1
|
Semenov KN, Shemchuk OS, Ageev SV, Andoskin PA, Iurev GO, Murin IV, Kozhukhov PK, Maystrenko DN, Molchanov OE, Kholmurodova DK, Rizaev JA, Sharoyko VV. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1362-1391. [PMID: 39245451 DOI: 10.1134/s0006297924080029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Pavel A Andoskin
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Dmitriy N Maystrenko
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | | | - Jasur A Rizaev
- Samarkand Medical University, Samarkand, 100400, Uzbekistan
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| |
Collapse
|
2
|
Khawdas W, Sawada Y, Miyata K, Okamura H, Taki K, Ito H. Enhancing the Delamination Efficiency of Polyimide-Copper Bilayers with UV/Heat-Activated Foamable Adhesive: Insights and Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31788-31797. [PMID: 38850559 DOI: 10.1021/acsami.4c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
This study explores the adhesive properties of copolymers comprising glycidyl methacrylate (GMA) and 3-(trimethoxysilyl)propyl methacrylate (MPTMS), focusing on their suitability for adhesive applications. Peel resistance measurements revealed a substantial impact of the GMA/MPTMS ratio on adhesion capabilities, identifying an optimal ratio of 30/70 for copolymerization with tert-butyl acrylate (tBA) to improve foaming performance. tBA, a foaming monomer activated by a photoacid generator and heat, enhances the copolymerized adhesive's adhesion strength and foamability for postuse delamination. Chemical structure analysis through Nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) confirmed successful polymerization, while rheological properties indicated decreased complex viscosity and adhesive strength with an increasing tBA content. The deprotection of the t-butyl group facilitated foam formation, supported by morphology analysis. These findings provide insights into foamable adhesive development with potential applications in delamination processes and implications for further exploration in polymer adhesion.
Collapse
Affiliation(s)
- Wichean Khawdas
- Research Center for GREEN Materials and Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yuko Sawada
- Research Center for GREEN Materials and Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Ken Miyata
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Haruyuki Okamura
- Department of Applied Chemistry Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Kentaro Taki
- Department of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Ito
- Research Center for GREEN Materials and Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
3
|
Sakib S, Zou S. Attenuation of Chronic Inflammation in Intestinal Organoids with Graphene Oxide-Mediated Tumor Necrosis Factor-α_Small Interfering RNA Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38325360 PMCID: PMC10883062 DOI: 10.1021/acs.langmuir.3c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract with a complex and multifactorial etiology, making it challenging to treat. While recent advances in immunomodulatory biologics, such as antitumor necrosis factor-α (TNF-α) antibodies, have shown moderate success, systemic administration of antibody therapeutics may lead to several adverse effects, including the risk of autoimmune disorders due to systemic cytokine depletion. Transient RNA interference using exogenous short interfering RNA (siRNA) to regulate target gene expression at the transcript level offers an alternative to systemic immunomodulation. However, siRNAs are susceptible to premature degradation and have poor cellular uptake. Graphene oxide (GO) nanoparticles have been shown to be effective nanocarriers for biologics due to their reduced cytotoxicity and enhanced bioavailability. In this study, we evaluate the therapeutic efficacy of GO mediated TNF-α_siRNA using in vitro models of chronic inflammation generated by treating murine small intestines (enteroids) and large intestines (colonoids) with inflammatory agents IL-1β, TNF-α, and LPS. The organotypic mouse enteroids and colonoids developed an inflammatory phenotype similar to that of IBD, characterized by impaired epithelial homeostasis and an increased production of inflammatory cytokines such as TNF-α, IL-1β, and IL-6. We assessed siRNA delivery to these inflamed organoids using three different GO formulations. Out of the three, small-sized GO with polymer and dendrimer modifications (smGO) demonstrated the highest transfection efficiency, which led to the downregulation of inflammatory cytokines, indicating an attenuation of the inflammatory phenotype. Moreover, the transfection efficiency and inflammation-ameliorating effects could be further enhanced by increasing the TNF-α_siRNA/smGO ratio from 1:1 to 3:1. Overall, the results of this study demonstrate that ex vivo organoids with disease-specific phenotypes are invaluable models for assessing the therapeutic potential of nanocarrier-mediated drug and biologic delivery systems.
Collapse
Affiliation(s)
- Sadman Sakib
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ONK1A 0R6, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ONK1A 0R6, Canada
| |
Collapse
|
4
|
Akhter S, Arjmand F, Pettinari C, Tabassum S. Ru(II)( ƞ6- p-cymene) Conjugates Loaded onto Graphene Oxide: An Effective pH-Responsive Anticancer Drug Delivery System. Molecules 2022; 27:7592. [PMID: 36364418 PMCID: PMC9655566 DOI: 10.3390/molecules27217592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/04/2023] Open
Abstract
Graphene oxide-based nanodrug delivery systems are considered one of the most promising platforms to deliver therapeutic drugs at the target site. In this study, Ru(II)(ƞ6-p-cymene) complexes containing the benzothiazole ligand were covalently anchored on graphene oxide using the ultrasonication method. The nanoconjugates GO-NCD-1 and GO-NCD-2 were characterized by FT-IR, UV-visible, 1H NMR, TGA, SEM, and TEM techniques, which confirmed the successful loading of both the complexes (NCD 1 and NCD 2) on the carrier with average particle diameter sizes of 17 ± 6.9 nm and 25 ± 6.5 nm. In vitro DNA binding studies of the nanoconjugates were carried out by employing various biophysical methods to investigate the binding interaction with the therapeutic target biomolecule and to quantify the intrinsic binding constant values useful to understand their binding affinity. Our results suggest (i) high Kb and Ksv values of the graphene-loaded conjugates (ii) effective cleavage of plasmid DNA at a lower concentration of 7.5 µM and 10 µM via an oxidative pathway, and (iii) fast release of NCD 2 at an acidic pH that could have a good impact on the controlled delivery of drug. It was found that 90% of the drug was released in an acidic pH (5.8 pH) environment in 48 h, therefore suggesting pH-responsive behavior of the drug delivery system. Molecular docking, DFT studies, and cytotoxicity activity against three cancer cell lines by SRB assay were also performed.
Collapse
Affiliation(s)
- Suffora Akhter
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Claudio Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Mucoadhesive carriers for oral drug delivery. J Control Release 2022; 351:504-559. [PMID: 36116580 PMCID: PMC9960552 DOI: 10.1016/j.jconrel.2022.09.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Among the various dosage forms, oral medicine has extensive benefits including ease of administration and patients' compliance, over injectable, suppositories, ocular and nasal. Despite of extensive demand and emerging advantages, over 50% of therapeutic molecules are not available in oral form due to their physicochemical properties. More importantly, most of the biologics, proteins, peptide, and large molecular drugs are mostly available in injectable form. Conventional oral drug delivery system has limitation such as degradation and lack of stability within stomach due to presence of highly acidic gastric fluid, hinders their therapeutic efficacy and demand more frequent and higher dosing. Hence, formulation for controlled, sustained, and targeted drug delivery, need to be designed with feasibility to target the specific region of gastrointestinal (GI) tract such as stomach, small intestine, intestine lymphatic, and colon is challenging. Among various oral delivery approaches, mucoadhesive vehicles are promising and has potential for improving oral drug retention and controlled absorption to treat local diseases within the GI tract, as well systemic diseases. This review provides the overview about the challenges and opportunities to design mucoadhesive formulation for oral delivery of therapeutics in a way to target the specific region of the GI tract. Finally, we have concluded with future perspective and potential of mucoadhesive formulations for oral local and systemic delivery.
Collapse
|
6
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Yassari M, Shakeri A. Nature based forward osmosis membranes: A novel approach for improved anti-fouling properties of thin film composite membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Roig-Sanchez S, Kam D, Malandain N, Sachyani-Keneth E, Shoseyov O, Magdassi S, Laromaine A, Roig A. One-step double network hydrogels of photocurable monomers and bacterial cellulose fibers. Carbohydr Polym 2022; 294:119778. [DOI: 10.1016/j.carbpol.2022.119778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
9
|
Novel approach in synthesizing graphene oxide grafted polyethylene glycol via Steglich Esterification. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Abdelhalim AO, Semenov KN, Nerukh DA, Murin IV, Maistrenko DN, Molchanov OE, Sharoyko VV. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Influence of Carboxylic Modification Using Polyacrylic Acid on Characteristics of Fe3O4 Nanoparticles with Cluster Structure. Processes (Basel) 2021. [DOI: 10.3390/pr9101795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fe3O4 nanoparticles with cluster structure are superparamagnetic particles with applicability in various high-tech fields. In this study, the influence of surface modification with polyacrylic acid (PAA), a polymeric precursor, on the characteristics of Fe3O4 nanoparticles was investigated. The particles were synthesized by the polyol method and surface modified with various amounts of PAA. The surficial, structural, optical, and magnetic properties of the PAA-modified Fe3O4 nanoparticles were analyzed, confirming that negatively charged carboxyl groups were formed on the particle surface, and the particle dispersibility was enhanced by surface modification. This arises from an increase in the electrostatic repulsive force due to the surface functional groups. Functionalization promoted dissociation of the cluster particles, which became more pronounced as the PAA content increased. The optical parameters changed with the PAA content. Analysis of the magnetic properties showed that the saturation magnetization decreased as the PAA content increased. Overall, PAA modification induces structural changes of the Fe3O4 nanoparticles that enhance the dispersibility and influence the characteristics of the particles.
Collapse
|
12
|
Synthesis and Properties of Targeted Radioisotope Carriers Based on Poly(Acrylic Acid) Nanogels. Pharmaceutics 2021; 13:pharmaceutics13081240. [PMID: 34452201 PMCID: PMC8400054 DOI: 10.3390/pharmaceutics13081240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/01/2022] Open
Abstract
Radiation crosslinking was employed to obtain nanocarriers based on poly(acrylic acid)—PAA—for targeted delivery of radioactive isotopes. These nanocarriers are internally crosslinked hydrophilic macromolecules—nanogels—bearing carboxylic groups to facilitate functionalization. PAA nanogels were conjugated with an engineered bombesin-derivative—oligopeptide combined with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate chelating moiety, aimed to provide selective radioligand transport. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) toluene-4-sulfonate was used as the coupling agent. After tests on a model amine—p-toluidine—both commercial and home-synthesized DOTA-bombesin were successfully coupled to the nanogels and the obtained products were characterized. The radiolabeling efficiency of nanocarriers with 177Lu, was chromatographically tested. The results provide a proof of concept for the synthesis of radiation-synthesized nanogel-based radioisotope nanocarriers for theranostic applications.
Collapse
|
13
|
Eckhart KE, Schmidt SJ, Starvaggi FA, Wolf ME, Vickery WM, Sydlik SA. Peptide- and Protein-Graphene Oxide Conjugate Materials for Controlling Mesenchymal Stem Cell Fate. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00182-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Highly stable and antifouling graphene oxide membranes prepared by bio-inspired modification for water purification. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Cao W, He L, Cao W, Huang X, Jia K, Dai J. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater 2020; 112:14-28. [PMID: 32531395 DOI: 10.1016/j.actbio.2020.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/28/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Vaccine is one of the most effective strategies for preventing and controlling infectious diseases and some noninfectious diseases, especially cancers. Adjuvants and carriers have been appropriately added to the vaccine formulation to improve the immunogenicity of the antigen and induce long-lasting immunity. However, there is an urgent need to develop new all-purpose adjuvants because some adjuvants approved for human use have limited functionality. Graphene oxide (GO), widely employed for the delivery of biomolecules, excels in loading and delivering antigen and shows the potentiality of activating the immune system. However, GO aggregates in biological liquid and induces cell death, and it also exhibits poor biosolubility and biocompatibility. To address these limitations, various surface modification protocols have been employed to integrate aqueous compatible substances with GO to effectively improve its biocompatibility. More importantly, these modifications render functionalized-GO with superior properties as both carriers and adjuvants. Herein, the recent progress of physicochemical properties and surface modification strategies of GO for its application as both carriers and adjuvants is reviewed. STATEMENT OF SIGNIFICANCE: Due to its unique physicochemical properties, graphene oxide is widely employed in medicine for purposes of photothermal treatment of cancer, drug delivery, antibacterial therapy, and medical imaging. Our work describes the surface modification of graphene oxide and for the first time summarizes that functionalized graphene oxide serves as a vaccine carrier and shows significant adjuvant activity in activating cellular and humoral immunity. In the future, it is expected to be introduced into vaccine research to improve the efficacy of vaccines.
Collapse
|
16
|
Xie Y, Liu C, Liu W, Liang L, Wang S, Zhang F, Shi H, Yang M. A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Sloand JN, Nguyen TT, Zinck SA, Cook EC, Zimudzi TJ, Showalter SA, Glick AB, Simon JC, Medina SH. Ultrasound-Guided Cytosolic Protein Delivery via Transient Fluorous Masks. ACS NANO 2020; 14:4061-4073. [PMID: 32134630 DOI: 10.1021/acsnano.9b08745] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The inability to spatiotemporally guide proteins in tissues and efficiently deliver them into cells remains a key barrier to realizing their full potential in precision medicine. Here, we report ultrasound-sensitive fluoro-protein nanoemulsions which can be acoustically tracked, guided, and activated for on-demand cytosolic delivery of proteins, including antibodies, using clinically relevant diagnostic ultrasound. This advance is accessed through the discovery of a family of fluorous tags, or FTags, that transiently mask proteins to mediate their efficient dispersion into ultrasound-sensitive liquid perfluorocarbons, a phenomenon akin to dissolving an egg in liquid Teflon. We identify the biochemical basis for protein fluorous masking and confirm FTag coatings are shed during delivery, without disrupting the protein structure or function. Harnessing the ultrasound sensitivity of fluorous emulsions, real-time imaging is used to simultaneously monitor and activate FTag-protein complexes to enable controlled cytosolic antibody delivery in vitro and in vivo. These findings may advance the development of image-guided, protein-based biosensing and therapeutic modalities.
Collapse
Affiliation(s)
- Janna N Sloand
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Theodore T Nguyen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Zinck
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Erik C Cook
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tawanda J Zimudzi
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott H Medina
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Khan R, Sherazi TA, Catanante G, Rasheed S, Marty JL, Hayat A. Switchable fluorescence sensor toward PAT via CA-MWCNTs quenched aptamer-tagged carboxyfluorescein. Food Chem 2019; 312:126048. [PMID: 31918363 DOI: 10.1016/j.foodchem.2019.126048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/26/2023]
Abstract
A quenching based apta-sensing platform was developed for the detection of Patulin. Three different aptamer sequences were studied to screen the aptamer with the maximum affinity towards Patulin. Carboxyfluorescein (CFL) was used as a fluorescent dye while -COOH functionalized multiwall carbon nanotubes (MWCNTs) were applied as novel nanoquenchers. Aptamer tagged at the 3' end with 40 nucleotide bases exhibited the maximum affinity towards Patulin and caused substantial fluorescence recovery. Interestingly, the limit of detection (LOD) and limit of quantification (LOQ) were calculated as 0.13 μg L-1and 0.41 μg L-1 respectively. Commonly occurring mycotoxins in food were also tested to confirm the selectivity of apta-assay. The developed apta-assay was applied to a spiked apple juice sample and toxin recoveries were observed ranging from 96% to 98% (n = 3). These results demonstrated the potential of the developed apta-assay for the selective detection and quantification of Patulin in food samples.
Collapse
Affiliation(s)
- Reem Khan
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France; Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
| | - Sidra Rasheed
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 54000, Pakistan.
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France; Sensbiotech, 21rue de Nogarede, 66400 Ceret, France.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 54000, Pakistan.
| |
Collapse
|
19
|
Zhang Y, Liu X, Wang Y, Lou Z, Shan W, Xiong Y. Polyacrylic acid-functionalized graphene oxide for high-performance adsorption of gallium from aqueous solution. J Colloid Interface Sci 2019; 556:102-110. [PMID: 31437655 DOI: 10.1016/j.jcis.2019.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 02/03/2023]
Abstract
Graphene oxide (GO) has great potential in metal recovery and water purification owing to their high surface area, abundant hydroxyl (OH) and carboxyl (COOH) groups. To fully understand the influence of the dispersity of GO on the adsorption capacity of metal ions, a series of polyacrylic acid (PAA) functionalized GO (PAA/GO) composites with different dispersity were prepared. The charge density of the PAA/GO composites were much higher than that of the untreated GO in acidic conditions, demonstrating a significant improvement of dispersibility by introducing PAA on the surfaces. Moreover, recovery of gallium by employing the PAA/GO composites as adsorbent were studied. The maximum adsorption capacity towards gallium ions of the adsorbent can reach 196.84 mg·g-1, much higher than that of other commercially available resins (CL-P204, P507). This superiority could be attributed to the abundant COOH groups on the surfaces and the good dispersity of the PAA/GO composites. These results revealed that the PAA/GO composites could be promising adsorbents for selective adsorption and efficient recovery of Ga(III).
Collapse
Affiliation(s)
- Yingying Zhang
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036, PR China
| | - Xin Liu
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036, PR China
| | - Yuejiao Wang
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036, PR China
| | - Zhenning Lou
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036, PR China
| | - Weijun Shan
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036, PR China
| | - Ying Xiong
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
20
|
Meng X, Ji Y, Yu G, Zhai Y. Preparation and Properties of Polyvinylidene Fluoride Nanocomposited Membranes based on Poly( N-Isopropylacrylamide) Modified Graphene Oxide Nanosheets. Polymers (Basel) 2019; 11:polym11030473. [PMID: 30960457 PMCID: PMC6474125 DOI: 10.3390/polym11030473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
The nanomaterial of graphene oxide grafting poly (N-isopropylacrylamide) (GO-g-PNIPAAm) was synthesized and PVDF/GO-g-PNIPAAm blended membranes were fabricated by wet phase inversion. In this work, a hydrophilic nanomaterial GO-g-PNIPAAm with poly(N-isopropylacrylamide) (PNIPAAm) grafted on GO, was synthesized by the atom transfer radical polymerization (ATRP) method. The resulting nanomaterial was confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrum, and X-ray photoelectron spectroscopy (XPS) analysis. The synthesized GO-g-PNIPAAm was incorporated with polyvinylidene fluoride (PVDF) via phase inversion, and investigated for its temperature sensitivity, porosity, contact angle, scanning electron microscopy, and permeate properties. The water contact angle measurements confirmed that GO-g-PNIPAAm nanomaterial-endowed PVDF membranes with better hydrophilicity and thermo-responsive properties compared with those of the pristine PVDF membranes. Bovine serum albumin (BSA) adsorption experiments suggested that excellent antifouling properties of membranes were acquired after adding GO-g-PNIPAAm. The modified membranes showed good performance when the doping amount of GO-g-PNIPAAm was 0.2 wt %.
Collapse
Affiliation(s)
- Xiangli Meng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yuan Ji
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Genhua Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yujia Zhai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
21
|
Adeel M, Bilal M, Rasheed T, Sharma A, Iqbal HMN. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. Int J Biol Macromol 2018; 120:1430-1440. [PMID: 30261251 DOI: 10.1016/j.ijbiomac.2018.09.144] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials have gained high research interest in different fields related to proteins and thus are rapidly becoming the most widely investigated carbon-based materials. Their exceptional physiochemical properties such as electrical, optical, thermal and mechanical strength enable graphene to render graphene-based nanostructured materials suitable for applications in different fields such as electroanalytical chemistry, electrochemical sensors and immobilization of biomolecules and enzymes. The structural feature of oxygenated graphene, i.e., graphene oxide (GO) covered with different functionalities such as epoxy, hydroxyl, and carboxylic group, open a new direction of chemical modification of GO with desired properties. This review describes the recent progress related to the structural geometry, physiochemical characteristics, and functionalization of GO, and the development of graphene-based novel carriers as host for enzyme immobilization. Graphene derivatives-based applications are progressively increasing, in recent years. Therefore, from the bio-catalysis and biotransformation viewpoint, the biotechnological perspective of graphene-immobilized nano-bio-catalysts is of supreme interest. The structural geometry, unique properties, and functionalization of graphene derivatives and graphene-based nanomaterials as host for enzyme immobilization are highlighted in this review. Also, the role of GO-based catalytic systems such as microfluidic bio-catalysis, enzyme-based biofuel cells, and biosensors are also discussed with potential future perspectives of these multifaceted materials.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Campus Queretaro, School of Engineering and Sciences, Epigmenio Gonzalez 500, CP 76130 Queretaro, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Campus Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
22
|
Graphene oxide grafted poly(acrylic acid) synthesized via surface initiated RAFT as a pH-responsive additive for mixed matrix membrane. J Appl Polym Sci 2018. [DOI: 10.1002/app.47213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Zhang Y, Zhu L, Wang Y, Lou Z, Shan W, Xiong Y, Fan Y. Preparation of a biomass adsorbent for gallium(III) based on corn stalk modified by iminodiacetic acid. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Behavior of a strong polyelectrolyte, poly(diallyldimethylammonium chloride) physisorbed at oil-water interface under different environments : A comparison with a weak polyelectrolyte. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Hussien NA, Işıklan N, Türk M. Pectin-conjugated magnetic graphene oxide nanohybrid as a novel drug carrier for paclitaxel delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:264-273. [DOI: 10.1080/21691401.2017.1421211] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Nuran Işıklan
- Department of Chemistry, Kırıkkale University, Kırıkkale, Turkey
| | - Mustafa Türk
- Department of Bioengineering, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
26
|
Surface tailoring of polyacrylate-grafted graphene oxide for controlled interactions at the biointerface. J Colloid Interface Sci 2017; 506:532-542. [PMID: 28756320 DOI: 10.1016/j.jcis.2017.07.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
The actual surface termination and lateral size of a nanomaterial is crucial in its interaction with biomolecules at the aqueous interface. Graphene oxide (GO) nanosheets have been demonstrated as promising nanoplatform for both diagnostic and therapeutic applications. To this respect, 'smart' GO nanocarriers have been obtained by the surface functionalisation with polymers sensitive, e.g., to pH, as the polyacrylate (PAA) case. In this work, hybrid GO/PAA samples prepared respectively at low (GOPAAthin) or high (GOPAAthick) monomer grafting ratio, were scrutinised both theoretically, by molecular dynamic calculations, and experimentally by a multitechnique approach, including spectroscopic (UV-visible, fluorescence, Raman, Attenuated-total reflectance-Fourier transformed infrared and X-ray photoelectron spectroscopies), spectrometric (time-of-flight secondary ion and electrospray ionisation mass spectrometries) and microscopic (atomic force and confocal microscopies) methods. The actual surface termination, evaluated in terms of the relative ratio between polar and dispersive groups at the surface of the GO/polymer systems, was found to correlate with the average orientation of hydrophilic/hydrophobic domains of albumin, used as model protein. Moreover, the comparison among GO, GO-PAAthin and GO-PAAthick in the optical response at the interface with aqueous solutions, both at acid and at physiological pH, showed that the hybrid GO-polymer platform could be suitable not only to exploit a pH-triggered drug release but also for a modulation of the GO intrinsic emission properties. Energy transfer experiments on the GO/polymer oxide/fluorescein-labelled albumin/doxorubicin assembly showed significant differences for GO and GO-PAA samples, thus demonstrating the occurrence of different electronic processes at the hybrid nano-bio-interfaces. Confocal microscopy studies of cellular uptake in neuroblastoma cells confirmed the promising potentialities of the developed nanoplatform for applications at the biointerface.
Collapse
|
27
|
Ji X, Song Y, Han J, Ge L, Zhao X, Xu C, Wang Y, Wu D, Qiu H. Preparation of a stable aqueous suspension of reduced graphene oxide by a green method for applications in biomaterials. J Colloid Interface Sci 2017; 497:317-324. [DOI: 10.1016/j.jcis.2016.09.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/12/2023]
|
28
|
Zore OV, Kasi RM, Kumar CV. Armored Enzyme-Nanohybrids and Their Catalytic Function Under Challenging Conditions. Methods Enzymol 2017; 590:169-192. [PMID: 28411637 DOI: 10.1016/bs.mie.2017.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis and characterization of highly stable and functional bienzyme-polymer triads assembled on layered graphene oxide (GO) are described here. Glucose oxidase (GOx) and horseradish peroxidase (HRP) were used as model enzymes and polyacrylic acid (PAA) as model polymer to armor the enzymes. PAA-armored GOx and HRP covalent conjugates were further protected from denaturation by adsorption onto GO nanosheets. Structure and morphology of this enzyme-polymer-nanosheet hybrid biocatalyst (GOx-HRP-PAA/GO) were confirmed by agarose gel electrophoresis, zeta potential, circular dichroism, and transmission electron microscopy. The armored biocatalysts retained full enzymatic activities under challenging conditions of pH (2.5-7.4), warm temperatures (65°C), and presence of chemical denaturants, 4mM sodium dodecyl sulfate, while GOx/HRP physical mixtures without the armor had very little activity under the same conditions. Therefore, this novel combination of two orthogonal approaches, enzyme conjugation with PAA and subsequent physical adsorption onto GO nanosheets, resulted in super stable hybrid biocatalysts that function under harsh conditions. Therefore, this general and powerful approach may be used to design environmentally friendly, green, biocompatible, and biodegradable biocatalysts for energy production in biofuel cell or biobattery applications.
Collapse
Affiliation(s)
- Omkar V Zore
- University of Connecticut, Storrs, CT, United States; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Rajeswari M Kasi
- University of Connecticut, Storrs, CT, United States; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, United States.
| | - Challa V Kumar
- University of Connecticut, Storrs, CT, United States; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
29
|
|
30
|
Maity N, Kuila A, Nandi AK. Deciphering the Effect of Polymer-Assisted Doping on the Optoelectronic Properties of Block Copolymer-Anchored Graphene Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1460-1470. [PMID: 28110538 DOI: 10.1021/acs.langmuir.6b03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Doping facilitates the tuning of band gap, providing an opportunity to tailor the optoelectronic properties of graphene in a simple way, and polymer-assisted doping is a new route to combine the optoelectronic properties of graphene with the properties of a polymer. In this endeavor, a linear diblock copolymer, polycaprolactone-block-poly(dimethyl aminoethyl methacrylate) (PCL13-b-PDMAEMA117) (GPCLD) is grafted from the graphene oxide (GO) surface via consecutive ring opening and atom transfer radical polymerization. GPCLD is characterized using proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy, atomic force microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy. The phase transition behavior of the GPCLD solution with varying temperature and pH is monitored using fluorescence spectroscopy and dynamic light scattering. Temperature-dependent 1H NMR spectra at pH 9.2 indicate the influence of temperature on the interaction between GPCLD and solvent (water) molecules causing the phase separation. Fluorescence spectra at pH 4 and 9.2 give the evidence of localized p- and n-type doping of graphene assisted by the pendent PDMAEMA chains. In the impedance spectra of GPCLD films, the Nyquist plots vary with pH; at pH 4, they exhibit a semicircle at higher frequencies and a spike at lower frequencies; at pH 7.0, the spike is replaced by an arc; and at pH 9.2, the semicircle at higher frequencies vanishes and only a spike is noticed, all of these suggesting different types of doping of graphene at different pH values. The dc-conductivity also varies with pH and temperature because of the different types of doping. The current (I)-voltage (V) property of GPCLD at different pH values is very unique: at pH 9.2, an interesting feature of negative differential resistance (NDR) is observed; at pH 7, the rectification property is observed; and at pH 4, again the NDR property is observed. The temperature-dependent I-V property at pH 7 and 9.2 clearly indicates a signature of doping, dedoping, and redoping because of the change in the interaction of GO with the grafted polymer arising from coiling and decoiling of polymer chains.
Collapse
Affiliation(s)
- Nabasmita Maity
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Atanu Kuila
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Arun K Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
31
|
Maity N, Kuila A, Chatterjee DP, Mandal D, Nandi AK. An insight into the schizophrenic self-assembly of thermo and proton sensitive graphene oxide grafted block copolymer. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nabasmita Maity
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur, Kolkata 700032 India
| | - Atanu Kuila
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur, Kolkata 700032 India
| | - Dhruba P. Chatterjee
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur, Kolkata 700032 India
| | - Debasish Mandal
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur, Kolkata 700032 India
| | - Arun K. Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur, Kolkata 700032 India
| |
Collapse
|
32
|
In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 2016; 104:361-71. [PMID: 27490486 DOI: 10.1016/j.biomaterials.2016.07.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022]
Abstract
Angiogenesis, i.e. the formation of neovasculatures, is a critical process during cancer initiation, progression, and metastasis. Targeting of angiogenic markers on the tumor vasculature can result in more efficient delivery of nanomaterials into tumor since no extravasation is required. Herein we demonstrated efficient targeting of breast cancer metastasis in an experimental murine model with nano-graphene oxide (GO), which was conjugated to a monoclonal antibody (mAb) against follicle-stimulating hormone receptor (FSHR). FSHR has been confirmed to be a highly selective tumor vasculature marker, which is abundant in both primary and metastatic tumors. These functionalized GO nano-conjugates had diameters of ∼120 nm based on atomic force microscopy (AFM), TEM, and dynamic laser scattering (DLS) measurement. (64)Cu was incorporated as a radiolabel which enabled the visualization of these GO conjugates by positron emission tomography (PET) imaging. Breast cancer lung metastasis model was established by intravenous injection of click beetle green luciferase-transfected MDA-MB-231 (denoted as cbgLuc-MDA-MB-231) breast cancer cells into female nude mice and the tumor growth was monitored by bioluminescence imaging (BLI). Systematic in vitro and in vivo studies have been performed to investigate the stability, targeting efficacy and specificity, and tissue distribution of GO conjugates. Flow cytometry and fluorescence microscopy examination confirmed the targeting specificity of FSHR-mAb attached GO conjugates against cellular FSHR. More potent and persistent uptake of (64)Cu-NOTA-GO-FSHR-mAb in cbgLuc-MDA-MB-231 nodules inside the lung was witnessed when compared with that of non-targeted GO conjugates ((64)Cu-NOTA-GO). Histology evaluation also confirmed the vasculature accumulation of GO-FSHR-mAb conjugates in tumor at early time points while they were non-specifically captured in liver and spleen. In addition, these GO conjugates can serve as good drug carriers with satisfactory drug loading capacity (e.g. for doxorubicin [DOX], 756 mg/g). Enhanced drug delivery efficiency in cbgLuc-MDA-MB-231 metastatic sites was demonstrated in DOX-loaded GO-FSHR-mAb by fluorescence imaging. This FSHR-targeted, GO-based nanoplatform can serve as a useful tool for early metastasis detection and targeted delivery of therapeutics.
Collapse
|
33
|
Zhang B, Wang Y, Zhai G. Biomedical applications of the graphene-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:953-64. [DOI: 10.1016/j.msec.2015.12.073] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 01/09/2023]
|
34
|
Kumar S, Raj S, Sarkar K, Chatterjee K. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. NANOSCALE 2016; 8:6820-36. [PMID: 26955801 DOI: 10.1039/c5nr06906h] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly(ε-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was ≈50% better than GO. Remarkably, 5% GO_PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_PEI augment stem cell differentiation. GO_PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Materials Engineering, Bangalore 560012, India.
| | - Shammy Raj
- Department of Materials Engineering, Bangalore 560012, India.
| | - Kishor Sarkar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
35
|
Kavitha T, Kang IK, Park SY. Poly(4-vinyl pyridine)-grafted graphene oxide for drug delivery and antimicrobial applications. POLYM INT 2015. [DOI: 10.1002/pi.4968] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thangavelu Kavitha
- School of Applied Chemical Engineering, Kyungpook National University; Department of Polymer Science and Engineering; Daegu 702-701 Republic of Korea
| | - Inn-Kyu Kang
- School of Applied Chemical Engineering, Kyungpook National University; Department of Polymer Science and Engineering; Daegu 702-701 Republic of Korea
| | - Soo-Young Park
- School of Applied Chemical Engineering, Kyungpook National University; Department of Polymer Science and Engineering; Daegu 702-701 Republic of Korea
| |
Collapse
|
36
|
Zore OV, Pattammattel A, Gnanaguru S, Kumar CV, Kasi RM. Bienzyme–Polymer–Graphene Oxide Quaternary Hybrid Biocatalysts: Efficient Substrate Channeling under Chemically and Thermally Denaturing Conditions. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Omkar V. Zore
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, U-3136, University of Connecticut, Storrs, Connecticut 06269-3069, United States
| | - Ajith Pattammattel
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Shailaja Gnanaguru
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, U-3136, University of Connecticut, Storrs, Connecticut 06269-3069, United States
- Department
of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, United States
| | - Rajeswari M. Kasi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, U-3136, University of Connecticut, Storrs, Connecticut 06269-3069, United States
| |
Collapse
|
37
|
Cho S, Lee JS, Jang J. Poly(vinylidene fluoride)/NH2-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9668-9681. [PMID: 25936367 DOI: 10.1021/acsami.5b01430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work describes a ternary nanocomposite system, composed of poly(vinylidene fluoride) (PVDF), NH2-treated graphene nanodots (GNDs), and reduced graphene oxides (RGOs), for use in high energy density capacitor. When the RGO sheets were added to PVDF matrix, the β-phase content of PVDF became higher than that of the pristine PVDF. The surface-treatment of GNDs with an ethylenediamine can promote the hydrogen bonding interactions between the GNDs and PVDF, which promote the formation of β-phase PVDF. This finding could be extended to combine the advantages of both RGO and NH2-treated GND for developing an effective and reliable means of preparing PVDF/NH2-treated GND/RGO nanocomposite. Relatively small amounts of NH2-treated GND/RGO cofillers (10 vol %) could make a great impact on the α → β phase transformation, dielectric, and ferroelectric properties of the ternary nanocomposite. The resulting PVDF/NH2-treated GND/RGO nanocomposite exhibited higher dielectric constant (ε' ≈ 60.6) and larger energy density (U(e) ≈ 14.1 J cm(-3)) compared with the pristine PVDF (ε' ≈ 11.6 and U(e) ≈ 1.8 J cm(-3)).
Collapse
Affiliation(s)
- Sunghun Cho
- †Program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and ‡School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul 151-742, Korea
| | - Jun Seop Lee
- †Program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and ‡School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul 151-742, Korea
| | - Jyongsik Jang
- †Program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and ‡School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul 151-742, Korea
| |
Collapse
|
38
|
Li H, Shi LY, Cui W, Lei WW, Zhang YL, Diao YF, Ran R, Ni W. Covalent modification of graphene as a 2D nanofiller for enhanced mechanical performance of poly(glutamate) hybrid gels. RSC Adv 2015. [DOI: 10.1039/c5ra18277h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Covalently functionalized graphene via grafting of poly(glutamate) as interfacial adhesive junctions may show sustainable potential in more robust polypeptide hybrid organogels.
Collapse
Affiliation(s)
- Hang Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ling-Ying Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Wei Cui
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Wei-Wei Lei
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yu-Lin Zhang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yong-Fu Diao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Rong Ran
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Wei Ni
- New Materials R&D Center
- Institute of Chemical Materials
- Chinese Academy of Engineering Physics
- Mianyang 621000
- China
| |
Collapse
|
39
|
Cui Z, Milani AH, Greensmith PJ, Yan J, Adlam DJ, Hoyland JA, Kinloch IA, Freemont AJ, Saunders BR. A study of physical and covalent hydrogels containing pH-responsive microgel particles and graphene oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13384-13393. [PMID: 25313805 DOI: 10.1021/la5032015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study we mixed low concentrations of graphene oxide (GO) with microgel (MG) particles and formed composite doubly cross-linked microgels (DX MG/GO) gels. The MG particles comprised poly(ethyl acrylate-co-methacrylic acid-co-1,4-butanediol diacrylate) with pendant glycidyl methacrylate units. The MG/GO mixed dispersions formed physical gels of singly cross-linked MGs (termed SX MG/GO), which were subsequently heated to produce DX MG/GO gels by free-radical reaction. The influence of the GO concentration on the mechanical properties of the SX MG/GO and DX MG/GO gels was investigated using dynamic rheology and static compression measurements. The SX MG/GO physical gels were injectable and moldable. The moduli for the DX MG/GO gels increased by a factor of 4-6 when only ca. 1.0 wt % of GO was included. The isostrain model was used to describe the variation of modulus with DX MG/GO composition. Inclusion of GO dramatically altered the stress dissipation and yielding mechanisms for the gels. GO acted as a high surface area, high modulus filler and played an increasing role in load distribution as the GO concentration increased. It is proposed that MG domains were dispersed within a percolated GO network. Comparison of the modulus data with those published for GO-free DX MGs showed that inclusion of GO provided an unprecedented rate of modulus increase with network volume fraction for this family of colloid gels. Furthermore, the DX MG/GO gels were biocompatible and the results imply that there may be future applications of these new systems as injectable load supporting gels for soft tissue repair.
Collapse
Affiliation(s)
- Zhengxing Cui
- School of Materials, The University of Manchester , Grosvenor Street, Manchester, M1 7HS, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li B, Zhang XY, Yang JZ, Zhang YJ, Li WX, Fan CH, Huang Q. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int J Nanomedicine 2014; 9:4697-707. [PMID: 25356071 PMCID: PMC4207078 DOI: 10.2147/ijn.s66591] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we assessed the in vivo behavior and toxicology of nanoscale graphene oxide (NGO) in mice after intravenous injection. The influence of a polyethylene glycol (PEG) coating on the distribution and toxicity of the NGO was also investigated. The results show that NGO is mainly retained in the liver, lung, and spleen. Retention in the lung is partially due to NGO aggregation. The PEG coating reduces the retention of NGO in the liver, lung, and spleen and promotes the clearance of NGO from these organs, but NGO and NGO-PEG are still present after 3 months. The PEG coating effectively reduces the early weight loss caused by NGO and alleviates NGO-induced acute tissue injuries, which can include damage to the liver, lung, and kidney, and chronic hepatic and lung fibrosis.
Collapse
Affiliation(s)
- Bo Li
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xiao-Yong Zhang
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jian-Zhong Yang
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yu-Jie Zhang
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Wen-Xin Li
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Chun-Hai Fan
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qing Huang
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|