1
|
Sengar D, Pathan NS, Gajbhiye V. D-bait: A siDNA for regulation of DNA-protein kinases against DNA damage and its implications in cancer. Int J Pharm 2025; 673:125416. [PMID: 40024452 DOI: 10.1016/j.ijpharm.2025.125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
siDNA fragments, also called Dbait and Pbait, are small DNA oligonucleotides of 30-32 base pairs that cause impairment in DNA repair pathways. Like siRNA and miRNA molecules, which lead to the degradation of mRNA molecules through the Argonaute and Drosha machinery, respectively, Dbait molecules act as false DNA damage signals and trigger and exhaust the DNA repair machinery. In normal cells with no significant DNA damage, the influence of these molecules is negligible. However, in cancer, when there is heavy DNA damage due to replication and anticancer therapies, the cancer cell is heavily dependent on DNA repair proteins to keep the genome intact and limit breaks. This phenomenon primarily occurs during radiation therapy, as significant DNA damage surpasses several DNA repair mechanisms, causing an accumulation of unrepaired lesions and ultimately leading to cell death. This review explores the therapeutic capacity of siDNA molecules in cancer treatment by stimulating the repair mechanisms in cells that depend on DNA repair pathways. For aggressive malignancies such as glioblastoma, prostate cancer, and colorectal cancer, the use of siDNA as a radiosensitizer, especially when combined with other treatments, increases the vulnerability of tumor cells to radiation-induced DNA damage, hence potentially enhancing therapy results.
Collapse
Affiliation(s)
- Devyani Sengar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Nida Sayed Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Tarwadi, Pambudi S, Sriherwanto C, Sasangka AN, Bowolaksono A, Wijayadikusumah AR, Zeng W, Rachmawati H, Kartasasmita RE, Kazi M. Inclusion of TAT and NLS sequences in lipopeptide molecules generates homogenous nanoparticles for gene delivery applications. Int J Pharm 2024; 662:124492. [PMID: 39038720 DOI: 10.1016/j.ijpharm.2024.124492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
PURPOSES The objective of this study is to develop a versatile gene carrier based on lipopeptides capable of delivering genetic material into target cells with minimal cytotoxicity. METHODS Two lipopeptide molecules, palmitoyl-CKKHH and palmitoyl-CKKHH-YGRKKRRQRRR-PKKKRKV, were synthesized using solid phase peptide synthesis and evaluated as transfection agents. Physicochemical characterization of the lipopeptides included a DNA shift mobility assay, particle size measurement, and transmission electron microscopy (TEM) analysis. Cytotoxicity was assessed in CHO-K1 and HepG2 cells using the MTT assay, while transfection efficiency was determined by evaluating the expression of the green fluorescent protein-encoding gene. RESULTS Our findings demonstrate that the lipopeptides can bind, condense, and shield DNA from DNase degradation. The inclusion of the YGRKKRRQRRR sequence, a transcription trans activator, and the PKKKRKV sequence, a nuclear localization signal, imparts desirable properties. Lipopeptide-based TAT-NLS/DNA nanoparticles exhibited stability for up to 20 days when stored at 6-8 °C, displaying uniformity with a compact size of approximately 120 nm. Furthermore, the lipopeptides exhibited lower cytotoxicity compared to the poly-L-lysine. Transfection experiments revealed that protein expression mediated by the lipopeptide occurred at a charge ratio ranging from 4.0 to 8.0. CONCLUSION These results indicate that the lipopeptide, composed of a palmitoyl alkyl chain and TAT and NLS sequences, can efficiently condense and protect DNA, form stable and uniform nanoparticles, and exhibit promising characteristics as a potential gene carrier with minimal cytotoxicity.
Collapse
Affiliation(s)
- Tarwadi
- Research Center for Vaccines and Drugs, National Agency for Research and Innovation (BRIN), Building 610-611 Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia; PT Indomabs Biosantika Utama, Gedung Technology Business and Innovation Centre (TBIC), Pengasinan, Gunung Sindur, Kabupaten Bogor, Jawa Barat 16340, Indonesia.
| | - Sabar Pambudi
- Research Center for Vaccines and Drugs, National Agency for Research and Innovation (BRIN), Building 610-611 Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia.
| | - Catur Sriherwanto
- Research Centre for Applied Microbiology, National Agency for Research and Innovation (BRIN), Building 610-611 Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia.
| | - Ayu N Sasangka
- Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia.
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia.
| | - Acep R Wijayadikusumah
- Research and Development Division, PT. Bio Farma, Jl. Pasteur No 28 Bandung, Jawa Barat 40161, Indonesia.
| | - Weiguang Zeng
- Peter Doherty Institute, The University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia.
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa 10 Bandung, Jawa Barat 40132, Indonesia; Research Centre of Nano Sciences and Nanotechnology, Bandung Institute of Technology, Jl. Ganesa 10 Bandung 40132, Jawa Barat, Indonesia.
| | - Rahmana E Kartasasmita
- School of Pharmacy, Bandung Institute of Technology, Jl. Ganesa 10 Bandung, Jawa Barat 40132, Indonesia.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, POBOX-2457, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
3
|
Ottonelli I, Adani E, Bighinati A, Cuoghi S, Tosi G, Vandelli MA, Ruozi B, Marigo V, Duskey JT. Strategies for Improved pDNA Loading and Protection Using Cationic and Neutral LNPs with Industrial Scalability Potential Using Microfluidic Technology. Int J Nanomedicine 2024; 19:4235-4251. [PMID: 38766661 PMCID: PMC11102183 DOI: 10.2147/ijn.s457302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical "post-formulation" DNA addition vs "pre" addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 µg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 µg/mL of pDNA with the "post" method, while maintaining their characteristics up to 100 µg/mL of pDNA with the "pre" addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 µg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sabrina Cuoghi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023; 11:biomedicines11030705. [PMID: 36979684 PMCID: PMC10045176 DOI: 10.3390/biomedicines11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lung cancer remains a major public health problem both in terms of incidence and specific mortality despite recent developments in terms of prevention, such as smoking reduction policies and clinical management advances. Better lung cancer prognosis could be achieved by early and accurate diagnosis and improved therapeutic interventions. Nanotechnology is a dynamic and fast-developing field; various medical applications have been developed and deployed, and more exist as proofs of concepts or experimental models. We aim to summarize current knowledge relevant to the use of nanotechnology in lung cancer management. Starting from the chemical structure-based classification of nanoparticles, we identify and review various practical implementations roughly organized as diagnostic or therapeutic in scope, ranging from innovative contrast agents to targeted drug carriers. Available data are presented starting with standards of practice and moving to highly experimental methods and proofs of concept; particularities, advantages, limits and future directions are explored, focusing on the potential impact on lung cancer clinical prognosis.
Collapse
Affiliation(s)
- Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Andrei Cernomaz
- III-rd Medical Department, Discipline of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Bogdan Veliceasa
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Vasile Marinca
- III-rd Medical Department, Discipline of Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 2022; 343:564-583. [DOI: 10.1016/j.jconrel.2022.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
|
6
|
López RR, Ocampo I, Font de Rubinat PG, Sánchez LM, Alazzam A, Tsering T, Bergeron KF, Camacho-Léon S, Burnier JV, Mounier C, Stiharu I, Nerguizian V. Parametric Study of the Factors Influencing Liposome Physicochemical Characteristics in a Periodic Disturbance Mixer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8544-8556. [PMID: 34232664 DOI: 10.1021/acs.langmuir.1c01005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liposomes encapsulate different substances ranging from drugs to genes. Control over the average size and size distribution of these nanoparticles is vital for biomedical applications since these characteristics determine to a high degree where liposomes will accumulate in the human body. Micromixers enable the continuous flow synthesis of liposomes, improving size control and reproducibility. Recently, Dean flow dynamics-based micromixers, such as the periodic disturbance mixer (PDM), have been shown to produce controlled-size liposomes in a scalable and reproducible way. However, contrary to micromixers based on molecular diffusion or chaotic advection, their production factors and their influence over liposome properties have not yet been addressed thoroughly. In this work, we present a comprehensive parametric study of the effects of flow conditions and molecular changing factors such as concentration, lipid type, and temperature on the physicochemical characteristics of liposomes. Numerical models and confocal images are used to quantitatively and qualitatively evaluate mixing performance under different liposome production conditions and their relationship with vesicle properties. The total flow rate (TFR) and, to a lesser extent, the flow rate ratio (FRR) control the liposome size and size distribution. Effects on liposome size are also observed by changing the molecular factors. Moreover, the liposome ζ potential is independent of the factors studied here. The micromixer presented in this work enables the production of liposomes as small as 24 nm, with monodispersed to low or close to low polydispersed liposome populations as well as a production rate as high as 41 mg/h.
Collapse
Affiliation(s)
- Rubén R López
- Department of Electrical Engineering, École de technologie supérieure, 1100 Notre Dame West, Montreal, Quebec H3C 1K3, Canada
- Cancer Research Program, RI-MUHC, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Ixchel Ocampo
- School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico Monterrey, N.L., Monterrey 64849, Mexico
| | - Paula G Font de Rubinat
- Department of Electrical Engineering, ETS d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, 647 Avinguda Diagonal, Catalunya, Barcelona 08028, Spain
| | - Luz-María Sánchez
- Department of Engineering, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Qro., Santiago de Querétaro 76010, Mexico
| | - Anas Alazzam
- Department of Electrical Engineering, École de technologie supérieure, 1100 Notre Dame West, Montreal, Quebec H3C 1K3, Canada
- System on Chip Center, Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Thupten Tsering
- Cancer Research Program, RI-MUHC, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Karl-F Bergeron
- Centre de Recherche sur Les Maladies Orphelines (CERMO-FC), Département des Sciences Biologiques, Université du Québec à Montréal, 141 Président-Kennedy, Montréal, Québec H2X 1Y4, Canada
| | - Sergio Camacho-Léon
- School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico Monterrey, N.L., Monterrey 64849, Mexico
| | - Julia V Burnier
- Cancer Research Program, RI-MUHC, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Catherine Mounier
- Centre de Recherche sur Les Maladies Orphelines (CERMO-FC), Département des Sciences Biologiques, Université du Québec à Montréal, 141 Président-Kennedy, Montréal, Québec H2X 1Y4, Canada
| | - Ion Stiharu
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada
| | - Vahé Nerguizian
- Department of Electrical Engineering, École de technologie supérieure, 1100 Notre Dame West, Montreal, Quebec H3C 1K3, Canada
| |
Collapse
|
7
|
Christensen G, Barut L, Urimi D, Schipper N, Paquet-Durand F. Investigating Ex Vivo Animal Models to Test the Performance of Intravitreal Liposomal Drug Delivery Systems. Pharmaceutics 2021; 13:1013. [PMID: 34371707 PMCID: PMC8309192 DOI: 10.3390/pharmaceutics13071013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022] Open
Abstract
There is a strong need for innovative and efficient drug delivery systems for ocular therapy development. However, testing intravitreal drug delivery systems without using live animals is challenging. Ex vivo animal models offer an interesting alternative. We analyzed the potential of using fresh porcine eyes obtained from the local slaughterhouse as a model for testing the intravitreal biodistribution and retention of liposomes with or without polyethylene glycol (PEG) conjugation and with different surface charges. The histology of the eyes was analyzed to localize the liposomes, and it was found that liposomes with PEG absorbed rapidly on the retina (within 1 h), with positively charged and PEG-coated liposomes being retained for at least 24 h. In parallel, fluorophotometry was employed on intact eyes, to determine the pharmacokinetics of the fluorophore calcein, as a substitute for a small hydrophilic therapeutic compound. We found a 4.5-fold increase in the vitreous half-life of calcein loaded in liposomes, compared with the free solution. Retinal toxicity was addressed using murine-derived retinal explant cultures. Liposomes were non-toxic up to 500 µg/mL. Toxicity was observed at 5 mg/mL for anionic and cationic liposomes, with 2-fold and 2.5-fold increased photoreceptor cell death, respectively. Overall, we could show that important ocular drug delivery considerations such as pharmacokinetics and biodistribution can be estimated in ex vivo porcine eyes, and may guide subsequent in vivo experiments.
Collapse
Affiliation(s)
- Gustav Christensen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn Straße 5-7, 72076 Tübingen, Germany; (G.C.); (L.B.)
| | - Leon Barut
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn Straße 5-7, 72076 Tübingen, Germany; (G.C.); (L.B.)
| | - Dileep Urimi
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, 151 36 Södertälje, Sweden; (D.U.); (N.S.)
| | - Nicolaas Schipper
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, 151 36 Södertälje, Sweden; (D.U.); (N.S.)
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn Straße 5-7, 72076 Tübingen, Germany; (G.C.); (L.B.)
| |
Collapse
|
8
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Shabana AM, Kambhampati SP, Hsia RC, Kannan RM, Kokkoli E. Thermosensitive and biodegradable hydrogel encapsulating targeted nanoparticles for the sustained co-delivery of gemcitabine and paclitaxel to pancreatic cancer cells. Int J Pharm 2021; 593:120139. [PMID: 33278494 DOI: 10.1016/j.ijpharm.2020.120139] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Pancreatic cancer represents a life threatening disease with rising mortality. Although the synergistic combination of gemcitabine and albumin-bound paclitaxel has proven to enhance the median survival rates as compared to gemcitabine alone, their systemic and repeated co-administration has been associated with serious toxic side effects and poor patient compliance. For this purpose, we designed a thermosensitive and biodegradable hydrogel encapsulating targeted nanoparticles for the local and sustained delivery of gemcitabine (GEM) and paclitaxel (PTX) to pancreatic cancer. GEM and PTX were loaded into PR_b-functionalized liposomes targeting integrin α5β1, which was shown to be overexpressed in pancreatic cancer. PR_b is a fibronectin-mimetic peptide that binds to α5β1 with high affinity and specificity. The PR_b liposomes were encapsulated into a poly(δ-valerolactone-co-D,L-lactide)-b-poly(ethylene glycol)-b-poly(δ-valerolactone-co-D,L-lactide) (PVLA-PEG-PVLA) hydrogel and demonstrated sustained release of both drugs compared to PR_b-functionalized liposomes free in solution or free drugs in the hydrogel. Moreover, the hydrogel-nanoparticle system was proven to be very efficient towards killing monolayers of human pancreatic cancer cells (PANC-1), and showed a significant reduction in the growth pattern of PANC-1 tumor spheroids as compared to hydrogels encapsulating non-targeted liposomes with GEM/PTX or free drugs, after a one week treatment period. Our hybrid hydrogel-nanoparticle system is a promising platform for the local and sustained delivery of GEM/PTX to pancreatic cancer, with the goal of maximizing the therapeutic efficacy of this synergistic drug cocktail while potentially minimizing toxic side effects and eliminating the need for repeated co-administration.
Collapse
Affiliation(s)
- Ahmed M Shabana
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Siva P Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Ru-Ching Hsia
- Department of Neural and Pain Sciences, Electron Microscopy Core Imaging Facility, University of Maryland Baltimore Dental School, Baltimore, MD 21201, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Efrosini Kokkoli
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
10
|
Liposome-based drug delivery of various anticancer agents of synthetic and natural product origin: a patent overview. Pharm Pat Anal 2020; 9:87-116. [DOI: 10.4155/ppa-2019-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipid-based liposomal vesicles are among the most effective delivery options currently available for various classes of anticancer drugs. The patents granted to inventions disclosing details on liposomal delivery module by the US Patent and Trademark Office, European Patent Office, and world patent holdings through WIPO (World Intellectual Property Organization) patenting have been sorted based upon liposome, and anticancer keywords within the abstract and claims sections of the patents for the period between 2000 and 2019, thereby disclosing novel liposome formulations encapsulating single, or combination of chemotherapeutic agents that have been far more chemically and physiologically stable, therapeutically efficacious, and comparatively less toxic than their nonliposomal free-drug counterparts. The added stability, site-specific transport, and payload delivery, enhanced bioavailability, fast body clearance, and biocompatibility together with the controlled and sustained delivery-related benefits claimed in the patent literature have been exclusively discussed with a focus on the last 5-year period.
Collapse
|
11
|
Lee H, Jiang D, Pardridge WM. Lyoprotectant Optimization for the Freeze-Drying of Receptor-Targeted Trojan Horse Liposomes for Plasmid DNA Delivery. Mol Pharm 2020; 17:2165-2174. [PMID: 32315188 DOI: 10.1021/acs.molpharmaceut.0c00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trojan horse liposomes (THLs) are a form of ligand-targeted nanomedicine, where a plasmid DNA is encapsulated in the interior of a 100-150 nm pegylated liposome, and the tips of a fraction of the surface pegylated strands are covalently linked to a receptor-specific monoclonal antibody (MAb) via a thio-ether linkage. The goal of this work was to develop a lyophilization methodology that enables retention of the structure and function of the THLs following the freeze-drying/hydration process. THL fusion and leakage of plasmid DNA were observed with several lyoprotectants, including trehalose, hyaluronic acid, γ-cyclodextrin, or sulfobutylether-β-cyclodextrin. However, the use of hydroxypropyl-γ-cyclodextrin, at a 40:1 wt/wt ratio relative to the THL phospholipid, eliminated liposome fusion and produced high retention of encapsulated plasmid DNA and THL-mediated gene expression after lyophilization followed by hydration. The freeze-dried THL cake was amorphous without cavitation, and the diameters and functional properties of the THLs were preserved following hydration of cakes stored for at least six months. Intravenous administration of the hydrated freeze-dried THLs in the Rhesus monkey demonstrated the safety of the formulation. Blood plasmid DNA was measured with a quantitative polymerase chain reaction method, which enabled a pharmacokinetics analysis of the blood clearance of the THL-encapsulated plasmid DNA in the primate. The work shows that optimization of the lyoprotectant enables long-term storage of the MAb-targeted DNA encapsulated liposomes in the freeze-dried state.
Collapse
Affiliation(s)
- Hungyen Lee
- The Lipogene Company, Inc. Thousand Oaks, California 91361, United States
| | - Dahai Jiang
- The Lipogene Company, Inc. Thousand Oaks, California 91361, United States
| | | |
Collapse
|
12
|
Karimi H, Soleimanjahi H, Abdoli A, Banijamali RS. Combination therapy using human papillomavirus L1/E6/E7 genes and archaeosome: a nanovaccine confer immuneadjuvanting effects to fight cervical cancer. Sci Rep 2020; 10:5787. [PMID: 32238821 PMCID: PMC7113280 DOI: 10.1038/s41598-020-62448-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Cervical cancer caused by human papillomavirus (HPV) is a major health problem in women. DNA vaccines are a perfect approach to immunization, but their potency in clinical trials has been insufficient for generating effective immunity, which may be related to the degradation of the DNA via nucleases, poor delivery to antigen-presenting cells (APCs), and insufficient uptake of DNA plasmids by cells upon injection. Archaeosome is a nano-delivery systems based on liposomes with their immunological role have been developed for gene delivery. In this study, human papillomavirus type 16 genes, containing truncated L1, E6, and E7, were simultaneously used in combination therapy with archaeosome and assessed in vivo. Findings supported that archaeosomes promotes immune responses to DNA vaccines and a long-term CTL response was generated with a low antigen dose. Combination therapy with archaeosome/L1/E6/E7 vaccines exhibited a strong cytolytic activity against tumor cells and induced prophylactic and therapeutic effect against the development of tumor in the animal model.
Collapse
Affiliation(s)
- Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Razieh Sadat Banijamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Dong W, Wu P, Zhou D, Huang J, Qin M, Yang X, Wan M, Zong Y. Ultrasound-Mediated Gene Therapy of Hepatocellular Carcinoma Using Pre-microRNA Plasmid-Loaded Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:90-107. [PMID: 31668943 DOI: 10.1016/j.ultrasmedbio.2019.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 05/19/2023]
Abstract
The PIK3 CA gene encodes the p110α protein subunit and is one of the most efficient cancer genes in solid and hematological tumors including hepatocellular carcinoma (HCC). There are currently ongoing therapies against tumors based on PIK3 CA inhibition. Because microRNAs (miRNAs) play an important role in post-transcriptional regulation and are also involved in the inhibition of PIK3 CA expression to suppress cancer cell proliferation, overexpression of tumor-suppressive miRNA is a promising therapeutic approach for HCC therapy. The successful and localized delivery of miRNA overexpression vectors (pre-miRNA plasmids) is very important in improving the therapeutic efficacy of this miRNA therapy strategy. In the study described here, submicron acoustic phase-shifted nanodroplets were used to efficiently deliver pre-miRNA plasmid in vitro and in vivo for HCC therapy under focused ultrasound (US) activation. Briefly, six miRNAs, inhibiting PIK3 CA and downregulated in HCC, were selected through summary and analysis of the currently existing literature data. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and cell apoptosis assay revealed that pre-miR-139, -203a, -378a and -422a plasmids among the six miRNA overexpression vectors could suppress growth of the hepatoma cell line SMMC-7721. These four pre-miRNA plasmids were then electrostatically adhered to positively charged lipid-shelled nanodroplets to obtain plasmid-loaded nanodroplets (PLNDs). The PLND-generated microbubbles oscillated and even collapsed under US exposure to release the loaded pre-miRNA plasmids and enhance their cellular uptake through consequent sonoporation, that is, formation of small pores on the cell membrane induced by the mechanical effects of PLND cavitation. Fluorescence microscopy results revealed that PLNDs could effectively deliver the aforementioned four pre-miRNA plasmids into SMMC-7721 cells in vitro under 1.2-MHz 60-cycle sinusoid US exposure with a peak negative pressure >5.5 MPa at a 40-Hz pulse repetition frequency. Plasmid delivery efficiency and cell viability positively correlated with the inertial cavitation dose that was determined mainly by peak negative pressure. Furthermore, PLNDs combined with US were evaluated in vivo to deliver these four pre-miRNAs plasmids and verify their therapeutic efficacy in subcutaneous tumor of the mouse xenograft HCC model. The results revealed that the PLNDs loaded with pre-miR-139 and -378a plasmids could effectively suppress tumor growth after US treatment. Thus, combination of pre-miRNA PLNDs with US activation seems to constitute a potential strategy for HCC therapy.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Pengying Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Di Zhou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Jixiu Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Mengfan Qin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Xinxing Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China; Department of Ultrasound, First Affiliated Hospital of AFMU (Xijing Hospital), Air Force Medical University, Xi' an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China.
| |
Collapse
|
14
|
Lin CY, Tsai CH, Feng LY, Chai WY, Lin CJ, Huang CY, Wei KC, Yeh CK, Chen CM, Liu HL. Focused ultrasound-induced blood brain-barrier opening enhanced vascular permeability for GDNF delivery in Huntington's disease mouse model. Brain Stimul 2019; 12:1143-1150. [PMID: 31079989 DOI: 10.1016/j.brs.2019.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the gene encoding the huntingtin (Htt) protein, which results in a protein containing an abnormally expanded polyglutamine (polyQ) sequence. The expanded polyQ in the Htt protein is toxic to brain cells. No therapy exists to delay disease progression. METHODS This study describes a gene-liposome system that synergistically applied focused ultrasound (FUS)-blood-brain barrier (BBB) opening for rescuing motor and neuropathological impairments when administered from pre to post-symptomatic transgenic mouse models of HD. DPPC liposomes (LPs) are designed to carry glia cell line-derived neurotrophic factor (GDNF) plasmid DNA (GDNFp) to form a GDNFp-liposome (GDNFp-LPs) complex. Pulsed FUS exposure with microbubbles (MBs) was used to induce BBB opening for non-viral, non-invasive, and targeted gene delivery into the central nervous system (CNS) for therapeutic purposes. RESULTS FUS-gene therapy significantly improved motor performance with GDNFp-LPs + FUS treated HD mice equilibrating longer periods in the animal behavior. Reflecting the improvements observed in motor function, GDNF overexpression results in significantly decreased formation of polyglutamine-expanded aggregates, reduced oxidative stress and apoptosis, promoted neurite outgrowth, and improved neuronal survival. Immunoblotting and histological staining further confirmed the neuroprotective effect from delivery of GDNF genes to neuronal cells. CONCLUSIONS This study suggests that the GDNFp-LPs plus FUS sonication can provide an effective gene therapy to achieve local extravasation and triggered gene delivery for non-invasive in vivo treatment of CNS diseases.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chih-Hung Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan, 333, Taiwan
| | - Li-Ying Feng
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wen-Yen Chai
- Department of Electrical Engineering, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chia-Jung Lin
- Department of Electrical Engineering, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Hao-Li Liu
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Department of Electrical Engineering, Chang Gung University, Taoyuan, 333, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
15
|
Acar H, Ting JM, Srivastava S, LaBelle JL, Tirrell MV. Molecular engineering solutions for therapeutic peptide delivery. Chem Soc Rev 2018; 46:6553-6569. [PMID: 28902203 DOI: 10.1039/c7cs00536a] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins and their interactions in and out of cells must be well-orchestrated for the healthy functioning and regulation of the body. Even the slightest disharmony can cause diseases. Therapeutic peptides are short amino acid sequences (generally considered <50 amino acids) that can naturally mimic the binding interfaces between proteins and thus, influence protein-protein interactions. Because of their fidelity of binding, peptides are a promising next generation of personalized medicines to reinstate biological harmony. Peptides as a group are highly selective, relatively safe, and biocompatible. However, they are also vulnerable to many in vivo pharmacologic barriers limiting their clinical translation. Current advances in molecular, chemical, and nanoparticle engineering are helping to overcome these previously insurmountable obstacles and improve the future of peptides as active and highly selective therapeutics. In this review, we focus on self-assembled vehicles as nanoparticles to carry and protect therapeutic peptides through this journey, and deliver them to the desired tissue.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
16
|
Maiti C, Dhara D. Energy-Transfer Phenomena in Thermoresponsive and pH- Switchable Fluorescent Diblock Copolymer Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12130-12139. [PMID: 28984463 DOI: 10.1021/acs.langmuir.7b01891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe the development of a polymeric vesicle that not only selectively fluoresces at low pH, a condition prevailing in cancer cells, but also can potentially monitor the thermoresponsive release of a drug even if the drug is nonfluorescent. The developed fluorescence resonance energy transfer (FRET)-based thermoresponsive vesicular nanocarriers are composed of a new poly(PEGMA)-b-poly(NIPA-r-R6GMED) block copolymer, which undergoes pH-switchable superior turn on-off fluorescence characteristics. The block copolymer was synthesized using the RAFT technique, and its solution properties and self-assembly behavior were investigated by turbidity measurements, fluorescence spectroscopy, 1H NMR, dynamic light scattering, and transmission electron microscopy. The block copolymer self-assembled to form nanostructured vesicles above the critical aggregation temperature under physiologically relevant conditions. Steady-state and time-resolved fluorescence spectroscopy were utilized to study the FRET process between encapsulated hydrophobic guest C-153 (donor) and polymer-bound R6GMED units (acceptor) in the thermoresponsive vesicles. The FRET rate and efficiency were found to vary as a result of the pH-dependent changes in the quantum yield of the acceptor molecules. The occurrence of a highly efficient FRET in this polymeric vesicular nanocarrier at acidic pH, a condition similar to the cytoplasm and cell nucleus in leukemic tissues, and the ability to encapsulate hydrophilic and hydrophobic molecules and their temperature-controlled release make it potentially useful in imaging guided real-time monitoring of drug-delivery vehicles.
Collapse
Affiliation(s)
- Chiranjit Maiti
- Department of Chemistry, Indian Institute of Technology , Kharagpur, West Bengal 721302, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology , Kharagpur, West Bengal 721302, India
| |
Collapse
|
17
|
Wei L, Zhang X, Ye Q, Yang Y, Chen X. The transfection of A20 gene prevents kidney from ischemia reperfusion injury in rats. Mol Med Rep 2017; 16:1486-1492. [PMID: 29067462 DOI: 10.3892/mmr.2017.6725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion may induce inflammation and cell death through the nuclear factor (NF)‑κB signaling pathway. As a negative regulator of NF‑κB, zinc finger A20 exhibits anti-apoptotic and anti‑inflammatory effects in vitro. The present study was designed to upregulate A20 expression using an A20 transfection approach to investigate the in vivo protective effects of the A20 gene on renal ischemia reperfusion injury. The A20 gene was cloned into a pcDNA3.1 vector to construct the expression plasmid pcDNA3.1‑A20. The plasmid was wrapped with a liposome and injected intravenously into rats 48 h prior to establishing the models of renal ischemia reperfusion injury. Saline and the empty plasmid pcDNA3.1 were used as controls. Following 24 h post‑operation, A20 expression was determined using reverse transcription‑quantitative polymerase chain reaction and western blotting. The renal function and structure were assessed by analyzing the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN) and histological features. Renal tissues were additionally examined for renal tubular cell apoptosis and NF‑κB activity. The results demonstrated that in vivo transfection of pcDNA3.1‑A20 induced renal A20 expression in rats. A20 overexpression in vivo significantly reduced renal injury as demonstrated by the improved levels of Scr and BUN and the reduction in histological damage. These improvements were accompanied by a suppression of renal proximal tubular epithelial cell apoptosis and an inhibition of NF‑κB activity. These results indicated that transfection of the A20 gene upregulates the expression of A20 in vivo and protects the kidneys from ischemia reperfusion injury via inhibition of the NF‑κB signal transduction pathway.
Collapse
Affiliation(s)
- Lixin Wei
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xianghui Zhang
- Department of Nephropathy, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519000, P.R. China
| | - Qiuping Ye
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yueer Yang
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiaowen Chen
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
18
|
Levine RM, Kokkoli E. Dual-ligand α5β1 and α6β4 integrin targeting enhances gene delivery and selectivity to cancer cells. J Control Release 2017; 251:24-36. [DOI: 10.1016/j.jconrel.2017.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
|
19
|
Kure T, Sakai H. Transmembrane Difference in Colloid Osmotic Pressure Affects the Lipid Membrane Fluidity of Liposomes Encapsulating a Concentrated Protein Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1533-1540. [PMID: 28106401 DOI: 10.1021/acs.langmuir.6b04643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A hemoglobin vesicle (Hb-V) is an artificial oxygen carrier encapsulating a highly concentrated hemoglobin solution (40 g/dL) in a liposome. The in vivo safety and efficacy of Hb-V suspension as a transfusion alternative and structural stability during storage have been studied extensively. Because the intraliposomal Hb aqueous solution can possess colloid osmotic pressure (COP, 200-300 Torr) that is much higher than that of blood plasma (20-25 Torr), a question arises as to whether the lipid membrane senses the transmembrane difference in COP. We examined the membrane microviscosity using a fluorescence polarization technique. To avoid the interference of red Hb on the fluorescence measurement, we used human serum albumin (HSA) as a substitute for Hb. Both HSA and Hb solutions show high COP depending on the concentration. Encapsulation of HSA solution (40 g/dL) in the liposome decreased the membrane microviscosity at a lower temperature (949 ± 8 cP → 607 ± 10 cP at 25 °C). The result indicates that the transmembrane osmotic stress induced by HSA encapsulation expands the liposome maximally with increasing spherical surface area, and the membrane fluidity is increased extremely. Even for such a condition, the lowest membrane microviscosity, 377 ± 10 cP at 60 °C, is much higher than that of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine liposome (40 ± 2 cP at 60 °C). Accordingly, Hb-V as well as HSA-V maintains a spherical structure and mechanical stability under transmembrane stress caused by high COP, as described in the literature.
Collapse
Affiliation(s)
- Tomoko Kure
- Department of Chemistry, Nara Medical University , 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University , 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
20
|
Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev 2017; 110-111:80-101. [PMID: 27539561 DOI: 10.1016/j.addr.2016.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022]
Abstract
Liposomal nanomedicine has led to clinically useful cancer therapeutics like Doxil and DaunoXome. In addition, peptide-functionalized liposomes represent an effective drug and gene delivery vehicle with increased cancer cell specificity, enhanced tumor-penetrating ability and high tumor growth inhibition. The goal of this article is to review the recently published literature of the peptide-amphiphiles that were used to functionalize liposomes, to highlight successful designs that improved drug and gene delivery to cancer cells in vitro, and cancer tumors in vivo, and to discuss the current challenges of designing these peptide-decorated liposomes for effective cancer treatment.
Collapse
|
21
|
Natsume Y, Wen HI, Zhu T, Itoh K, Sheng L, Kurihara K. Preparation of Giant Vesicles Encapsulating Microspheres by Centrifugation of a Water-in-oil Emulsion. J Vis Exp 2017:55282. [PMID: 28190062 PMCID: PMC5352288 DOI: 10.3791/55282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The constructive biology and the synthetic biology approach to creating artificial life involve the bottom-up assembly of biological or nonbiological materials. Such approaches have received considerable attention in research on the boundary between living and nonliving matter and have been used to construct artificial cells over the past two decades. In particular, Giant Vesicles (GVs) have often been used as artificial cell membranes. In this paper, we describe the preparation of GVs encapsulating highly packed microspheres as a model of cells containing highly condensed biomolecules. The GVs were prepared by means of a simple water-in-oil emulsion centrifugation method. Specifically, a homogenizer was used to emulsify an aqueous solution containing the materials to be encapsulated and an oil containing dissolved phospholipids, and the resulting emulsion was layered carefully on the surface of another aqueous solution. The layered system was then centrifuged to generate the GVs. This powerful method was used to encapsulate materials ranging from small molecules to microspheres.
Collapse
Affiliation(s)
- Yuno Natsume
- Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women's University;
| | - Hsin-I Wen
- Department of Bioorganization Research, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences
| | - Tong Zhu
- Department of Bioorganization Research, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences
| | - Kazumi Itoh
- Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women's University
| | - Li Sheng
- Department of Bioorganization Research, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences
| | - Kensuke Kurihara
- Department of Bioorganization Research, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences; Research Center for Complex Systems Biology, The University of Tokyo;
| |
Collapse
|
22
|
Silva Adaya D, Aguirre-Cruz L, Guevara J, Ortiz-Islas E. Nanobiomaterials' applications in neurodegenerative diseases. J Biomater Appl 2016; 31:953-984. [PMID: 28178902 DOI: 10.1177/0885328216659032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier is the interface between the blood and brain, impeding the passage of most circulating cells and molecules, protecting the latter from foreign substances, and maintaining central nervous system homeostasis. However, its restrictive nature constitutes an obstacle, preventing therapeutic drugs from entering the brain. Usually, a large systemic dose is required to achieve pharmacological therapeutic levels in the brain, leading to adverse effects in the body. As a consequence, various strategies are being developed to enhance the amount and concentration of therapeutic compounds in the brain. One such tool is nanotechnology, in which nanostructures that are 1-100 nm are designed to deliver drugs to the brain. In this review, we examine many nanotechnology-based approaches to the treatment of neurodegenerative diseases. The review begins with a brief history of nanotechnology, followed by a discussion of its definition, the properties of most reported nanomaterials, their biocompatibility, the mechanisms of cell-material interactions, and the current status of nanotechnology in treating Alzheimer's, Parkinson's diseases, and amyotrophic lateral sclerosis. Of all strategies to deliver drug to the brain that are used in nanotechnology, drug release systems are the most frequently reported.
Collapse
Affiliation(s)
- Daniela Silva Adaya
- 1 Experimental Laboratory for Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, México City, Mexico
| | - Lucinda Aguirre-Cruz
- 2 Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, México City, Mexico
| | - Jorge Guevara
- 3 Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mèxico City, Mexico
| | - Emma Ortiz-Islas
- 4 Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery, México City, Manuel Velasco Suárez, Mexico
| |
Collapse
|
23
|
Ghayempour S, Montazer M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J Microencapsul 2016; 33:497-510. [DOI: 10.1080/02652048.2016.1216187] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Soraya Ghayempour
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
| | - Majid Montazer
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
24
|
Draffehn S, Eichhorst J, Wiesner B, Kumke MU. Insight into the Modification of Polymeric Micellar and Liposomal Nanocarriers by Fluorescein-Labeled Lipids and Uptake-Mediating Lipopeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6928-6939. [PMID: 27295095 DOI: 10.1021/acs.langmuir.6b01487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Encapsulation of diagnostic and therapeutic compounds in transporters improves their delivery to the point of need. An even more efficient treatment of diseases can be achieved using carriers with targeting or protecting moieties. In the present work, we investigated micellar and liposomal nanocarriers modified with fluorescein, peptides, and polymers that are covalently bound to fatty acids or phospholipids to ensure a self-driven incorporation into the micelles or liposomes. First, we characterized the photophysics of the fluorescent probes in the absence and in the presence of nanocarriers. Changes in the fluorescence decay time, quantum yield, and intensity of a fluorescein-labeled fatty acid (fluorescein-labeled palmitic acid [fPA]) and a fluorescein-labeled lipopeptide (P2fA2) were found. By exploiting these changes, we investigated a lipopeptide (P2A2 as an uptake-mediating unit) in combination with different nanocarriers (micelles and liposomes) and determined the corresponding association constant Kass values, which were found to be very high. In addition, the mobility of fPA was exploited using fluorescence correlation spectroscopy (FCS) and fluorescence depolarization (FD) experiments to characterize the nanocarriers. Cellular uptake experiments with mouse brain endothelial cells provided information on the uptake behavior of liposomes modified by uptake-mediating P2A2 and revealed differences in the uptake behavior between pH-sensitive and pH-insensitive liposomes.
Collapse
Affiliation(s)
- Sören Draffehn
- Department of Physical Chemistry, University of Potsdam , Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Jenny Eichhorst
- Department of Cellular Imaging, Leibniz Institut für Molekulare Pharmakologie (FMP) , Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Burkhard Wiesner
- Department of Cellular Imaging, Leibniz Institut für Molekulare Pharmakologie (FMP) , Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Michael U Kumke
- Department of Physical Chemistry, University of Potsdam , Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
25
|
Levine RM, Dinh CV, Harris MA, Kokkoli E. Targeting HPV-infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine. Bioeng Transl Med 2016; 1:168-180. [PMID: 29313012 PMCID: PMC5675078 DOI: 10.1002/btm2.10022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023] Open
Abstract
The greatest obstacle to clinical application of cancer gene therapy is lack of effective delivery tools. Gene delivery vehicles must protect against degradation, avoid immunogenic effects and prevent off target delivery which can cause harmful side effects. PEGylated liposomes have greatly improved tumor localization of small molecule drugs and are a promising tool for nucleic acid delivery as the polyethylene glycol (PEG) coating protects against immune recognition and blood clearance. In this study, small interfering RNA (siRNA) was fully encapsulated within PEGylated liposomes by complexing the siRNA with a cationic polymer, polyethyleneimine (PEI), before encapsulation. Formation methods and material compositions were then investigated for their effects on encapsulation. This technology was translated for protective delivery of siRNA designed for human papillomavirus (HPV) viral gene silencing and cervical cancer treatment. PEGylated liposomes encapsulating siRNA were functionalized with the AG86 targeting peptide-amphiphile which binds to the α6β4 integrin, a cervical cancer biomarker. It was found that both targeting and polymer complexation before encapsulation were critical components to effective transfection.
Collapse
Affiliation(s)
- Rachel M. Levine
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Christina V. Dinh
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Michael A. Harris
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Efrosini Kokkoli
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| |
Collapse
|
26
|
Yan D, Ni LK, Chen HL, Chen LC, Chen YH, Cheng CC. Amphiphilic nanoparticles of resveratrol-norcantharidin to enhance the toxicity in zebrafish embryo. Bioorg Med Chem Lett 2015; 26:774-777. [PMID: 26764188 DOI: 10.1016/j.bmcl.2015.12.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/10/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022]
Abstract
Direct coupling of a hydrophobic drug and a hydrophilic natural product via an ester bond produced an amphiphilic adduct that formed liposomes. Liposomes of resveratrol-norcantharidin adduct are capable of forming a tadpole-like nanoparticle and exhibited high toxicity in zebrafish embryos to give the better transportation and the effective concentration into cells. Using fluorescent chromophore showed the liposome in the stomach and intestinal villi rather than in the skin and muscle. This result may provide an insight into the mechanism of action of traditional Chinese medicines, which often contain a significant amount of flavonoids and polyphenol analogs.
Collapse
Affiliation(s)
- Deyue Yan
- School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Lin-Kai Ni
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi City 60004, Taiwan, ROC
| | - Ho-Lun Chen
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi City 60004, Taiwan, ROC
| | - Li-Chou Chen
- Department of Styling, Tzu Hui Institute of Technology, Pingtung 926, Taiwan, ROC
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan, ROC.
| | - Chien-Chung Cheng
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi City 60004, Taiwan, ROC.
| |
Collapse
|
27
|
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33:941-51. [PMID: 26348965 PMCID: PMC4978509 DOI: 10.1038/nbt.3330] [Citation(s) in RCA: 4458] [Impact Index Per Article: 445.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
Collapse
Affiliation(s)
- Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
28
|
Jabbari E. Nanoparticles for Stem‐Cell Engineering. STEM‐CELL NANOENGINEERING 2015:143-169. [DOI: 10.1002/9781118540640.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Wu Y, Wang M, Sprouse D, Smith AE, Reineke TM. Glucose-containing diblock polycations exhibit molecular weight, charge, and cell-type dependence for pDNA delivery. Biomacromolecules 2014; 15:1716-26. [PMID: 24620753 PMCID: PMC4025584 DOI: 10.1021/bm5001229] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/11/2014] [Indexed: 12/21/2022]
Abstract
A series of diblock glycopolycations were created by polymerizing 2-deoxy-2-methacrylamido glucopyranose (MAG) with either a tertiary amine-containing monomer, N-[3-(N,N-dimethylamino) propyl] methacrylamide (DMAPMA), or a primary amine-containing unit, N-(2-aminoethyl) methacrylamide (AEMA). Seven structures were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization that varied in the block lengths of MAG, DMAPMA, and AEMA along with two homopolymer controls of DMAPMA and AEMA that lacked a MAG block. The polymers were all able to complex plasmid DNA into polyplex structures and to prevent colloidal aggregation of polyplexes in physiological salt conditions. In vitro transfection experiments were performed in both HeLa (human cervix adenocarcinoma) cells and HepG2 (human liver hepatocellular carcinoma) cells to examine the role of charge type, block length, and cell type on transfection efficiency and toxicity. The glycopolycation vehicles with primary amine blocks and PAEMA homopolymers revealed much higher transfection efficiency and lower toxicity when compared to analogs created with DMAPMA. Block length was also shown to influence cellular delivery and toxicity; as the block length of DMAPMA increased in the glycopolycation-based polyplexes, toxicity increased while transfection decreased. While the charge block played a major role in delivery, the MAG block length did not affect these cellular parameters. Lastly, cell type played a major role in efficiency. These glycopolymers revealed higher cellular uptake and transfection efficiency in HepG2 cells than in HeLa cells, while homopolycations (PAEMA and PDMAPMA) lacking the MAG blocks exhibited the opposite trend, signifying that the MAG block could aid in hepatocyte transfection.
Collapse
Affiliation(s)
- Yaoying Wu
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Miao Wang
- Department
of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Dustin Sprouse
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Adam E. Smith
- Department
of Chemical Engineering, University of Mississippi, 134 Anderson, University, Mississippi 38677, United States
| | - Theresa M. Reineke
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Adil MM, Levine RM, Kokkoli E. Increasing Cancer-Specific Gene Expression by Targeting Overexpressed α5β1 Integrin and Upregulated Transcriptional Activity of NF-κB. Mol Pharm 2014; 11:849-58. [DOI: 10.1021/mp400535v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maroof M. Adil
- Department
of Chemical Engineering
and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, Minnesota 55455
| | - Rachel M. Levine
- Department
of Chemical Engineering
and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, Minnesota 55455
| | - Efrosini Kokkoli
- Department
of Chemical Engineering
and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, Minnesota 55455
| |
Collapse
|
31
|
Abstract
Nonviral vectors which offer a safer and versatile alternative to viral vectors have been developed to overcome problems caused by viral carriers. However, their transfection efficacy or level of expression is substantially lower than viral vectors. Among various nonviral gene vectors, lipid nanoparticles are an ideal platform for the incorporation of safety and efficacy into a single delivery system. In this chapter, we highlight current lipidic vectors that have been developed for gene therapy of tumors and other diseases. The pharmacokinetic, toxic behaviors and clinic trials of some successful lipids particles are also presented.
Collapse
|