZnO membranes exhibit superior performance with high water permeability (4114 L/m2.h.bar) and exceptional separation efficiencies: 95.5% for malachite green, 93.2% for methylene blue, and 98.2% for crystal violet, compared to pristine PVDF membranes. Additionally, these membranes demonstrate an impressive oil-water rejection rate of 97.6% and a bovine serum albumin rejection rate of 76%, with a flux recovery ratio exceeding 86% after seven filtration cycles. Thus, the PV-M-CB[6]ZnO membranes offer enhanced hydrophilicity, improved antifouling properties, and increased efficiency for the removal of multiple contaminants from industrial wastewater, providing a promising solution for sustainable environmental remediation.
Collapse
Affiliation(s)
- Triparna Chakraborty
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382007, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India
| | - Dharmveer Yadav
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India
| | - Lokesh Kumar Sahu
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India
| | - Manoj Kumar Pandey
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382007, India
| | - Sumit Saxena
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India
| | - Shobha Shukla
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India.
| |
Collapse
|
3
|
Song D, Wang L, Sun W, Zhang Y, Xie B, Zhao Y, Wang W, Wang P, Ma J, Cheng W. Tourmaline triggered biofilm transformation: Boosting ultrafiltration efficiency and fouling resistance. WATER RESEARCH 2024; 264:122212. [PMID: 39126743 DOI: 10.1016/j.watres.2024.122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Ultralow pressure filtration system, which integrates the dual functionalities of biofilm degradation and membrane filtration, has gained significant attention in water treatment due to its superior contaminant removal efficiency. However, it is a challenge to mitigate membrane biofouling while maintaining the high activity of biofilm. This study presents a novel ceramic-based ultrafiltration membrane functionalized with tourmaline nanoparticles to address this challenge. The incorporation of tourmaline nanoparticles enables the release of nutrient elements and the generation of an electric field, which enhances the biofilm activity on the membrane surface and simultaneously alleviates intrapore biofouling. The tourmaline-modified ceramic membrane (TCM) demonstrated a significant antifouling effect, with a substantial increase in water flux by 60 %. Additionally, the TCM achieved high removal efficiencies for contaminants (48.78 % in TOC, 22.28 % in UV254, and 24.42 % in TN) after 30 days of continuous operation. The fouling resistance by various constituents in natural water was individually analyzed using model compounds. The TCM with improved electronegativity and hydrophilicity exhibited superior resistance to irreversible fouling through increased electrostatic repulsion and reduced adhesion to foulants. Comprehensive characterizations and analyses, including interfacial interaction energies, redox reaction processes, and biofilm evolutions, demonstrated that the TCM can release nutrient elements to facilitate the development of functional microbial community within the biofilm, and generate reactive oxygen species (ROS) on the membrane surface to the degrade contaminants and mitigate membrane biofouling. The electric field generated by tourmaline nanoparticles can promote electron transfer in the Fe(III)/Fe(II) cycle, ensuring a stable and sustainable generation of ROS and bactericidal negative ions. These synergistic functions enhance contaminant removal and reduce irreversible fouling of the TCM. This study provides fundamental insights into the role of tourmaline-modified surfaces in enhancing membrane filtration performance and fouling resistance, inspiring the development of high-performance, anti-fouling membranes.
Collapse
Affiliation(s)
- Dan Song
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lu Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Weikai Sun
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingjie Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Ying Zhao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Chen M, Wang P, Yan J, Qiu S, Zhang H, Xie H, Ma J. Enhanced Antifouling Capability of In Situ-Grown Hydrophilic-Hydrophobic Nanodomains on Membrane Surface in the Ultralow Pressurized Ultrafiltration Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16204-16214. [PMID: 39190017 DOI: 10.1021/acs.est.4c04850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Although hydrophilic modification of the membrane surface is widely adopted, polymeric membranes still suffer from irreversible fouling caused by hydrophilic components in surface water. Here, an ultrathin hydrogel layer (40 nm) with hydrophilic-hydrophobic textures was in situ grown onto the polysulfone ultrafiltration membrane surface using an organic-radical-initiated interfacial polymerization technique. The interfacial polymerization of hydrophilic and hydrophobic monomers ensured the molecular-scale distribution of hydrophilic and hydrophobic nanodomains on the membrane surface. These nanodomains, with their molecular lengths, facilitated dynamic repulsion interactions between the uniformly textured surface and foulant components with different degrees of hydrophilicity. Chemical force characterization confirmed that the adhesion force between the hydrophilic-hydrophobic textured membrane surface and foulants (dodecane, bovine serum albumin, and humic acid) was greatly reduced. Dynamic filtration experiments showed that a hydrophilic-hydrophobic textured membrane always possessed the largest water flux and the best antifouling performance. Furthermore, the foulant coverage ratio on the membrane surface was first evaluated by measuring changes in surface streaming potentials, which demonstrated a 69% reduction in the amount of foulant adhering to the hydrophilic-hydrophobic textured membrane surface. Therefore, the construction of hydrophilic-hydrophobic nanodomains on the membrane surface provides a promising strategy for alleviating membrane fouling caused by both hydrophobic and hydrophilic components during ultralow pressurized ultrafiltration processes.
Collapse
Affiliation(s)
- Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- Chongqing Research Institute of HIT, Chongqing 401151, China
| | - Jiaying Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shiyi Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Zhang
- The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China
| | - Hui Xie
- The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Xavier GTM, Nunes RS, Urzedo AL, Tng KH, Le-Clech P, Araújo GCL, Mandelli D, Fadini PS, Carvalho WA. Removal of phosphorus by modified bentonite:polyvinylidene fluoride membrane-study of adsorption performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53718-53728. [PMID: 38270764 DOI: 10.1007/s11356-024-32157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Enhanced phosphorus management, geared towards sustainability, is imperative due to its indispensability for all life forms and its close association with water bodies' eutrophication, primarily stemming from anthropogenic activities. In response to this concern, innovative technologies rooted in the circular economy are emerging, to remove and recover this vital nutrient to global food production. This research undertakes an evaluation of the dead-end filtration performance of a mixed matrix membrane composed of modified bentonite (MB) and polyvinylidene fluoride (PVDF) for efficient phosphorus removal from water media. The MB:PVDF membrane exhibited higher permeability and surface roughness compared to the pristine membrane, showcasing an adsorption capacity (Q) of 23.2 mgP·m-2. Increasing the adsorbent concentration resulted in a higher removal capacity (from 16.9 to 23.2 mgP·m-2) and increased solution flux (from 0.5 to 16.5 L·m-2·h-1) through the membrane. The initial phosphorus concentration demonstrates a positive correlation with the adsorption capacity of the material, while the system pressure positively influences the observed flux. Conversely, the presence of humic acid exerts an adverse impact on both factors. Additionally, the primary mechanism involved in the adsorption process is identified as the formation of inner-sphere complexes.
Collapse
Affiliation(s)
- Gabriela Tuono Martins Xavier
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | - Renan Silva Nunes
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
| | | | - Keng Han Tng
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, Australia
| | | | - Dalmo Mandelli
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil
| | - Pedro Sergio Fadini
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Wagner Alves Carvalho
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
6
|
Zhou W, Liu Q, Xu N, Wang Q, Fan L, Dong Q. In Situ Incorporation of TiO 2@Graphene Oxide (GO) Nanosheets in Polyacrylonitrile (PAN)-Based Membranes Matrix for Ultrafast Protein Separation. MEMBRANES 2023; 13:377. [PMID: 37103804 PMCID: PMC10142853 DOI: 10.3390/membranes13040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Organic polymeric ultrafiltration (UF) membranes have been widely used in protein separation due to their advantages of high flux and simple manufacturing process. However, due to the hydrophobic nature of the polymer, pure polymeric UF membranes need to be modified or hybrid to increase their flux and anti-fouling performance. In this work, tetrabutyl titanate (TBT) and graphene oxide (GO) were simultaneously added to the polyacrylonitrile (PAN) casting solution to prepare a TiO2@GO/PAN hybrid ultrafiltration membrane using a non-solvent induced phase separation (NIPS). During the phase separation process, TBT underwent a sol-gel reaction to generate hydrophilic TiO2 nanoparticles in situ. Some of the generated TiO2 nanoparticles reacted with the GO through a chelation interaction to form TiO2@GO nanocomposites. The resulting TiO2@GO nanocomposites had higher hydrophilicity than the GO. They could selectively segregate towards the membrane surface and pore walls through the solvent and non-solvent exchange during the NIPS, significantly improving the membrane's hydrophilicity. The remaining TiO2 nanoparticles were segregated from the membrane matrix to increase the membrane's porosity. Furthermore, the interaction between the GO and TiO2 also restricted the excessive segregation of the TiO2 nanoparticles and reduced their losing. The resulting TiO2@GO/PAN membrane had a water flux of 1487.6 L·m-2·h-1 and a bovine serum albumin (BSA) rejection rate of 99.5%, which were much higher than those of the currently available UF membranes. It also exhibited excellent anti-protein fouling performance. Therefore, the prepared TiO2@GO/PAN membrane has important practical applications in the field of protein separation.
Collapse
Affiliation(s)
- Wei Zhou
- Hefei Tianmai Biotechnology Development Co., Ltd., No. 199 Fanhua Ave., Hefei 230601, China
| | - Qiao Liu
- Hefei Tianmai Biotechnology Development Co., Ltd., No. 199 Fanhua Ave., Hefei 230601, China
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Nong Xu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Qing Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Long Fan
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Qiang Dong
- Hefei Tianmai Biotechnology Development Co., Ltd., No. 199 Fanhua Ave., Hefei 230601, China
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| |
Collapse
|
7
|
José MH, Canejo JP, Godinho MH. Oil/Water Mixtures and Emulsions Separation Methods-An Overview. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2503. [PMID: 36984381 PMCID: PMC10053512 DOI: 10.3390/ma16062503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Catastrophic oil spill accidents, oily industrial wastewater, and other types of uncontrolled release of oils into the environment are major global issues since they threaten marine ecosystems and lead to a big economic impact. It can also affect the public health of communities near the polluted area. This review addresses the different types of oil collecting methods. The focus of this work will be on the different approaches to materials and technologies for oil/water separation, with a special focus on water/oil emulsion separation. Emulsified oil/water mixtures are extremely stable dispersions being, therefore, more difficult to separate as the size of the droplets in the emulsion decreases. Oil-absorbent materials, such as sponges, foams, nanoparticles, and aerogels, can be adjusted to have both hydrophobic and oleophilic wettability while displaying a porous structure. This can be advantageous for targeting oil spills in large-scale environmental and catastrophic sets since these materials can easily absorb oil. Oil adsorbent materials, for example, meshes, textiles, membranes, and clays, involve the capture of the oily material to the surface of the adsorbent material, additionally attracting more attention than other technologies by being low-cost and easy to manufacture.
Collapse
|
8
|
George J, Kumar VV. Polymeric membranes customized with super paramagnetic iron oxide nanoparticles for effective separation of pentachlorophenol and proteins in aqueous solution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Pramono E, Umam K, Sagita F, Saputra OA, Alfiansyah R, Setyawati Dewi RS, Kadja GT, Ledyastuti M, Wahyuningrum D, Radiman CL. The enhancement of dye filtration performance and antifouling properties in amino-functionalized bentonite/polyvinylidene fluoride mixed matrix membranes. Heliyon 2023; 9:e12823. [PMID: 36685376 PMCID: PMC9852663 DOI: 10.1016/j.heliyon.2023.e12823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Trade-off issue and membrane fouling remain two major issues in the utilization of membrane technology for the water treatment due to reduced membrane permeability and lifetime. In our study, we employed 3-aminopropyltriethoxysilane modified bentonite (BNTAPS) as an anti-fouling modifier to prepare polyvinylidene fluoride (PVDF)-based membranes via the phase inversion method. The effects of BNTAPS concentration on the physical, mechanical, morphological, and filtration performance of the hybrid membranes have been investigated. It was found that the addition of BNTAPS improved the hydrophilicity of the membrane revealed by the decreased water contact angle. Consequently, the pure water flux of PVDF membrane containing 0.5% BNTAPS (PVDF/BNTAPS0.5%) increased to 35.5 L m-2 h-1. Moreover, the PVDF/BNTAPS membrane showed a smaller pore diameter and porosity compared to pristine PVDF. The membrane performance evaluation was carried out using cationic and anionic dyes, i.e., methylene blue (MB) and acid yellow (AY17), respectively. Our study revealed that the rejection of each dye was slightly increased for the PVDF/BNTAPS0.5%. However, the flux recovery rate of the PVDF/BNTAPS membrane significantly improved, which directly prolonged the membrane lifetime.
Collapse
Affiliation(s)
- Edi Pramono
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami no. 36A, Surakarta, 57216, Indonesia
| | - Khairul Umam
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Textile Chemistry Division, Politeknik STTT Bandung, Jl. Jakarta no. 31, Bandung, 40272, Indonesia
| | - Fuja Sagita
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Ozi Adi Saputra
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami no. 36A, Surakarta, 57216, Indonesia
| | - Rifki Alfiansyah
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Rahmi Sri Setyawati Dewi
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Grandprix T.M. Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Mia Ledyastuti
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Deana Wahyuningrum
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Cynthia L. Radiman
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Corresponding author. Jl. Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|
10
|
Kausar A, Ahmad I, Maaza M, Eisa MH. State-of-the-Art of Polymer/Fullerene C 60 Nanocomposite Membranes for Water Treatment: Conceptions, Structural Diversity and Topographies. MEMBRANES 2022; 13:27. [PMID: 36676834 PMCID: PMC9864887 DOI: 10.3390/membranes13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, ion permeation, and microbes handling. Various types of membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene, and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers due to zero dimensionality, high surface areas, and exceptional physical properties such as optical, electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application of polymer/fullerene C60 nanocomposites has been observed in the membrane sector. This review is basically focused on talented applications of polymer/fullerene nanocomposite membranes in water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the field of high-performance membranes because of better permeation, water flux, selectivity, and separation performance. The purpose of this pioneering review is to highlight and summarize current advances in the field of water purification/treatment using polymer and fullerene-based nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and effects on the enhanced properties and performance of the resulting water treatment membranes. Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future research have also been discussed. Future research on these innovative membrane materials may overwhelm design and performance-related challenging factors.
Collapse
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
| | - M. H. Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
11
|
Lu Y, Miao M, Wong NH, Sunarso J, Li N. Structure regulation of PVDF/magnetic attapulgite composite membrane for separating water vapor from air. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Hydrophilic montmorillonite in tailoring the structure and selectivity of polyamide membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Shi S, Zhang P, Chu X, Liu Y, Feng W, Zhou N, Shen J. Combination of Carbon Dots for the Design of Superhydrophobic Fluorescent Materials with Bioinspired Micro-Nano Multiscale Hierarchical Structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Recent development in polymer/montmorillonite clay mixed matrix membranes for gas separation: a short review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Liu Y, Su J, Duan F, Cui X, Yan W, Jin L. Molecular simulation of enhanced separation of humid air components using GO-PVA nanocomposite membranes under differential pressures. Phys Chem Chem Phys 2022; 24:16442-16452. [PMID: 35708065 DOI: 10.1039/d2cp01411d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrophilic nanocomposite membranes have significant advantages in the separation of water vapor which is the core process in air dehumidification. This paper focuses on exploring the micro-mechanism of enhanced separation using graphene oxide-polyvinyl alcohol (GO-PVA) nanocomposite membranes. The sorption and diffusion behaviors of water vapor and nitrogen in GO-PVA membranes were investigated using molecular dynamics (MD) and Monte Carlo (MC) methods. The study showed that embedding GO into a PVA matrix results in a higher glass transition temperature and fractional free volume. The latter is believed to enhance the diffusivity of gas molecules in polymeric membranes. The interaction between the polymer chains and GO nanoparticles notably promotes the adsorption capacity of water vapor and inhibits nitrogen adsorption in the membrane. A water vapor permeance of 8844.07 Barrer and a separation factor of 3.53 could be achieved with the GO-PVA-0.5 membrane. The analysis confirmed that GO has the same effect on single gas and binary gas mixtures, i.e., increasing the water vapor permeability and selectivity. The calculated water vapor permeance of binary gas is 83% lower than that of single gas permeation. It is expected that this research could provide fundamentals for the optimization and synthesis of gas separation membranes.
Collapse
Affiliation(s)
- Yilin Liu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China.
| | - Jincai Su
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore.
| | - Fei Duan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Xin Cui
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China.
| | - Weichao Yan
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China.
| | - Liwen Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China.
| |
Collapse
|
16
|
Jiang H, Wang P, Zhao Q, Wang Z, Sun X, Chen M, Han B, Ma J. Enhanced water permeance and antifouling performance of gravity-driven ultrafiltration membrane with in-situ formed rigid pore structure. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Synergistic effects of matrix-anchoring and surface-segregation behavior of poly(N-vinylpyrrolidone)-grafted-silica filler for PVDF membrane performance improvement. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Wu L, Liu Y, Hu J, Feng X, Ma C, Wen C. Preparation of polyvinylidene fluoride composite ultrafiltration membrane for micro-polluted surface water treatment. CHEMOSPHERE 2021; 284:131294. [PMID: 34186221 DOI: 10.1016/j.chemosphere.2021.131294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Blending modification of graphene oxide (GO) and deposition of silver carbonate (Ag2CO3) on the membrane surface by suction filtration was used to prepare polyvinylidene fluoride (PVDF) composite ultrafiltration (UF) membranes (denoted as PGA membranes). The effect of this strategy on the morphology and performance of the pure PVDF membrane was investigated. Owing to an increased hydrophilicity and the formation of a more open pore, the pollution resistance and permeability of the PGA membrane were improved. The pure water flux of the PGA-3 membrane (254 LMH) was increased to more than 2-fold compared to that of the neat PVDF membrane (126 LMH). In addition, the results of antifouling experiments showed that the flux recovery rate, flux decay rate, and antibacterial performance of the PGA-3 membrane was superior to those of the other membranes synthesized in this study. Finally, after conducting multi-cycle filtration experiments with lake water, the flux and recovery rate of the PGA-3 membrane was observed to be the highest, and the water quality of the lake water filtered by the PGA-3 membrane was the best. Thus, the above results indicate that this membrane modification strategy is extraordinarily effective in improving the antifouling properties and permeability of the PVDF UF membranes in practical applications.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Ying Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jian Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xueting Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China.
| | - Chen Wen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
19
|
Jiang H, Zhao Q, Wang P, Chen M, Wang Z, Ma J. Inhibition of algae-induced membrane fouling by in-situ formed hydrophilic micropillars on ultrafiltration membrane surface. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Gokulakrishnan SA, Arthanareeswaran G, László Z, Veréb G, Kertész S, Kweon J. Recent development of photocatalytic nanomaterials in mixed matrix membrane for emerging pollutants and fouling control, membrane cleaning process. CHEMOSPHERE 2021; 281:130891. [PMID: 34049085 DOI: 10.1016/j.chemosphere.2021.130891] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Membrane-based separation is an area of extensive research in wastewater treatment, which includes the control of pollution and reuse of water. The fabrication and modification membranes for prevention and reduction of pollution to provide quality water with fouling-free membranes through the wastewater treatment are the progressive approaches in the industries. Several research works have been extensively working on modification and fabrication polymer membranes with integration of advanced oxidation process (AOP) to overcome the membrane fouling. This review describes the modification of membranes with various nanomaterials such as inorganic and modified carbon which can be used for pollution control and enhance the anti-fouling properties of ultrafiltration membranes. The effects on nanomaterials loading percentage, nanomaterials interaction with the polymers and rejection performances of the surface tuned membrane are elaborated. Secondly, the fouled membrane chemical cleaning process and NaOCl adverse effect on polymer structure are critically investigated. Moreover, state-of-art in the photocatalytic self-cleaning process are reviewed in this manuscript, and future perspectives on fouling mitigation based on AOP integrated membrane technology have also discussed.
Collapse
Affiliation(s)
- S A Gokulakrishnan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Szabolcs Kertész
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Jihyang Kweon
- Water Treatment and Membrane Laboratory, Department of Environmental Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
21
|
Safikhani A, Vatanpour V, Habibzadeh S, Saeb MR. Application of graphitic carbon nitrides in developing polymeric membranes: A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Vatanpour V, Paziresh S. A melamine‐based covalent organic framework nanomaterial as a nanofiller in polyethersulfone mixed matrix membranes to improve separation and antifouling performance. J Appl Polym Sci 2021. [DOI: 10.1002/app.51428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
- Research Institute of Green Chemistry Kharazmi University Tehran Iran
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
| |
Collapse
|
23
|
Huang Y, Shang C, Li L. Novel N-doped graphene enhanced ultrafiltration nano-porous polyvinylidene fluoride membrane with high permeability and stability for water treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Wang F, Zheng T, Wang P, Chen M, Wang Z, Jiang H, Ma J. Enhanced Water Permeability and Antifouling Property of Coffee-Ring-Textured Polyamide Membranes by In Situ Incorporation of a Zwitterionic Metal-Organic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5324-5334. [PMID: 33728905 DOI: 10.1021/acs.est.0c07122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulation of the polyamide structure is critically important for the reverse-osmosis performance of thin-film composite (TFC) membranes in the field of water reuse and desalination. Herein, zwitterionic nanoparticles of zeolitic imidazolate framework-8 (PZ@ZIF-8) were fabricated and incorporated into the polyamide active layer through the interfacial polymerization method. A hydrophilic, zwitterionic coffee-ring structure was formed on the surface of polyamide thin-film nanocomposite (TFN) membranes due to the adjusted diffusion rate of m-phenylenediamine (MPD) from the aqueous phase into the organic phase during the interfacial polymerization process. Surface characterization demonstrated that the coffee-ring structure increased the amounts of water transport channels on the membrane surface and the intrinsic pores of PZ@ZIF-8 maintained the salt rejection. Antifouling and bactericidal activities of TFN membranes were enhanced remarkably owing to the bacterial-"defending" and bacterial-"attacking" behaviors of hydrophilic and zwitterionic groups from PZ@ZIF-8 nanoparticles. This work would provide a promising method for the application of MOFs to enhance the bio-/organic-fouling resistance of TFN membranes with high water permeation and salt rejection.
Collapse
Affiliation(s)
- Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haicheng Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
25
|
Cao G, Zhou W, Kou Y, Li Y, Li T, Wang Y, Cao D, Wu H, Wang G, Dang ZM. A comparative study on dielectric properties of PVDF/GO nanosheets encapsulated with different organic insulating shell. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1912094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guozheng Cao
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Wenying Zhou
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Yujia Kou
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Ying Li
- College of Materials Science and Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Ting Li
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Dan Cao
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Hongju Wu
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Guangheng Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Zhi-Min Dang
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
- State Key Laboratory of Power System and Department of Electrical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Liu J, Wang Y, Fan X, Liu H, Li J, He X, Hui A, Wang A. The high-efficiency synergistic and broad-spectrum antibacterial effect of cobalt doped zinc oxide quantum dots (Co-ZnO QDs) loaded cetyltributylphosphonium bromide (CTPB) modified MMT (C-MMT) nanocomposites. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Polisetti V, Ray P. Nano
SiO
2
and
TiO
2
embedded polyacrylonitrile/polyvinylidene fluoride ultrafiltration membranes: Improvement in flux and antifouling properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.49606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Veerababu Polisetti
- Membrane Science and Separation Technology Division Central Salt and Marine Chemicals Research Institute, Council of Scientific & Industrial Research Bhavnagar Gujarat India
| | - Paramita Ray
- Membrane Science and Separation Technology Division Central Salt and Marine Chemicals Research Institute, Council of Scientific & Industrial Research Bhavnagar Gujarat India
| |
Collapse
|
28
|
Jiang J, Shen Y, Yu D, Yang T, Wu M, Yang L, Petru M. Porous Film Coating Enabled by Polyvinyl Pyrrolidone (PVP) for Enhanced Air Permeability of Fabrics: The Effect of PVP Molecule Weight and Dosage. Polymers (Basel) 2020; 12:E2961. [PMID: 33322455 PMCID: PMC7763011 DOI: 10.3390/polym12122961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
This study developed a versatile and facile method for creating pores and tuning the porous structure in the polymer latex films by selectively etching the added functional polyvinyl pyrrolidone (PVP) molecules. The pore formed in the latex films had a similar morphology to that of PVP aggregation before etching. This observation promotes us to regulate the pore morphology that determines the film's property, such as air permeability through varying the PVP molecule weight and dosage. To this end, the effects of PVP molecule weight and dosage on the pore formation were systematically studied. The results showed that the average pore size of porous film decreased from >10 μm to sub-micron (about 0.4 μm) as the molecular weight or the dosage of PVP increased. This was ascribed to the strong adsorption affinity of PVP molecule onto the latex particle surface, which further hindered the diffusion and self-assembly of PVP molecule. In addition, this interaction became much stronger when the higher molecule weight of PVP or the higher dosage of PVP was employed, leading to the decreased size of PVP aggregation, as well as the formed pores in the latex films. Furthermore, the addition of PVP had little effect on the color of coated fabric based on the results of CIE L*a*b* measurement. The proposed facile method can be used to improve the air permeability of coated fabrics.
Collapse
Affiliation(s)
- Jiantang Jiang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Y.S.); (L.Y.)
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifeng Shen
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Y.S.); (L.Y.)
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Y.S.); (L.Y.)
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tao Yang
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (T.Y.); (M.P.)
| | - Minghua Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Y.S.); (L.Y.)
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Yang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Y.S.); (L.Y.)
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Michal Petru
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (T.Y.); (M.P.)
| |
Collapse
|
29
|
Ayyaru S, Ahn YH. Fabrication of a Novel Nanocomposite Ultrafiltration Membrane with Improved Antifouling Properties Using Functionalized HfO2 and Polyvinylidene Fluoride for Organic Foulant Mitigation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
30
|
Kang Y, Jiao S, Zhao Y, Wang B, Zhang Z, Yin W, Tan Y, Pang G. High-flux and high rejection TiO2 nanofibers ultrafiltration membrane with porous titanium as supporter. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Zhu J, Zhou S, Li M, Xue A, Zhao Y, Peng W, Xing W. PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118467] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Wang P, Liu X, Qiu W, Wang F, Jiang H, Chen M, Zhang W, Ma J. Catalytic degradation of micropollutant by peroxymonosulfate activation through Fe(III)/Fe(II) cycle confined in the nanoscale interlayer of Fe(III)-saturated montmorillonite. WATER RESEARCH 2020; 182:116030. [PMID: 32679388 DOI: 10.1016/j.watres.2020.116030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Low cost, green, regenerable catalyst for persulfate activation is the popularly concerned topic for the degradation of persistent organic micropollutants in drinking water. In this work, natural montmorillonite (MMT) saturated with Fe(III) ions was used to activate peroxymonosulfate (PMS) for the degradation of atrazine in raw drinking water. Results showed that the adsorption of atrazine was quickly completed within 1 min and the percentage degradation was finally increased up to 94.1% in 60 min. The d001-spacing of MMT was enlarged to 2.91 nm at the most by Fe(III) saturation. Atrazine was adsorbed into the nanoscale interlayer of Fe(III)-saturated montmorillonite (Fe-MMT), where the Fe(III)/Fe(II) cycle was sustainably realized through the accelerated transformation of electrons between Fe(III) and PMS. Meanwhile, the in-situ generated Fe(II) accelerated the decomposition of PMS to further proceed the degradation of atrazine through the oxidation of HO• and SO4•- radicals. This nanoconfined effect of PMS activation by Fe(III) was further confirmed through the degradation of various micropollutants in the backgrounds of river water. The selective catalytic oxidation of micropollutants through PMS activation was attributed to the 2D mesoporous structure of Fe-MMT, inhibiting the interlayer adsorption of larger molecular backgrounds (humic acids etc.). Fe(III)-saturated montmorillonite (Fe-MMT) provided a feasible and scalable method of PMS activation by Fe(III) for the degradation of micropollutants in drinking water.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaolin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haicheng Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
33
|
Ma C, Hu J, Sun W, Ma Z, Yang W, Wang L, Ran Z, Zhao B, Zhang Z, Zhang H. Graphene oxide-polyethylene glycol incorporated PVDF nanocomposite ultrafiltration membrane with enhanced hydrophilicity, permeability, and antifouling performance. CHEMOSPHERE 2020; 253:126649. [PMID: 32268250 DOI: 10.1016/j.chemosphere.2020.126649] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The novel highly hydrophilic composite additive, graphene oxide-polyethylene glycol (GO-PEG, further abbreviated as P-GO), was synthesized from GO and PEG by the esterification reaction. Then, P-GO was blended into a polyvinylidene fluoride (PVDF) casting solution as an additive, and the effects of P-GO on the performance of the PVDF ultrafiltration (UF) membrane were researched. When amount of added P-GO was 0.5 wt%, the flux of the resultant modified membrane (denoted as P/0.5P-GO) reached as high as 93 L m-2·h-1, that is twice than that of the pure PVDF membrane (45 L m-2·h-1). Furthermore, water contact angle results confirmed significantly improved hydrophilicity of the P/0.5P-GO membrane. Results of antifouling tests revealed that the P/0.5P-GO membrane showed the lowest total resistance and irreversible resistance among all the membranes prepared in this study, and after physical cleaning, its flux recovery ratio was the highest-78%. These results demonstrated improved antifouling performance of the P/0.5P-GO membrane. Therefore, it can be concluded that P-GO as an additive material for the PVDF membrane has satisfactory performance in improving the membrane hydrophilicity, permeability, and antifouling performance in practical applications.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China
| | - Jian Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Wenjing Sun
- Tianjin Binhai New Area Environmental Monitoring Centre, Tianjin, 300457, China
| | - Zhigang Ma
- Beijing OriginWater Technology Co., Ltd., Beijing, 102206, China
| | - Weiqin Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Zhilin Ran
- Institute of Innovational Education Research, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - Bin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhaohui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
34
|
Liu S, Liu JW, Wang H, Yang YX, Liu ST, Hanigan D, Zhao HZ. New Antifouling and Antibacterial Membrane Material for Highly Selective Removal of Nitrate and Phosphate. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Jin-Wei Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hong Wang
- Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
| | - Ya-Xin Yang
- Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
| | - Si-Tong Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, People’s Republic of China
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Hua-Zhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
35
|
Nguyen CH, Fu CC, Kao DY, Tran TTV, Juang RS. Adsorption removal of tetracycline from water using poly(vinylidene fluoride)/polyaniline-montmorillonite mixed matrix membranes. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Wang P, Wang F, Jiang H, Zhang Y, Zhao M, Xiong R, Ma J. Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. WATER RESEARCH 2020; 175:115649. [PMID: 32200335 DOI: 10.1016/j.watres.2020.115649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Increasing attention has been focused on the removal of micropollutants from contaminated drinking source water. However, low rejection efficiency and membrane fouling still inhibit further application of nanofiltration membrane in this field. Interesting results were found that the residual hydrolyzed-aluminum nanoparticles from supernatant after coagulation and sedimentation strongly improved the nanofiltration performance for micropollutant removal. A simulated raw water containing humic acids, micropollutants and kaolinite clay was employed to investigate the factors of water matrix affecting the nanoparticle-enhanced nanofiltration for micropollutant removal. Results of experiments showed that these hydrolyzed-aluminum nanoparticles easily induced the aggregation of bisphenol-A (BPA) and humic acids in the supernatant. The enhancement of BPA removal was mainly attributed to the repelling interaction between the Al-BPA-DOC complexity and in situ-modified membrane surface during nanofiltration. 'This in situ surface modification by the hydrolyzed-aluminum nanoparticles improved membrane hydrophilicity, roughness and positively-charging capacity. For the treatment of River Songhua water spiked with micropollutant, the percentage removal of BPA was improved to be 88.5%, much more than the case of single nanofiltration without coagulation (60.7%). Meanwhile, the membrane fouling was reduced by 2.13 times than the case of single nanofiltration without the dynamically deposited-layer of nanoparticles. This in situ modification of nanofiltration membrane by hydrolyzed-aluminum nanoparticles achieved excellent removal efficiency for micropollutants from River Songhua water background.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haicheng Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuchao Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ming Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ruohan Xiong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
37
|
Comparing Graphene Oxide and Reduced Graphene Oxide as Blending Materials for Polysulfone and Polyvinylidene Difluoride Membranes. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Graphene is a single atomic plane of graphite, and it exhibits unique electronic, thermal, and mechanical properties. Exfoliated graphene oxide (GO) contains various hydrophilic functional groups, such as hydroxyl, epoxide, and carboxyl groups, that can modify the hydrophobic characteristics of a membrane surface. Though reduced graphene oxide (rGO) has fewer functional groups than GO, its associated sp2 structures and physical properties can be recovered. A considerable amount of research has focused on the use of GO to obtain a pristine graphene material via reduction processes. In this study, polysulfone (PSf) and polyvinylidene fluoride (PVDF) membranes that were blended with GO and rGO, respectively, were fabricated by using the immersion phase inversion method and an n-methylpyrrolidone (NMP) solvent. Results showed that the graphene nanomaterials, GO and rGO, can change the pore morphology (size and structure) of both PSf and PVDF membranes. The optimum content of both was then investigated, and the highest flux enhancement was observed with the 0.10 wt% GO-blended PSf membrane. The presence of functional groups in GO within prepared PSf and PVDF membranes alters the membrane characteristics to hydrophilic. An antifouling test and rejection efficiency evaluation also showed that the 0.10 wt% membrane provided the best performance.
Collapse
|
38
|
Shin H, Park C, Lee CK, Lee YS, Kim JO. Mitigating biofouling with a vanillin coating on thin film composite reverse osmosis membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1677-1685. [PMID: 31755056 DOI: 10.1007/s11356-019-06653-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Several methods, such as pretreatment, membrane surface modification, feed water chlorination, and chemical cleaning, have recently been applied to control biofouling on reverse osmosis (RO) membranes-with limited success. As an alternative, compounds that inhibit bacterial quorum sensing can be used to disrupt formation of bacterial colonies. In this study, anti-biofouling using vanillin, which is a natural substance among quorum sensing inhibitor compounds, was trialed, by modifying RO membrane surfaces with vanillin, at various concentrations. We then reviewed consequential changes to membrane surface characteristics and vanillin anti-biofouling properties. A long-term RO membrane simulator was used to analyze permeability, contact angle was measured for hydrophilicity evaluation, and membrane surface morphology was analyzed, through atomic force microscopy and scanning electron microscopy. A quorum quenching effect was confirmed by utilizing Petrifilm to count bacteria on the surface of a modified membrane. As a result, the permeability of the surface modified membranes was slightly decreased compared to the pristine membrane, but the hydrophilicity was increased, and the number of colonies decreased remarkably, the membrane modified with 0.5 M vanillin outperforming that modified with 0.25 M vanillin.
Collapse
Affiliation(s)
- Hyunseo Shin
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Sungdong-Gu, Seoul, 04763, Republic of Korea
| | - Chansoo Park
- Research Engineering Development Inc., 488 Maesohol-ro, Namdong-gu, Incheon, 22223, Republic of Korea
| | - Chang-Kyu Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Sungdong-Gu, Seoul, 04763, Republic of Korea
- Research Engineering Development Inc., 488 Maesohol-ro, Namdong-gu, Incheon, 22223, Republic of Korea
| | - Yong-Soo Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Sungdong-Gu, Seoul, 04763, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Sungdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
39
|
Biswas P, Hoque NA, Thakur P, Saikh MM, Roy S, Khatun F, Bagchi B, Das S. Portable Self-Powered Piezoelectric Nanogenerator and Self-Charging Photo-Power Pack Using In Situ Formed Multifunctional Calcium Phosphate Nanorod-Doped PVDF Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17016-17026. [PMID: 31815478 DOI: 10.1021/acs.langmuir.9b03264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, biocompatible Ca3(PO4)2 nanorod-incorporated poly(vinylidene) difluoride films have been prepared via an in situ process. A good piezoelectricity (d33 ≈ 56.6 pC/N) along with a large dielectric constant of ∼3.48 × 105 at frequency 20 Hz has been achieved. Then, we have designed a biocompatible, highly durable, low-cost piezoelectric nanogenerator (CPNG) which shows the superiority in open-circuit voltage ∼47 V and current ∼1.8 μA generation with power density ∼47.4 mW cm-3 under the gentle touch of a finger. Excellent mechanical to electrical energy conversion efficiency (∼65.5%) of our developed CPNG leads to fast charging of a capacitor of 1 μF in 18 s and glowing of 26 light-emitting diodes (LEDs) under finger impartation. Further, a portable light-charging power pack (LCPP) has been developed using the high dielectric film as the storage function. Under light illumination, our LCPP generates open-circuit output voltage ∼1.29 V with short-circuit current 5.7 mA cm-2. Areal capacitance ∼1779 F m-2 and storage efficiency ∼88% are achieved. The device is able to lighten up 22 LEDs for 10 days after charging once.
Collapse
Affiliation(s)
- Prosenjit Biswas
- Department of Physics , Jadavpur University , Kolkata 700032 , India
| | - Nur Amin Hoque
- Department of Physics , Jadavpur University , Kolkata 700032 , India
| | - Pradip Thakur
- Department of Physics , Netaji Nagar College for Women , Kolkata 700092 , India
| | - Md Minarul Saikh
- Department of Physics , Jadavpur University , Kolkata 700032 , India
- Government General Degree College at Pedong , Kalimpong 734311 , India
| | - Swagata Roy
- Department of Physics , Jadavpur University , Kolkata 700032 , India
| | - Farha Khatun
- Department of Physics , Jadavpur University , Kolkata 700032 , India
| | - Biswajoy Bagchi
- Department of Medical Physics and Biomedical Engineering , University College London , London WC1E 6BT , U.K
| | - Sukhen Das
- Department of Physics , Jadavpur University , Kolkata 700032 , India
| |
Collapse
|
40
|
Ojha S, Paria S, Karan SK, Si SK, Maitra A, Das AK, Halder L, Bera A, De A, Khatua BB. Morphological interference of two different cobalt oxides derived from a hydrothermal protocol and a single two-dimensional metal organic framework precursor to stabilize the β-phase of PVDF for flexible piezoelectric nanogenerators. NANOSCALE 2019; 11:22989-22999. [PMID: 31769775 DOI: 10.1039/c9nr08315d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we have fabricated a piezoelectric nanogenerator (PENG) composed of a Co-oxide (Co3O4) doped electro active PVDF based nanocomposite for efficient piezoelectric energy harvesting application where the Co3O4 inclusion favours nucleation and polar β-phase stabilization in the nanocomposite. The morphological effect on the nucleation and β-phase stabilisation of PVDF has been explored experimentally. The flake-like morphology of Co3O4 nanoparticles, synthesized by using a MOF, has a more effective surface area to nucleate and stabilise the β-phase of PVDF than that of rod-like (hydrothermal) and spherical (commercial) nanoparticles. The PENG with PVDF and the 1.5 wt% MOF based Co3O4 (MPNG) shows an excellent open circuit voltage (∼37 V) and short circuit current (∼0.711 μA) upon human finger tapping. The maximum power density generated from the MPNG is ∼8.55 μW cm-2, which is well sufficient for the driving of portable electronic devices like LEDs, calculator wrist watches, humidity sensors etc. Also, from various easily accessible mechanical and biomechanical energy sources like heel pressing, walking, and machine vibration, the MPNG is capable of harvesting energy.
Collapse
Affiliation(s)
- Suparna Ojha
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Sarbaranjan Paria
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Sumanta Kumar Karan
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Suman Kumar Si
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Anirban Maitra
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Amit Kumar Das
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Lopamudra Halder
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Aswini Bera
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Anurima De
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | - Bhanu Bhusan Khatua
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| |
Collapse
|
41
|
PEG functionalized graphene oxide-silver nano-additive for enhanced hydrophilicity, permeability and fouling resistance properties of PVDF-co-HFP membranes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123646] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Jiang H, Zhao Q, Wang P, Ma J, Zhai X. Improved separation and antifouling properties of PVDF gravity-driven membranes by blending with amphiphilic multi-arms polymer PPG-Si-PEG. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Kou Y, Zhou W, Li X, Wang Z, Li Y, Cai H, Liu D, Chen F, Wang G, Dang ZM. Enhanced dielectric properties of PVDF nanocomposites with modified sandwich-like GO@PVP hybrids. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1669655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Yujia Kou
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, University of Science and Technology, Harbin, China
| | - Wenying Zhou
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, University of Science and Technology, Harbin, China
| | - Xu Li
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Zijun Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Ying Li
- College of Materials Science and Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Huiwu Cai
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Dengfeng Liu
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Fuxin Chen
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Guangheng Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
| | - Zhi-Min Dang
- College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an, China
- State Key Laboratory of Power System and Department of Electrical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Abed A, Bouazizi N, Giraud S, El Achari A, Campagne C, Thoumire O, El Moznine R, Cherkaoui O, Vieillard J, Azzouz A. Preparation of a novel composite based polyester nonwovens with high mechanical resistance and wash fastness properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Mu Y, Zhu K, Luan J, Zhang S, Zhang C, Na R, Yang Y, Zhang X, Wang G. Fabrication of hybrid ultrafiltration membranes with improved water separation properties by incorporating environmentally friendly taurine modified hydroxyapatite nanotubes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Ayyaru S, Pandiyan R, Ahn YH. Fabrication and characterization of anti-fouling and non-toxic polyvinylidene fluoride -Sulphonated carbon nanotube ultrafiltration membranes for membrane bioreactors applications. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Wang H, Lu X, Lu D, Wang P, Ma J. Development of a high-performance polysulfone hybrid ultrafiltration membrane using hydrophilic polymer-functionalized mesoporous SBA − 15 as filler. J Appl Polym Sci 2019. [DOI: 10.1002/app.47353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haidong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering; Harbin Institute of Technology; Harbin 150090 China
| | - Xiaofei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering; Harbin Institute of Technology; Harbin 150090 China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering; Harbin Institute of Technology; Harbin 150090 China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering; Harbin Institute of Technology; Harbin 150090 China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering; Harbin Institute of Technology; Harbin 150090 China
| |
Collapse
|
48
|
Xia W, Xie M, Feng X, Chen L, Zhao Y. Surface Modification of Poly(vinylidene fluoride) Ultrafiltration Membranes with Chitosan for Anti-Fouling and Antibacterial Performance. Macromol Res 2019. [DOI: 10.1007/s13233-019-7019-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Thankamony RL, Li X, Fan X, Sheng G, Wang X, Sun S, Zhang X, Lai Z. Preparation of Highly Porous Polymer Membranes with Hierarchical Porous Structures via Spinodal Decomposition of Mixed Solvents with UCST Phase Behavior. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44041-44049. [PMID: 30457321 DOI: 10.1021/acsami.8b16120] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The predominant method to prepare polymer membranes is based on phase inversion. However, this method always leads to a dense skin with low porosity when normal polymers are used. Using the self-assembly of certain block copolymers, it is possible to prepare uniform pores with high porosity, but the prices of these polymers are too high to be afforded in practical applications. Here, we report a novel strategy to prepare highly porous and asymmetric polymer membranes using the widely used poly(vinylidene fluoride) (PVDF) as a prototype. The method combines spinodal decomposition with phase inversion utilizing mixed solvents that have the unique upper critical solution temperature phase behavior. The spinodal decomposition generates a thin surface layer containing a high density of relatively uniform pores in the mesoporous range, and the phase inversion generates a thick bulk layer composed of macrovoids; the two types of structures are interconnected, yielding a highly permeable, selective, and mechanically strong porous membrane. The membranes show an order of magnitude higher water permeance than commercial membranes and efficient molecular sieving of macromolecules. Notably, our strategy provides a general toolbox to prepare highly porous membranes from normal polymers. By blending PVDF with cellulose acetate (CA), a highly porous PVDF/CA membrane was prepared and showed similarly high separation performance, but the higher hydrophilicity of CA improved the membrane flux in the presence of proteins.
Collapse
|
50
|
Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES–STiO2) ultrafiltration membranes for fouling mitigation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|