1
|
Mozo-Villarías A, Querol E, Cedano JA. The influence of the Debye-Hückel factor in estimating the distance between interacting monomers in self-assembling proteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025:10.1007/s00249-025-01754-y. [PMID: 40342023 DOI: 10.1007/s00249-025-01754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
In the study of protein self-assembly, knowledge of the extent of electrical and hydrophobic interactions is important. In previous work our group deduced an expression for the hydrophobic energy between the monomers of an assembly. This energy decays exponentially with a characteristic distance rH. The object of this work is to obtain a more precise physical interpretation of rH. In very simple systems, according to our model, rH turns out to be the distance between the hydrophobic dipole moment vectors H. As systems become more complex and the action of the electrostatic dipole moment vectors D appear, discrepancies begin to be seen between the values obtained for rH and the distances between vectors. It is observed that the simple application of Coulomb's law is not sufficient to explain these discrepancies. We introduce the (D-H) factor into the electrostatic interaction, since proteins interact within an ionic medium. This formulation implies the appearance of an exponential decay factor rD, which is the thickness of the ionic atmosphere surrounding protein molecules. The distance adopted by two interacting monomers in a protein assembly is affected by both types of interaction and therefore is a function of both rH and rD. In a number of cases, the electrostatic interaction between D vectors is repulsive, generating a potential barrier that monomers are able to cross thanks to an overwhelmingly attractive hydrophobic potential well. In other cases both interactions are attractive and the distance between monomers appears as a compromise of both rH and rD.
Collapse
Affiliation(s)
- Angel Mozo-Villarías
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona. Campus de Bellaterra, 08193, Barcelona, Spain.
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona. Campus de Bellaterra, 08193, Barcelona, Spain
| | - Juan A Cedano
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona. Campus de Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
2
|
Muruganandam N, Venkatachalam R, Narayanan R, Vidhya Bharathi SN, Rajagopal M, Vellayappan A, Khanam N. Illusion of Incense Smoke and Associated Health Risk: An Investigation of Ocular and Respiratory Particulate Deposition. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:356-376. [PMID: 40237810 DOI: 10.1007/s00244-025-01119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/24/2025] [Indexed: 04/18/2025]
Abstract
The widespread use of incense in indoor environments, particularly in cultural and religious practices, poses significant health risks due to particulate matter (PM) emissions. This study examines the chemical composition, particle morphology, and deposition dynamics of PM from four types of incense: Cup dhoop, Cone dhoop, Natural Incense Powder, and Agarbatti. Advanced analytical techniques, including SEM, FTIR, ICP-MS, and CAM, were employed to characterize particles, focusing on their size, elemental makeup, and surface properties. Particle sizes ranged from 12.02 µm to 422.3 nm, with lenses showing higher concentrations than filters. Elements such as sodium (300 µg/m3) and mercury (1.99 µg/m3) were prominent in lenses, while arsenic (6.2 µg/m3) and cadmium (0.19 µg/m3) were dominant in filters. Neurotoxins like aluminum, lead, and mercury highlighted potential risks, including oxidative stress and systemic toxicity. Deposition modeling revealed age-related differences, with children (8 years) experiencing higher pulmonary deposition (16.8% for Cup dhoop), while adults (21 years) showed greater head region deposition (37.6% for Agarbatti). Hydrophobic particles in filters (contact angle 119.2°) contrasted with hydrophilic particles in lenses (69.8°), increasing ocular exposure risks. Cone dhoop exhibited the highest cancer risk, affecting 5 in 100,000 individuals, emphasizing its hazardous nature. FTIR identified microplastics like polypropylene and polyvinyl chloride, known to adsorb and transport heavy metals, compounding health risks. These findings highlight the critical health impacts of incense emissions, particularly for children, and underscore the urgent need for stricter regulations, improved ventilation, and public awareness to mitigate exposure.
Collapse
Affiliation(s)
- Niveditha Muruganandam
- Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India
- Research Scholar, Anna University, Chennai, Tamil Nadu, 600025, India
| | | | - Ramsundram Narayanan
- Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India.
| | - S N Vidhya Bharathi
- Masters of Business Administration, Kumaraguru College of Technology Business School, Coimbatore, Tamil Nadu, India
| | - Mayildurai Rajagopal
- Department of Chemistry, School of Foundational Sciences, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | | | - Nisha Khanam
- Department of Civil Engineering, B.S. Abdur Rahman Cresent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Ponce-Gonzalez LN, Sudjarwo WAA, Toca-Herrera JL. Measuring Colloidal Forces With Atomic Force Microscopy 1: Salt Influence on Hydrophobic and Hydrophilic Interactions. Microsc Res Tech 2025. [PMID: 39985410 DOI: 10.1002/jemt.24832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/29/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
Colloidal forces are essential for maintaining the stability and functionality of colloidal systems, affecting various industrial, biological, and environmental processes. They play an important role in determining the behavior of particles in suspensions, including stability, aggregation, and surface interactions. In this primer, we present basic concepts and protocols for studying colloidal interactions at different salt concentrations using atomic force microscopy (AFM). Following this methodology, hydrophilic substrates (i.e., silica) were easily functionalized with a hydrophobic fluorocarbon (1H,1H,2H,2H-Perfluorooctyltrimethoxysilane, FOTS) via chemical vapor deposition (CVD) and characterized by the sessile drop method, electrophoretic light scattering, AFM imaging, and scanning electron microscopy (SEM) to determine parameters such as contact angle, zeta potential, and surface roughness, respectively. Thus, after the preparation and characterization of a well-defined colloidal system, force-distance experiments using AFM allowed for the measurement of hydrophobic and hydrophilic interactions in salt solutions. Furthermore, we describe in detail the processing and fitting of the experimental data with an extended DLVO model.
Collapse
Affiliation(s)
- Luis N Ponce-Gonzalez
- Institut für Biophysik, Department für Bionanowissenschaften, Universität für Bodenkultur Wien, Vienna, Austria
| | - Wisnu Arfian A Sudjarwo
- Institut für Biophysik, Department für Bionanowissenschaften, Universität für Bodenkultur Wien, Vienna, Austria
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia (BRIN), Tangerang Selatan, Indonesia
| | - José L Toca-Herrera
- Institut für Biophysik, Department für Bionanowissenschaften, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
4
|
Bilotto P, Miano D, Celebi AT, Valtiner M. Removal of Nanoparticles by Surface Nanobubbles Generated via Solvent-Water Exchange: A Critical Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27127-27136. [PMID: 39680737 PMCID: PMC11697338 DOI: 10.1021/acs.langmuir.4c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
The swift progression of technology in electronic fabrication is adhering to a trend of miniaturization, descending to the nanoscale. Surface contaminants, such as nanoparticles, can influence the performance of silicon wafers, thereby necessitating the evolution of novel cleaning methodologies. Surface nanobubbles (SNs) are phenomena that have attracted considerable attention over the past decade. A salient feature of SNs is their capacity to eliminate nanoparticles from silicon wafers. In this Perspective, our objective is to scrutinize whether this capability can be unequivocally ascribed to SNs. Initially, we offer a succinct elucidation of the nature of SNs; subsequently, we evaluate the claims regarding the cleaning efficacy of SNs; finally, we present our interpretation of the operative forces and propose potential scenarios of the interaction between SNs and nanoparticles. Consequently, the aim of this Perspective is to emphasize the significance of comprehending the interaction between SNs and nanoparticles with the intent to delineate new research trajectories bearing both fundamental and industrial ramifications.
Collapse
Affiliation(s)
- Pierluigi Bilotto
- CEST
GmbH, Centre for Electrochemical Surface
Technology, A-2700, Wiener Neustadt, Austria
| | - Daniela Miano
- CEST
GmbH, Centre for Electrochemical Surface
Technology, A-2700, Wiener Neustadt, Austria
- Applied
Interface Physics, TU Wien, A-1040, Vienna, Austria
| | | | - Markus Valtiner
- CEST
GmbH, Centre for Electrochemical Surface
Technology, A-2700, Wiener Neustadt, Austria
- Applied
Interface Physics, TU Wien, A-1040, Vienna, Austria
| |
Collapse
|
5
|
Bar-On R, Manor O. Contributions of Colloidal Forces to the Heterogeneous Separation of Stable Oil-In-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23458-23464. [PMID: 39462839 PMCID: PMC11542182 DOI: 10.1021/acs.langmuir.4c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
We use theory to study the distribution of spherical emulsion oil droplets in water near a lipophilic surface as a guideline for designing membranes for oil/water phase separation. Heterogeneous phase separations are shown in our laboratory using hydrophilic and hydrophobic membrane designs, where the affinity of the membrane surface to one of the phases in the mixture locally increases its concentration. Considering a colloidal emulsion (nano- to microemulsions) of spherical and noncoalescing droplets, we assess the contribution of colloidal forces, i.e., van der Waals, electrical double layer, and hydrophobic interactions and the finite size of the droplets to the accumulation of spherical emulsion droplets near a surface. We use our theory to study an experiment-inspired case study and find that an isolated lipophilic membrane surface in contact with an oil-in-water emulsion supports the oil-enriched emulsion phase in a thin layer near the membrane surface, suggesting that a membrane pore size comparable to this thickness should support oil-enriched emulsion in the membrane pores and hence past the membrane.
Collapse
Affiliation(s)
- Roi Bar-On
- Applied
mathematics department, Technion - Israel
Institute of Technology, Haifa, 3200000, Israel. Currently at Institut
de Biologie de l’École Normale Supérieure ENS, Paris 75005, France
| | - Ofer Manor
- Department
of Chemical Engineering, Technion - Israel
Institute of Technology, Haifa 3200000, Israel
| |
Collapse
|
6
|
Riva S, Manor O. Solvation Forces Near Hydrophobic Surfaces: A Classical Density Functional Theory Study. J Phys Chem B 2024; 128:7457-7466. [PMID: 39029093 DOI: 10.1021/acs.jpcb.4c01426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We use classical density functional theory (DFT) to model solvation interactions between hydrophobic surfaces, which we show to be characterized by depletion attraction at small surface to surface separations and a slowly decaying bipower law interaction at large separations. The solvation interaction originates from van der Waals (vdW) and Coulombic interactions between molecules in the polar solvent, e.g., water, and from the molecules thermal motion and finite volume. We investigate model hydrophobic surfaces represented by bubbles and nonpolar solids, e.g., aliphatic particles, and calculate in a DFT fashion the distribution of molecules in the interlaying solvent between two such surfaces and the hydrophobic excess force resulting from it. The interactions are largely attractive, which is well-known in measurement, albeit vdW attraction between molecules in solids and in the solvent may cause repulsion at certain interface to interface separations. We commence our analysis by suggesting an asymptotic analytical bipower law expression for the solvation interaction at large separations. Thereafter we present a full numerical solution, which is in good agreement with the analytical prediction and further explores the interaction at small surface to surface separations. Our theoretical results yield adhesion energies which agree with previous experiments.
Collapse
Affiliation(s)
- Simone Riva
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Ofer Manor
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Kaufman Y, Hunt KC, Hale G, McClure M, Latulippe D, Sivan M, Wilson J, Dorin R, Agroskin Y, Siwak M, Gerion D. Fouling of virus filtration membranes by monoclonal antibody feeds with low aggregate content. Biotechnol Bioeng 2024; 121:2400-2408. [PMID: 37163237 DOI: 10.1002/bit.28420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
Membrane fouling by monoclonal antibodies (mAbs) is one of the main challenges in virus-filtration processes. Previous publications attributed membrane fouling to the presence of mAb aggregates in the solution, which block the membrane pores. This fouling mechanism can be solved by a prefilter; however, it was shown that there are mAbs that severely foul the membranes (reduce permeability by 90% and more) even after prefiltering the aggregates, while other mAbs foul the membrane weakly (reduce permeability by ~10% and less). Unfortunately, the differences between the fouling- and the nonfouling mAbs have never been convincingly explained. To get a deeper insight on these differences, we measured the fouling of chemically modified Isoprene-Styrene-4-vinylpyridine (ISV) membranes (TeraPore Technologies) by 8 mAbs exhibiting different hydrophobicity and charge. The results show that mAb solutions with low concentration of aggregates foul ISV membranes via an adsorptive mechanism, and the adsorption is driven mainly by hydrophobic forces between the mAb and the membrane. The charge of the mAbs plays a secondary role in fouling. We want to emphasize that the conclusions pertain to ISV membranes; the insights presented in this paper can potentially be used to engineer new surface chemistries to mitigate fouling of other virus-filtration and/or ultrafiltration membranes.
Collapse
Affiliation(s)
- Yair Kaufman
- TeraPore Technologies, South San Francisco, California, USA
| | - K C Hunt
- TeraPore Technologies, South San Francisco, California, USA
| | - Gabriel Hale
- TeraPore Technologies, South San Francisco, California, USA
| | - Matthew McClure
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - David Latulippe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Madhavi Sivan
- TeraPore Technologies, South San Francisco, California, USA
| | - Jack Wilson
- TeraPore Technologies, South San Francisco, California, USA
| | - Rachel Dorin
- TeraPore Technologies, South San Francisco, California, USA
| | - Yury Agroskin
- TeraPore Technologies, South San Francisco, California, USA
| | - Marty Siwak
- TeraPore Technologies, South San Francisco, California, USA
| | - Daniele Gerion
- TeraPore Technologies, South San Francisco, California, USA
| |
Collapse
|
8
|
Gallucci N, Appavou MS, Cowieson N, D'Errico G, Di Girolamo R, Lettieri S, Sica F, Vitiello G, Paduano L. Ordered hierarchical superlattice amplifies coated-CeO 2 nanoparticles luminescence. J Colloid Interface Sci 2024; 659:926-935. [PMID: 38219311 DOI: 10.1016/j.jcis.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Achieving a controlled preparation of nanoparticle superstructures with spatially periodic arrangement, also called superlattices, is one of the most intriguing and open questions in soft matter science. The interest in such regular superlattices originates from the potentialities in tailoring the physicochemical properties of the individual constituent nanoparticles, eventually leading to emerging behaviors and/or functionalities that are not exhibited by the initial building blocks. Despite progress, it is currently difficult to obtain such ordered structures; the influence of parameters, such as size, softness, interaction potentials, and entropy, are neither fully understood yet and not sufficiently studied for 3D systems. In this work, we describe the synthesis and characterization of spatially ordered hierarchical structures of coated cerium oxide nanoparticles in water suspension prepared by a bottom-up approach. Covering the CeO2 surface with amphiphilic molecules having chains of appropriate length makes it possible to form ordered structures in which the particles occupy well-defined positions. In the present case superlattice arrangement is accompanied by an improvement in photoluminescence (PL) efficiency, as an increase in PL intensity of the superlattice structure of up to 400 % compared with that of randomly dispersed nanoparticles was observed. To the best of our knowledge, this is one of the first works in the literature in which the coexistence of 3D structures in solution, such as face-centered cubic (FCC) and Frank-Kasper (FK) phases, of semiconductor nanoparticles have been related to their optical properties.
Collapse
Affiliation(s)
- Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Nathan Cowieson
- Diamond Light Source, Didcot, Oxfordshire, England, United Kingdom
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefano Lettieri
- Department of Physics, University of Naples Federico II, Via Cupa Cintia 21, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Yang W, Chen J, Zhao Z, Wu M, Gong L, Sun Y, Huang C, Yan B, Zeng H. Recent advances in fabricating injectable hydrogels via tunable molecular interactions for bio-applications. J Mater Chem B 2024; 12:332-349. [PMID: 37987037 DOI: 10.1039/d3tb02105j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hydrogels with three-dimensional structures have been widely applied in various applications because of their tunable structures, which can be easily tailored with desired functionalities. However, the application of hydrogel materials in bioengineering is still constrained by their limited dosage flexibility and the requirement of invasive surgical procedures. Compared to traditional hydrogels, injectable hydrogels, with shear-thinning and/or in situ formation properties, simplify the implantation process and reduce tissue invasion, which can be directly delivered to target sites using a syringe injection, offering distinct advantages over traditional hydrogels. These injectable hydrogels incorporate physically non-covalent and/or dynamic covalent bonds, granting them self-healing abilities to recover their structural integrity after injection. This review summarizes our recent progress in preparing injectable hydrogels and discusses their performance in various bioengineering applications. Moreover, the underlying molecular interaction mechanisms that govern the injectable and functional properties of hydrogels were characterized by using nanomechanical techniques such as surface forces apparatus (SFA) and atomic force microscopy (AFM). The remaining challenges and future perspectives on the design and application of injectable hydrogels are also discussed. This work provides useful insights and guides future research directions in the field of injectable hydrogels for bioengineering.
Collapse
Affiliation(s)
- Wenshuai Yang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Ziqian Zhao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Meng Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Yimei Sun
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
10
|
Li M, Wakata Y, Zeng H, Sun C. On the thermal response of multiscale nanodomains formed in trans-anethol/ethanol/water surfactant-free microemulsion. J Colloid Interface Sci 2023; 652:1944-1953. [PMID: 37690302 DOI: 10.1016/j.jcis.2023.08.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
HYPOTHESIS Surfactant-free microemulsion (SFME), an emerging phenomenology that occurs in the monophasic zone of a broad category of ternary mixtures 'hydrophobe/hydrotrope/water', has attracted extensive interests due to their unique physicochemical properties. The potential of this kind of ternary fluid for solubilization and drug delivery make them promising candidates in many industrial scenarios. EXPERIMENTS Here the thermodynamic behavior of these multiscale nanodomains formed in the ternary trans-anethol/ethanol/water system over a wide range of temperatures is explored. The macroscopic physical properties of the ternary solutions are characterized, with revealing the temperature dependence of refractive index and dynamic viscosity. FINDINGS With increasing temperature, the ternary system shows extended areas in the monophasic zone. We demonstrate that the phase behavior and the multiscale nanodomains formed in the monophasic zone can be precisely and reversibly tuned by altering the temperature. Increasing temperature can destroy the stability of the multiscale nanodomains in equilibrium, with an exponential decay in the scattering light intensity. Nevertheless, molecular-scale aggregates and mesoscopic droplets exhibit significantly different response behaviors to temperature stimuli. The temperature-sensitive nature of the ternary SFME system provides a crucial step forward exploring and industrializing its stability.
Collapse
Affiliation(s)
- Mingbo Li
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuki Wakata
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Zeng
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Chao Sun
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Dissanayake TU, Hughes J, Woehl TJ. Dynamic surface chemistry and interparticle interactions mediating chemically fueled dissipative assembly of colloids. J Colloid Interface Sci 2023; 650:972-982. [PMID: 37453321 DOI: 10.1016/j.jcis.2023.06.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
HYPOTHESIS Dissipative assembly of colloids involves using a chemical fuel to temporarily activate organic colloid surface ligands to an assembly prone state. Colloids assemble into transient aggregates that disintegrate after the fuel is consumed. The underlying colloidal interactions controlling dissipative assembly have not been rigorously identified or quantified. We expect that fuel concentration dependent dissipative assembly behavior can be reconciled with measurements of dynamic colloid surface chemistry and colloidal interactions. EXPERIMENTS Carbodiimide chemistry was utilized to induce dissipative assembly of carboxylic acid functionalized polystyrene colloids. We measured aggregation kinetics, colloid surface hydrophobicity, and zeta potential as a function of time, which established that colloids underwent dissipative assembly for fuel concentrations between 5 and 12.5 mM and irreversible aggregation at higher fuel concentrations due to transient changes in surface chemistry. FINDINGS We formulated a pairwise colloidal interaction potential model including hydrophobic interactions quantified by fluorescence binding experiments. Fuel concentrations causing dissipative assembly displayed a transient increase in secondary minimum depth and a primary maximum much larger than the thermal potential. Fuel concentrations leading to irreversible aggregation displayed a primary maximum smaller than the thermal potential. This is the first study to quantify surface chemistry and interparticle interactions during dissipative colloid assembly and represents a foundational step in rationally designing more complex dissipative assembly systems.
Collapse
Affiliation(s)
- Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Justin Hughes
- Department of Material Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
12
|
Ávila-Orta CA, Covarrubias-Gordillo CA, Fonseca-Florido HA, Melo-López L, Radillo-Ruíz R, Gutiérrez-Montiel E. PLA/modified-starch blends and their application for the fabrication of non-woven fabrics by melt-blowing. Carbohydr Polym 2023; 316:120975. [PMID: 37321705 DOI: 10.1016/j.carbpol.2023.120975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Blends of polylactic acid (PLA) and thermoplastic starch (TS) with and without chemical modification were obtained by melt extrusion and used to obtain non-woven fabrics by melt-blowing for the first time. Different TS were obtained by reactive extrusion from native cassava, oxidized, maleated, and dual modified (oxidized and maleated) starch. The chemical modification of starch decreases the difference in viscosity and favors blending, resulting in more homogeneous morphologies, unlike the blends with unmodified TS, which displayed a visible phase separation with large TS droplets. The dual modified starch showed a synergistic effect to process TS by melt-blowing. Regarding non-woven fabrics, values in diameter (2.5-82.1 μm), thickness (0.4-0.6 mm), and grammage (49.9-103.8 g/m2) were explained due to differences in viscosity of the components, and to the fact that during melt the hot air preferentially stretches and thins the areas without large droplets of TS. Moreover, plasticized starch acts as a flow modifier. The porosity of the fibers increased with the addition of TS. Further studies and optimization of blends with low contents of TS and type starch modification will be necessary to completely understand these systems with very complex behavior to obtain non-woven fabrics with improved properties and application.
Collapse
Affiliation(s)
- Carlos Alberto Ávila-Orta
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| | | | - Heidi Andrea Fonseca-Florido
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico.
| | - Leticia Melo-López
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico
| | - Rodolfo Radillo-Ruíz
- Consultoría e Ingeniería en Servicios Especializados (CISE), Leona Vicario 1686, Ciudad de México C.P 09500, Mexico
| | - Edith Gutiérrez-Montiel
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| |
Collapse
|
13
|
Cedano JA, Querol E, Mozo-Villarías A. How hydrophobicity shapes the architecture of protein assemblies. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:62. [PMID: 37495860 PMCID: PMC10371886 DOI: 10.1140/epje/s10189-023-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
The interactions that give rise to protein self-assembly are basically electrical and hydrophobic in origin. The electrical interactions are approached in this study as the interaction between electrostatic dipoles originated by the asymmetric distribution of their charged amino acids. However, hydrophobicity is not easily derivable from basic physicochemical principles. Its treatment is carried out here considering a hydrophobic force field originated by "hydrophobic charges". These charges are indices obtained experimentally from the free energies of transferring amino acids from polar to hydrophobic media. Hydrophobic dipole moments are used here in a manner analogous to electric dipole moments, and an empirical expression of interaction energy between hydrophobic dipoles is derived. This methodology is used with two examples of self-assembly systems of different complexity. It was found that the hydrophobic dipole moments of proteins tend to interact in such a way that they align parallel to each other in a completely analogous way to how phospholipids are oriented in biological membranes to form the well-known double layer. In this biological membrane model (BM model), proteins tend to interact in a similar way, although in this case this alignment is modulated by the tendency of the corresponding electrostatic dipoles to counter-align. Helical conformation of influenza virus PDBid: 6Z5L. Two monomers are shown in cyan and green. The corresponding dipole moment vectors are shown in red (electric dipoles) and blue (hydrophobic dipoles). From the inset figure, it can be seen that the growth of the helix is due to electrical attraction of the monomers, overcoming a hydrophobic repulsion (see text).
Collapse
Affiliation(s)
- Juan A Cedano
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain
| | - Angel Mozo-Villarías
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Kim S, Sattorov M, Hong D, Kang H, Park J, Lee JH, Ma R, Martin AV, Caleman C, Sellberg JA, Datta PK, Park SY, Park GS. Observing ice structure of micron-sized vapor-deposited ice with an x-ray free-electron laser. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:044302. [PMID: 37577135 PMCID: PMC10415018 DOI: 10.1063/4.0000185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 μm grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 μm. This suggests that precise temperature control and clean deposition conditions allow μm-thick ice films with high cubicity to be grown on hydrophilic Si3N4 membranes. The low influence of impurities could enable in situ diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.
Collapse
Affiliation(s)
| | | | - Dongpyo Hong
- Center for Applied Electromagnetic Research, Advanced Institute of Convergence Technology, 16229 Suwon, Korea
| | - Heon Kang
- Department of Chemistry, The Research Institute of Basic Sciences, Seoul National University, 1 Gwanakro, 08826 Seoul, South Korea
| | - Jaehun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | | | - Rory Ma
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, VIC, 3000 Melbourne, Australia
| | | | - Jonas A Sellberg
- Department of Applied Physics, KTH Royal Institute of Technology, S106 91 Stockholm, Sweden
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | - Sang Yoon Park
- Center for Applied Electromagnetic Research, Advanced Institute of Convergence Technology, 16229 Suwon, Korea
| | - Gun-Sik Park
- Author to whom correspondence should be addressed:
| |
Collapse
|
15
|
Xu L, Chekini M, Wilson ND, Zamperoni RJ, Pope MA. Spontaneous clustering of exfoliated two-dimensional materials at the air-water interface. J Colloid Interface Sci 2023; 648:129-140. [PMID: 37295365 DOI: 10.1016/j.jcis.2023.05.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
HYPOTHESIS Coating approaches which trap nanoparticles at an interface have become popular for depositing single-layer films from nanoparticle dispersions. Past efforts concluded that concentration and aspect ratio dominate the impact on aggregation state of nanospheres and nanorods at an interface. Although few works have explored the clustering behaviour of atomically thin, two-dimensional materials, we hypothesize that nanosheet concentration is the dominant factor leading to a particular cluster structure and that this local structure impacts the quality of densified Langmuir films. EXPERIMENTS We systematically studied cluster structures and Langmuir film morphologies of three different nanosheets, namely chemically exfoliated molybdenum disulfide, graphene oxide and reduced graphene oxide. FINDINGS We observe cluster structure transitions from island-like domains to more linear networks in all materials as dispersion concentration is reduced. Despite differences in material properties and morphologies, we obtained the same overall correlation between sheet number density (A/V) in the spreading dispersion and cluster fractal structure (df) is observed, with reduced graphene oxide sheets showing a slight delay upon transitioning into a lower-density cluster. Regardless of assembly method, we found that cluster structure impacts the attainable density of transferred Langmuir films. A two-stage clustering mechanism is supported by by considering the spreading profile of solvents and an analysis of interparticle forces at the air-water interface.
Collapse
Affiliation(s)
- Luzhu Xu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mahshid Chekini
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Nicholas D Wilson
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ryan J Zamperoni
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michael A Pope
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
16
|
Artemov V, Frank L, Doronin R, Stärk P, Schlaich A, Andreev A, Leisner T, Radenovic A, Kiselev A. The Three-Phase Contact Potential Difference Modulates the Water Surface Charge. J Phys Chem Lett 2023; 14:4796-4802. [PMID: 37191100 DOI: 10.1021/acs.jpclett.3c00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The surface charge of an open water surface is crucial for solvation phenomena and interfacial processes in aqueous systems. However, the magnitude of the charge is controversial, and the physical mechanism of charging remains incompletely understood. Here we identify a previously overlooked physical mechanism determining the surface charge of water. Using accurate charge measurements of water microdrops, we demonstrate that the water surface charge originates from the electrostatic effects in the contact line vicinity of three phases, one of which is water. Our experiments, theory, and simulations provide evidence that a junction of two aqueous interfaces (e.g., liquid-solid and liquid-air) develops a pH-dependent contact potential difference Δϕ due to the longitudinal charge redistribution between two contacting interfaces. This universal static charging mechanism may have implications for the origin of electrical potentials in biological, nanofluidic, and electrochemical systems and helps to predict and control the surface charge of water in various experimental environments.
Collapse
Affiliation(s)
- Vasily Artemov
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laura Frank
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Roman Doronin
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Philipp Stärk
- SC Simtech, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Schlaich
- SC Simtech, University of Stuttgart, 70569 Stuttgart, Germany
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Anton Andreev
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Thomas Leisner
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Aleksandra Radenovic
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexei Kiselev
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| |
Collapse
|
17
|
Bar-On R, Manor O. Connecting Colloidal Forces to the Equilibrium Thickness of Particulate Deposits on a Substrate in Contact with a Suspension Using Classical Density Functional Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5689-5696. [PMID: 37037185 DOI: 10.1021/acs.langmuir.2c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We study contributions of colloidal forces, i.e., hydrophobic, van der Waals, and electrical double layer interactions, to the thickness of a colloidal deposit in equilibrium with an aqueous suspension by using classical density functional theory, which we expand to obtain a Ginzburg-Landau type energy functional. We regard colloidal particles as clusters of molecular segments-a reminiscent of polymer statistical physics and of the classic Hamaker treatment of van der Waals interactions between particles. This approach appropriately accounts for the integral interaction energy between colloidal particles, which may take magnitudes of many times the characteristic molecular thermal energy kBT (Boltzmann constant times temperature). The analysis highlights the well-known insight that entropy is mostly governed by the solvent molecules and gives physical values to the statistical coefficients in a Ginzburg-Landau type energy functional.
Collapse
Affiliation(s)
- Roi Bar-On
- Applied Mathematics Department, Technion - Israel Institute of Technology, Haifa 3200000, Israel
| | - Ofer Manor
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200000, Israel
| |
Collapse
|
18
|
Gong L, Wu F, Yang W, Huang C, Li W, Wang X, Wang J, Tang T, Zeng H. Unraveling the hydrophobic interaction mechanisms of hydrocarbon and fluorinated surfaces. J Colloid Interface Sci 2023; 635:273-283. [PMID: 36587579 DOI: 10.1016/j.jcis.2022.12.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Numerous hydrocarbon and fluorine-based hydrophobic surfaces have been widely applied in various engineering and bioengineering fields. It is hypothesized that the hydrophobic interactions of hydrocarbon and fluorinated surfaces in aqueous media would show some differences. EXPERIMENTS The hydrophobic interactions of hydrocarbon and fluorinated surfaces with air bubbles in aqueous solutions have been systematically and quantitatively measured using a bubble probe atomic force microscopy (AFM) technique. Ethanol was introduced to water for modulating the solution polarity. The experimental force profiles were analyzed using a theoretical model combining the Reynolds lubrication theory and augmented Young-Laplace equation by including disjoining pressure arisen from the Derjarguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions (i.e., hydrophobic interactions). FINDINGS The experiment results show that the hydrophobic interactions were firstly weakened and then strengthened by increasing ethanol content in the aqueous media, mainly due to the variation in interfacial hydrogen bonding network. The fluorinated surface exhibited less sensitivity to ethanol than hydrocarbon surface, which is attributed to the presence of ordered interfacial water layer. Our work reveals the different hydrophobic effects of hydrocarbon and fluorinated surfaces, with useful implications on modulating the interfacial interactions of relevant materials in various engineering and bioengineering applications.
Collapse
Affiliation(s)
- Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Feiyi Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenshuai Yang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenhui Li
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
19
|
Puppulin L, Ishikawa J, Sumino A, Marchesi A, Flechsig H, Umeda K, Kodera N, Nishimasu H, Shibata M. Dynamics of Target DNA Binding and Cleavage by Staphylococcus aureus Cas9 as Revealed by High-Speed Atomic Force Microscopy. ACS NANO 2023; 17:4629-4641. [PMID: 36848598 DOI: 10.1021/acsnano.2c10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Programmable DNA binding and cleavage by CRISPR-Cas9 has revolutionized the life sciences. However, the off-target cleavage observed in DNA sequences with some homology to the target still represents a major limitation for a more widespread use of Cas9 in biology and medicine. For this reason, complete understanding of the dynamics of DNA binding, interrogation and cleavage by Cas9 is crucial to improve the efficiency of genome editing. Here, we use high-speed atomic force microscopy (HS-AFM) to investigate Staphylococcus aureus Cas9 (SaCas9) and its dynamics of DNA binding and cleavage. Upon binding to single-guide RNA (sgRNA), SaCas9 forms a close bilobed structure that transiently and flexibly adopts also an open configuration. The SaCas9-mediated DNA cleavage is characterized by release of cleaved DNA and immediate dissociation, confirming that SaCas9 operates as a multiple turnover endonuclease. According to present knowledge, the process of searching for target DNA is mainly governed by three-dimensional diffusion. Independent HS-AFM experiments show a potential long-range attractive interaction between SaCas9-sgRNA and its target DNA. The interaction precedes the formation of the stable ternary complex and is observed exclusively in the vicinity of the protospacer-adjacent motif (PAM), up to distances of several nanometers. The direct visualization of the process by sequential topographic images suggests that SaCas9-sgRNA binds to the target sequence first, while the following binding of the PAM is accompanied by local DNA bending and formation of the stable complex. Collectively, our HS-AFM data reveal a potential and unexpected behavior of SaCas9 during the search for DNA targets.
Collapse
Affiliation(s)
- Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Junichiro Ishikawa
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Ayumi Sumino
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Arin Marchesi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto, 10/A Torrette di Ancona, 60126, Ancona, Italy
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
20
|
Li Z, Hu K, Feng X. Hollow fiber membranes comprising of polyvinylamine/polydopamine active layers and a polyvinylidene fluoride substrate for pervaporative concentration of KAc solutions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
21
|
Homogeneous interfacial water structure favors realizing a low-friction coefficient state. J Colloid Interface Sci 2022; 626:324-333. [DOI: 10.1016/j.jcis.2022.06.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
|
22
|
Armanious A, Mezzenga R. A Roadmap for Building Waterborne Virus Traps. JACS AU 2022; 2:2205-2221. [PMID: 36311831 PMCID: PMC9597599 DOI: 10.1021/jacsau.2c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Outbreaks of waterborne viruses pose a massive threat to human health, claiming the lives of hundreds of thousands of people every year. Adsorption-based filtration offers a promising facile and environmentally friendly approach to help provide safe drinking water to a world population of almost 8 billion people, particularly in communities that lack the infrastructure for large-scale facilities. The search for a material that can effectively trap viruses has been mainly driven by a top-down approach, in which old and new materials have been tested for this purpose. Despite substantial advances, finding a material that achieves this crucial goal and meets all associated challenges remains elusive. We suggest that the road forward should strongly rely on a complementary bottom-up approach based on our fundamental understanding of virus interactions at interfaces. We review the state-of-the-art physicochemical knowledge of the forces that drive the adsorption of viruses at solid-water interfaces. Compared to other nanometric colloids, viruses have heterogeneous surface chemistry and diverse morphologies. We advocate that advancing our understanding of virus interactions would require describing their physicochemical properties using novel descriptors that reflect their heterogeneity and diversity. Several other related topics are also addressed, including the effect of coadsorbates on virus adsorption, virus inactivation at interfaces, and experimental considerations to ensure well-grounded research results. We finally conclude with selected examples of materials that made notable advances in the field.
Collapse
Affiliation(s)
- Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
| | - Raffaele Mezzenga
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
- Department
of Materials, ETH Zurich, Zurich8093, Switzerland
| |
Collapse
|
23
|
Zhu J, McDargh ZA, Li F, Krishnakumar SS, Rothman JE, O’Shaughnessy B. Synaptotagmin rings as high-sensitivity regulators of synaptic vesicle docking and fusion. Proc Natl Acad Sci U S A 2022; 119:e2208337119. [PMID: 36103579 PMCID: PMC9499556 DOI: 10.1073/pnas.2208337119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Synchronous release at neuronal synapses is accomplished by a machinery that senses calcium influx and fuses the synaptic vesicle and plasma membranes to release neurotransmitters. Previous studies suggested the calcium sensor synaptotagmin (Syt) is a facilitator of vesicle docking and both a facilitator and inhibitor of fusion. On phospholipid monolayers, the Syt C2AB domain spontaneously oligomerized into rings that are disassembled by Ca2+, suggesting Syt rings may clamp fusion as membrane-separating "washers" until Ca2+-mediated disassembly triggers fusion and release [J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 13966-13971 (2014)].). Here, we combined mathematical modeling with experiment to measure the mechanical properties of Syt rings and to test this mechanism. Consistent with experimental results, the model quantitatively recapitulates observed Syt ring-induced dome and volcano shapes on phospholipid monolayers and predicts rings are stabilized by anionic phospholipid bilayers or bulk solution with ATP. The selected ring conformation is highly sensitive to membrane composition and bulk ATP levels, a property that may regulate vesicle docking and fusion in ATP-rich synaptic terminals. We find the Syt molecules hosted by a synaptic vesicle oligomerize into a halo, unbound from the vesicle, but in proximity to sufficiently phosphatidylinositol 4,5-bisphosphate (PIP2)-rich plasma membrane (PM) domains, the PM-bound trans Syt ring conformation is preferred. Thus, the Syt halo serves as landing gear for spatially directed docking at PIP2-rich sites that define the active zones of exocytotic release, positioning the Syt ring to clamp fusion and await calcium. Our results suggest the Syt ring is both a Ca2+-sensitive fusion clamp and a high-fidelity sensor for directed docking.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Zachary A. McDargh
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Feng Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | | | - James E. Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
24
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
25
|
Xie X, Yan J, Wu Q, Wang T, Chu F, Yang S. Rapid and efficient oil removal from O/W emulsions by hydrophobic porous polystyrene microspheres embedded with hydrophilic surface micro-regions. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128898. [PMID: 35460994 DOI: 10.1016/j.jhazmat.2022.128898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Inspired by Namib Desert beetle's back which is patterned with different wetting properties, hydrophobic porous polystyrene microspheres embedded with hydrophilic surface micro-regions (HPHs) were designed and fabricated by the radical copolymerization in the W1/O/W2 double Pickering emulsions with high internal water phase. The synergistic effect of the hydrophobic surface and the hydrophilic surface micro-regions results in HPHs exhibiting superior performances for separating both surfactant-free and surfactant-stabilized O/W emulsions. After 60 s hand-shaking, the oil was absorbed and stored within HPHs which could be separated from the water using a 600-mesh sieve, and the TOC values of purified water could be reduced to 2.06 ± 0.06-67.38 ± 2.02 ppm when the initial oil content was 1 vol%. Meanwhile, HPHs could be recovered and reused through a simple treatment. The excellent oil removal efficiency was kept even after 50 cycles. High oil removal efficiency, general applicability, easy operation and excellent recyclability endow HPHs with great potential for practical applications. And this work provides a facile and general way to prepare porous polymer microspheres with wettability contrast surfaces.
Collapse
Affiliation(s)
- Xiaomin Xie
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jingfan Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qiong Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Tianyu Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Fumin Chu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Sen Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
26
|
Li M, Yi L, Sun C. Spontaneously formed multiscale nano-domains in monophasic region of ternary solution. J Colloid Interface Sci 2022; 628:223-235. [DOI: 10.1016/j.jcis.2022.07.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
27
|
Akin-Ojo O. Contribution of the Induced-Dipole Interaction to Methane Aggregation in Water. J Phys Chem B 2022; 126:2552-2556. [PMID: 35333514 DOI: 10.1021/acs.jpcb.2c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolar molecules in the gas phase have no dipole moments. However, when placed in an aqueous environment, they acquire a dipole moment induced by the electric fields of the surrounding water molecules. Could these induced dipole moments, not present in the gas phase but present in solution, play an important role in the hydrophobic interaction between two apolar molecules? In particular, for two methane molecules, our results show that the interaction between the induced-dipole moments only very weakly plays a role in the aggregation of a pair of methane molecules in water. The induced-dipole-induced-dipole interaction has a magnitude as large as 1 kcal/mol for certain mutual orientations of the induced dipole moments, which is larger than the magnitude of the free energy of aggregation of the methane solutes in water. However, when averaged over all physically occurring conformations for a fixed intersolute separation, this interaction averages to an insignificant value (magnitude less than 0.01 kcal/mol) except, possibly, for some very short intermolecular separation.
Collapse
Affiliation(s)
- Omololu Akin-Ojo
- ICTP East African Institute for Fundamental Research (EAIFR), University of Rwanda, Kigali, Rwanda
| |
Collapse
|
28
|
Guven O, Kaymakoğlu B, Ehsani A, Hassanzadeh A, Sivrikaya O. Effects of grinding time on morphology and collectorless flotation of coal particles. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Park J, Park J, Lee J, Lim C, Lee DW. Size compatibility and concentration dependent supramolecular host-guest interactions at interfaces. Nat Commun 2022; 13:112. [PMID: 35013244 PMCID: PMC8748952 DOI: 10.1038/s41467-021-27659-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
The quantification of supramolecular host-guest interactions is important for finely modulating supramolecular systems. Previously, most host-guest interactions quantified using force spectroscopic techniques have been reported in force units. However, accurately evaluating the adhesion energies of host-guest pairs remains challenging. Herein, using a surface forces apparatus, we directly quantify the interaction energies between cyclodextrin (CD)-modified surfaces and ditopic adamantane (DAd) molecules in water as a function of the DAd concentration and the CD cavity size. The adhesion energy of the β-CD-DAd complex drastically increased with increasing DAd concentration and reached saturation. Moreover, the molecular adhesion energy of a single host-guest inclusion complex was evaluated to be ~9.51 kBT. This approach has potential for quantifying fundamental information toward furthering the understanding of supramolecular chemistry and its applications, such as molecular actuators, underwater adhesives, and biosensors, which require precise tuning of specific host-guest interactions.
Collapse
Affiliation(s)
- Jintae Park
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinwoo Park
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinhoon Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chanoong Lim
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Dong Woog Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
30
|
Hu P, Li Q, Liang L. A review of characterization techniques of heterocoagulation between mineral particles in mineral separation process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Liu X, Zhang L, Cui X, Zhang Q, Hu W, Du J, Zeng H, Xu Q. 2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102493. [PMID: 34668340 PMCID: PMC8655186 DOI: 10.1002/advs.202102493] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Since the discovery of 2D materials, 2D material nanofiltration (NF) membranes have attracted great attention and are being developed with a tremendously fast pace, due to their energy efficiency and cost effectiveness for water purification. The most attractive aspect for 2D material NF membranes is that, anomalous water and ion permeation phenomena have been constantly observed because of the presence of the severely confined nanocapillaries (<2 nm) in the membrane, leading to its great potential in achieving superior overall performance, e.g., high water flux, high rejection rates of ions, and high resistance to swelling. Hence, fundamental understandings of such water and ion transport behaviors are of great significance for the continuous development of 2D material NF membranes. In this work, the microscopic understandings developed up to date on 2D material NF membranes regarding the abnormal transport phenomena are reviewed, including ultrafast water and ion permeation rates with the magnitude several orders higher than that predicted by conventional diffusion behavior, ion dehydration, ionic Coulomb blockade, ion-ion correlations, etc. The state-of-the-art structural designs for 2D material NF membranes are also reviewed. Discussion and future perspectives are provided highlighting the rational design of 2D material membrane structures in the future.
Collapse
Affiliation(s)
- Xiaopeng Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Ling Zhang
- School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Qian Zhang
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Wenjihao Hu
- School of Metallurgy & EnvironmentCentral South UniversityChangshaHunan410083China
| | - Jiang Du
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Qun Xu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
32
|
Novel analytical expressions for determining van der Waals interaction between a particle and air-water interface: Unexpected stronger van der Waals force than capillary force. J Colloid Interface Sci 2021; 610:982-993. [PMID: 34876261 DOI: 10.1016/j.jcis.2021.11.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS Analytical expressions for calculating Hamaker constant (HC) and van der Waals (VDW) energy/force for interaction of a particle with a solid water interface has been reported for over eighty years. This work further developed novel analytical expressions and numerical approaches for determining HC and VDW interaction energy/force for the particle approaching and penetrating air-water interface (AWI), respectively. METHODS The expressions of HC and VDW interaction energy/force before penetrating were developed through analysis of the variation in free energy of the interaction system with bringing the particle from infinity to the vicinity of the AWI. The surface element integration (SEI) technique was modified to calculate VDW energy/force after penetrating. FINDINGS We explain why repulsive VDW energy exists inhibiting the particle from approaching the AWI. We found very significant VDW repulsion for a particle at a concave AWI after penetration, which can even exceed the capillary force and cause strong retention in water films on a solid surface and at air-water-solid interface line. The methods and findings of this work are critical to quantification and understanding of a variety of engineered processes such as particle manipulation (e.g., bubble flotation, Pickering emulsion, and particle laden interfaces).
Collapse
|
33
|
Wieser V, Mears LLE, Barker RD, Cheng HW, Valtiner M. Hydration Forces Dominate Surface Charge Dependent Lipid Bilayer Interactions under Physiological Conditions. J Phys Chem Lett 2021; 12:9248-9252. [PMID: 34533315 PMCID: PMC8488952 DOI: 10.1021/acs.jpclett.1c02572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Lipid bilayer interactions are essential to a vast range of biological functions, such as intracellular transport mechanisms. Surface charging mediated by concentration dependent ion adsorption and desorption on lipid headgroups alters electric double layers as well as van der Waals and steric hydration forces of interacting bilayers. Here, we directly measure bilayer interactions during charge modulation in a symmetrically polarized electrochemical three-mirror interferometer surface forces apparatus. We quantify polarization and concentration dependent hydration and electric double layer forces due to cation adsorption/desorption. Our results demonstrate that exponential hydration layer interactions effectively describe surface potential dependent surface forces due to cation adsorption at high salt concentrations. Hence, electric double layers of lipid bilayers are exclusively dominated by inner Helmholtz charge regulation under physiological conditions. These results are important for rationalizing bilayer behavior under physiological conditions, where charge and concentration modulation may act as biological triggers for function and signaling.
Collapse
Affiliation(s)
- Valentina Wieser
- Institute
for Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Laura L. E. Mears
- Institute
for Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Robert D. Barker
- School
of Physical Sciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Hsiu-Wei Cheng
- Institute
for Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Markus Valtiner
- Institute
for Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| |
Collapse
|
34
|
Li K, Wang W, Xiao F, Ge Y, Jin H, Yu Z, Gong J, Gao W, Peng Z. Atomic Force Microscopy Study of Non-DLVO Interactions between Drops and Bubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6830-6837. [PMID: 34043914 DOI: 10.1021/acs.langmuir.1c00937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The heterointeraction between liquid drops and air bubbles dispersed in another immiscible liquid is studied with the application of the atomic force microscopy (AFM) probe techniques. The tetradecane drops and air bubbles readily coalescence to form a lens-like structure in 100 mM sodium chloride aqueous solution, demonstrating strong hydrophobic (HB) attraction. The interaction range and strength of this hydrophobic attraction between oil drops and air bubbles is investigated by fine control of electrical double layer thicknesses related to specific electrolyte concentrations, and a midrange term in combination with a short-range term is found to present a proper characterization of this hydrophobic attraction. A further step is taken by introducing a triblock copolymer (Pluronic F68) into the aqueous solution, with results indicating that a relatively long-range steric hindrance (SH) furnished by a polymer "brush" surmounts the hydrophobic attraction. Finally, the interaction between a water drop and an air bubble in tetradecane is also measured as a comparison. The repelling action between a hydrophobic body (air bubble) and water drop indicates a strong repulsion. The present results show an interesting understanding of hydrophobic interactions between drops and bubbles, which is of potential application in controlling dispersion stability.
Collapse
Affiliation(s)
- Kai Li
- Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, State Key Laboratory of Natural Gas Hydrates, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249 Beijing, P. R. China
| | - Wei Wang
- Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, State Key Laboratory of Natural Gas Hydrates, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249 Beijing, P. R. China
| | - Fan Xiao
- Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, State Key Laboratory of Natural Gas Hydrates, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249 Beijing, P. R. China
| | - Yuntong Ge
- Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, State Key Laboratory of Natural Gas Hydrates, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249 Beijing, P. R. China
| | - Hang Jin
- Tianjin Research Institute for Water Transport Engineering, Key Laboratory of Environmental Protection Technology on Water Transport, Ministry of Transport, No. 2618 Xingang Second Road, Binhai New District, 300456 Tianjin, P. R. China
| | - Zhipeng Yu
- Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, State Key Laboratory of Natural Gas Hydrates, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249 Beijing, P. R. China
| | - Jing Gong
- Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, State Key Laboratory of Natural Gas Hydrates, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249 Beijing, P. R. China
| | - Weiwei Gao
- Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, State Key Laboratory of Natural Gas Hydrates, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249 Beijing, P. R. China
| | - Zeheng Peng
- Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, State Key Laboratory of Natural Gas Hydrates, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249 Beijing, P. R. China
| |
Collapse
|
35
|
Han M, Zhang R, Gewirth AA, Espinosa-Marzal RM. Nanoheterogeneity of LiTFSI Solutions Transitions Close to a Surface and with Concentration. NANO LETTERS 2021; 21:2304-2309. [PMID: 33616411 DOI: 10.1021/acs.nanolett.1c00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water-in-salt (WIS) electrolytes composed of 21 m LiTFSI have recently emerged as a safe and environmentally friendly alternative to conventional organic electrolytes in Li-ion batteries. Several studies have emphasized the relation between the high conductivity of WIS electrolytes and their nanoscale structure. Combining force measurements with a surface forces apparatus and atomic force microscopy, this study describes the nanoheterogeneity of LiTFSI solutions as a function of concentration and distance from a negatively charged (mica) surface. We report various nanostructures coexisting in the WIS electrolyte, whose size increases with concentration and is influenced by the proximity of the mica surface. Two key concentration thresholds are identified, beyond which a transition of behavior is observed. The careful scrutinization on the concentration-dependent nanostructures lays groundwork for designing novel electrolytes in future energy storage devices.
Collapse
Affiliation(s)
- Mengwei Han
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ruixian Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
The pressure difference of water, a neglected but crucial inter-surface force in aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Li D, Wang H, Li C, Liang Y, Yan X, Zhang H. Determination and modulation of the typical interactions among dispersed phases relevant to flotation applications: A review. Adv Colloid Interface Sci 2021; 288:102359. [PMID: 33422930 DOI: 10.1016/j.cis.2020.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022]
Abstract
Flotation is a process involving multi-components, multi-scales, and gas-liquid-solid three phases, where the material separation is achieved based on the difference in surface hydrophobicity of various constituents. In a flotation system, fluids are usually regarded as the continuous phase, while the dispersed phases refer to scattered particles, bubbles, and droplets with low solubility as a dispersion that is surrounded by the aqueous environment. Fundamentally, the interactions among dispersed phases exist throughout the flotation process, and play distinct roles during different periods. For example, the liquid collector-solid, solid-solid, bubble-bubble and gas bubble-solid interactions are closely associated with the particle surface modification, particle behavior, bubble size evolution and separation in flotation, respectively. Therefore, the influences of each stage are all worthy of concern, and should be spared sufficient attention, which requires to formulate a horizontal writing structure. In this review, instead of summarizing all available characterization techniques or measurements, certain typical examples or methods were consciously chosen to perform analysis or comparison, aiming to summarize recent studies on the determination and modulation of dispersed phase interactions. The determination on the interactions among dispersed phases is helpful for fundamentally understanding the microcosmic process connotations, and their modulation contributes to firmly providing macroscopic optimization schemes for practical applications. By integrating some typically available theoretical calculations and experimental measurements related to the dispersed phase interactions, the present article is devoted to revealing the influential factors, finding out the current challenges or knowledge gaps, and affording certain references or suggestions for future investigations.
Collapse
Affiliation(s)
- Danlong Li
- National Engineering Research Center for Coal Preparation and Purification, China University of Mining and Technology, 221116 Xuzhou, China; School of Chemical Engineering and Technology, China University of Mining and Technology, 221116 Xuzhou, China
| | - Hainan Wang
- National Engineering Research Center for Coal Preparation and Purification, China University of Mining and Technology, 221116 Xuzhou, China; School of Chemical Engineering and Technology, China University of Mining and Technology, 221116 Xuzhou, China
| | - Chenwei Li
- National Engineering Research Center for Coal Preparation and Purification, China University of Mining and Technology, 221116 Xuzhou, China; School of Chemical Engineering and Technology, China University of Mining and Technology, 221116 Xuzhou, China
| | - Yannan Liang
- National Engineering Research Center for Coal Preparation and Purification, China University of Mining and Technology, 221116 Xuzhou, China; School of Chemical Engineering and Technology, China University of Mining and Technology, 221116 Xuzhou, China
| | - Xiaokang Yan
- National Engineering Research Center for Coal Preparation and Purification, China University of Mining and Technology, 221116 Xuzhou, China; School of Chemical Engineering and Technology, China University of Mining and Technology, 221116 Xuzhou, China
| | - Haijun Zhang
- National Engineering Research Center for Coal Preparation and Purification, China University of Mining and Technology, 221116 Xuzhou, China; School of Chemical Engineering and Technology, China University of Mining and Technology, 221116 Xuzhou, China.
| |
Collapse
|
38
|
Lin F, Yuan S, Han W. Effective prevention of Escherichia coli biofilm on materials by nano-vibration. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Xie L, Liu F, Liu J, Zeng H. A Nanomechanical Study on Deciphering the Stickiness of SARS-CoV-2 on Inanimate Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58360-58368. [PMID: 33337873 PMCID: PMC7770894 DOI: 10.1021/acsami.0c16800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 05/05/2023]
Abstract
The SARS-CoV-2 virus that causes the COVID-19 epidemic can be transmitted via respiratory droplet-contaminated surfaces or fomites, which urgently requires a fundamental understanding of intermolecular interactions of the coronavirus with various surfaces. The corona-like component of the outer surface of the SARS-CoV-2 virion, named spike protein, is a key target for the adsorption and persistence of SARS-CoV-2 on various surfaces. However, a lack of knowledge in intermolecular interactions between spike protein and different substrate surfaces has resulted in ineffective preventive measures and inaccurate information. Herein, we quantified the surface interaction and adhesion energy of SARS-CoV-2 spike protein with a series of inanimate surfaces via atomic force microscopy under a simulated respiratory droplet environment. Among four target surfaces, polystyrene was found to exhibit the strongest adhesion, followed by stainless steel (SS), gold, and glass. The environmental factors (e.g., pH and temperature) played a role in mediating the spike protein binding. According to systematic quantification on a series of inanimate surfaces, the adhesion energy of spike protein was found to be (i) 0-1 mJ/m2 for hydrophilic inorganics (e.g., silica and glass) due to the lack of hydrogen bonding, (ii) 2-9 mJ/m2 for metals (e.g., alumina, SS, and copper) due to the variation of their binding capacity, and (iii) 6-11 mJ/m2 for hydrophobic polymers (e.g., medical masks, safety glass, and nitrile gloves) due to stronger hydrophobic interactions. The quantitative analysis of the nanomechanics of spike proteins will enable a protein-surface model database for SARS-CoV-2 to help generate effective preventive strategies to tackle the epidemic.
Collapse
Affiliation(s)
- Lei Xie
- Department of Chemical
and Materials Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Fenglin Liu
- Institute of Biomedical and Health Engineering,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| | - Jifang Liu
- Sixth Affiliated
Hospital of Guangzhou Medical University, Qingyuan People’s
Hospital, Guangzhou Medical University, Guangdong 511500, China
| | - Hongbo Zeng
- Department of Chemical
and Materials Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
40
|
Dziadkowiec J, Ro̷yne A. Nanoscale Forces between Basal Mica Surfaces in Dicarboxylic Acid Solutions: Implications for Clay Aggregation in the Presence of Soluble Organic Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14978-14990. [PMID: 33259209 PMCID: PMC7745536 DOI: 10.1021/acs.langmuir.0c02290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/14/2020] [Indexed: 05/26/2023]
Abstract
The stability of organomineral aggregates in soils has a key influence on nutrient cycling, erosion, and soil productivity. Both clay minerals with distinct basal and edge surfaces and organic molecules with reactive functional groups offer rich bonding environments. While clay edges often promote strong inner-sphere bonding of -COOH-laden organics, we explore typically weaker, outer-sphere bonding of such molecules onto basal planes and its significance in organomineral interactions. In this surface force apparatus study, we probed face-specific interactions of negatively charged mica basal surfaces in solutions containing carboxyl-bearing, low-molecular-weight dicarboxylic acids (DAs). Our experiments provide distance-resolved, nanometer-range measurements of forces acting between two (001) mica surfaces and simultaneously probe DA adsorption. We show that background inorganic ions display crucial importance in nanoscale forces acting between basal mica surfaces and in DA adsorption: Na+ contributes to strong repulsion and little binding of dicarboxylic anions, while small amounts of Ca2+ are sufficient to screen the basal surface charge of mica, facilitate strong adhesion, and enhance dicarboxylic anion adsorption by acting as cationic bridges. Despite reversible and weak adsorption of DAs, we resolve their multilayer binding via assembly of hydrophobic chains in the presence of Ca2+, pointing the importance of abundant, less reactive basal clay surfaces in organomineral interactions.
Collapse
Affiliation(s)
- Joanna Dziadkowiec
- NJORD
Centre, Department of Physics, University
of Oslo, Oslo 0371, Norway
- Institute
of Applied Physics, Vienna University of
Technology, Wiedner Hauptstrasse
8-10, 1040 Vienna, Austria
| | - Anja Ro̷yne
- NJORD
Centre, Department of Physics, University
of Oslo, Oslo 0371, Norway
| |
Collapse
|
41
|
Zidar M, Rozman P, Belko-Parkel K, Ravnik M. Control of viscosity in biopharmaceutical protein formulations. J Colloid Interface Sci 2020; 580:308-317. [DOI: 10.1016/j.jcis.2020.06.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
|
42
|
Pillai S, Santana A, Das R, Shrestha BR, Manalastas E, Mishra H. A molecular to macro level assessment of direct contact membrane distillation for separating organics from water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Xiang L, Zhang J, Gong L, Zeng H. Surface forces and interaction mechanisms of soft thin films under confinement: a short review. SOFT MATTER 2020; 16:6697-6719. [PMID: 32648881 DOI: 10.1039/d0sm00924e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface forces of soft thin films under confinement in fluids play an important role in diverse biological and technological applications, such as bio-adhesion, lubrication and micro- and nano-electromechanical systems. Understanding the involved interaction mechanisms underlying the adhesion behaviors and tribological performances (i.e., friction and lubrication) of various confined soft thin films is significant in the development of both fundamental science and practical technologies. In this review, the fundamentals of surface forces are briefly presented. The widely utilized force measurement techniques including surface forces apparatus (SFA), atomic force microscopy (AFM) and spacer layer interferometry tribometer techniques are introduced. The advances in the fundamental understanding of a wide range of adhesion and tribological phenomena have been reviewed, in terms of the intermolecular and surface interaction mechanisms involved. The influences of various factors such as confined film properties, experimental conditions (e.g., normal load, and sliding velocity) and environmental variables (e.g., salts, salinity, additives and pH) on the adhesion, friction or lubrication forces of confined soft thin films are presented. The correlation between adhesion hysteresis and friction/lubrication behaviors has been discussed. Some of the challenging issues remaining and future perspectives are also provided.
Collapse
Affiliation(s)
- Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
44
|
Hu W, Tian M, Cao J, Xie L, Gong L, Sun W, Gao Z, Zeng H. Probing the Interaction Mechanism between Benzohydroxamic Acid and Mineral Surface in the Presence of Pb 2+ Ions by AFM Force Measurements and First-Principles Calculations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8199-8208. [PMID: 32594745 DOI: 10.1021/acs.langmuir.0c01307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Probing the interaction mechanism between organic molecules and material surfaces in the presence of metal ions is of great importance in many fields, such as mineral flotation. The collectability of benzohydroxamic acid (BHA) to a spodumene (LiAl(SiO3)2) mineral surface during mineral flotation could be enhanced with the addition of metal ion activators-Pb2+ ions. Pb2+ ions could be added as either Pb-BHA complex formed by premixing Pb2+ ions and BHA molecules at a given ratio or sequential addition of Pb2+ ions and BHA molecules. However, the complete understanding of the interaction mechanisms (e.g., adhesion) between BHA and the spodumene mineral surface in the presence of Pb2+ ions remains very limited. In this study, atomic force microscopy (AFM) was used to measure the intermolecular forces between BHA and the spodumene mineral surface in aqueous solutions. A BHA model molecule, that is, N-hydroxy-4-mercaptobenzamide (MBHA), was synthesized to prepare a BHA-functionalized AFM probe for force measurements. Two model systems (i.e., a Pb-BHA complex interacting with the spodumene mineral surface (model I) and BHA with a Pb2+-activated spodumene surface (model II)) were investigated for comparing the role of Pb2+ in BHA-mineral adhesion. The adhesion measured for model I (23.7 mN/m) is much higher than that of model II (12.5 mN/m), as further supported by the adsorption energies obtained from density functional theory (DFT) calculations. The calculation results showed a higher adsorption energy for model I (∼188.58 kJ/mol) than model II (∼128.16 kJ/mol), which is due to the better spodumene flotation recovery for the Pb-BHA complex as a collector than the sequential addition of Pb2+ and BHA. This work provides useful information on the intermolecular interactions between chemical additives and mineral surfaces in complex mineral flotation processes, and the methodology can be readily extended to other related interfacial processes such as membrane technology, water treatment, oil production, and bioengineering processes.
Collapse
Affiliation(s)
- Wenjihao Hu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Mengjie Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 PR China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083 China
| | - Jian Cao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 PR China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083 China
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 PR China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083 China
| | - Zhiyong Gao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 PR China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083 China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
45
|
Role of molecular architecture in the modulation of hydrophobic interactions. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Interfacial ion specificity modulates hydrophobic interaction. J Colloid Interface Sci 2020; 578:135-145. [PMID: 32521353 DOI: 10.1016/j.jcis.2020.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS Ion specificity is crucial in assembly and aggregation of polymers in water driven by hydrophobic interaction. An increasing number of studies have suggested that specific ion adsorption and consequent impact on interfacial water molecules should play an important role in modulating hydrophobic interaction. EXPERIMENTS Here, bubble probe atomic force microscopy (AFM) combined with theoretical modeling analysis was applied to quantify hydrophobic interactions involving three model polymers in solutions containing different ions. FINDINGS For polystyrene, the hydrophobic interaction's decay length D0 was reduced from 0.75 nm to 0.60 nm by introducing weakly hydrated cations (e.g., K+ and NH4+), while varying anion type had little effect. For poly(methyl methacrylate) and polydimethylsiloxane, anion specificity was demonstrated more evident in shortening the hydrophobic interaction range, with D0 decreasing from 0.63 nm to 0.50 nm and from 0.72 nm to 0.58 nm respectively when strongly hydrated F- or Cl- was replaced by weakly hydrated I-. Such results could arise from specific ion adsorption at water/polymer interface which disrupts the water structuring effect. From the nanomechanical perspective, this work has revealed the importance of interfacial ion specificity in modulating hydrophobic interaction, which offers novel implications for tuning assembly behavior of macromolecules in relevant engineering applications such as micelle formation and foam stabilization.
Collapse
|
47
|
Xie L, Cui X, Gong L, Chen J, Zeng H. Recent Advances in the Quantification and Modulation of Hydrophobic Interactions for Interfacial Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2985-3003. [PMID: 32023067 DOI: 10.1021/acs.langmuir.9b03573] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hydrophobic interaction is responsible for a variety of colloidal phenomena, which also plays a key role in achieving the desired characteristics and functionalities for a wide range of interfacial applications. In this feature article, our recent advances in the quantification and modulation of hydrophobic interactions at both solid/water and air/water interfaces in different material systems have been reviewed. On the basis of surface forces apparatus (SFA) measurements of hydrophobic polymers (e.g., polystyrene), a three-regime hydrophobic interaction model that could satisfactorily encompass the hydrophobic interaction with different ranges was proposed. In addition, the atomic force microscope (AFM) coupled with various techniques such as the colloidal probe, the electrochemical process, and force mapping were employed to quantify the hydrophobic interaction from different perspectives. For the hydrophobic interactions involving deformable bubbles, the bubble probe AFM combined with reflection interference contrast microscopy (RICM) was used to simultaneously measure the interaction force and spatiotemporal evolution of the thin film drainage process between air bubbles and hydrophobized mica surfaces in an aqueous medium. The studies on the interactions of air bubbles with self-assembled monolayers (SAMs) demonstrated that the range of hydrophobic interactions does not always increase monotonically with the hydrophobicity of interacting surfaces as characterized by the static water contact angle; viz., surfaces with similar hydrophobicity can exhibit different ranges of hydrophobic interaction, while surfaces with different hydrophobicities can exhibit a similar range of hydrophobic interactions. It is found that the hydrophobic interaction can be modulated by tuning the surface nanoscale structure and chemistry. Moreover, the long-range "hydrophilic" attraction that resembles the hydrophobic interaction was discovered between water droplets and polyelectrolyte surfaces in an oil medium, on the basis of which polyelectrolyte coating materials were designed for oil cleaning, oil/water separation, and demulsification. The interfacial applications, remaining challenges, and future perspectives of hydrophobic interactions are discussed.
Collapse
Affiliation(s)
- Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xin Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
48
|
Smith AM, Borkovec M, Trefalt G. Forces between solid surfaces in aqueous electrolyte solutions. Adv Colloid Interface Sci 2020; 275:102078. [PMID: 31837508 DOI: 10.1016/j.cis.2019.102078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 11/15/2022]
Abstract
This review addresses experimental findings obtained with direct force measurements between two similar or dissimilar solid surfaces in aqueous electrolyte solutions. Interpretation of these measurements is mainly put forward in terms of the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). This theory invokes a superposition of attractive van der Waals forces and repulsive double layer forces. DLVO theory is shown to be extremely reliable, even in the case of multivalent ions. However, such a description is only successful, when appropriate surface charge densities, charge regulation characteristics, and ion pairing or complexation equilibria in solution are considered. Deviations from DLVO theory only manifest themselves at distances of typically below few nm. More long-ranged non-DLVO forces can be observed in some situations, particularly, in concentrated electrolyte solutions, in the presence of strongly adsorbed layers, or for hydrophobic surfaces. The latter forces probably originate from patch-charge surface heterogeneities, which can be induced by ion-ion correlation effects, charge fluctuations, or other types of surface heterogeneities.
Collapse
Affiliation(s)
- Alexander M Smith
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland.
| |
Collapse
|
49
|
Kristiansen K, Donaldson SH, Berkson ZJ, Scott J, Su R, Banquy X, Lee DW, de Aguiar HB, McGraw JD, Degen GD, Israelachvili JN. Multimodal Miniature Surface Forces Apparatus (μSFA) for Interfacial Science Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15500-15514. [PMID: 31362502 DOI: 10.1021/acs.langmuir.9b01808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the surface forces apparatus-the μSFA-that has been designed for ease of use and multimodal capabilities with the retention of the capabilities of other SFA models including accurate measurements of the surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, and biospecific). The small physical size of the μSFA, compared to previous SFA models, makes it portable and suitable for integration into commercially available optical and fluorescence light microscopes, as demonstrated here. The large optical path entry and exit ports make it ideal for concurrent force measurements and spectroscopy studies. Examples of the use of the μSFA in combination with surface plasmon resonance (SPR) and Raman spectroscopy measurements are presented. Because of the short working distance constraints associated with Raman spectroscopy, an interferometric technique was developed and applied to calculate the intersurface separation distance based on Newton's rings. The introduction of the μSFA will mark a transition in SFA usage from primarily physical characterization to concurrent physical characterization with in situ chemical and biological characterization to study interfacial phenomena, including (but not limited to) molecular adsorption, fluid flow dynamics, the determination of surface species and morphology, and (bio)molecular binding kinetics.
Collapse
Affiliation(s)
- Kai Kristiansen
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Stephen H Donaldson
- Département de Physique, Ecole Normale Supérieure/PSL , Research University , CNRS, 24 rue Lhomond , 75005 Paris , France
| | - Zachariah J Berkson
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Jeffrey Scott
- SurForce LLC , Goleta , California 93117 , United States
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Xavier Banquy
- Faculty of Pharmacy , Université de Montréal , Succursale Centre Ville , Montréal , Quebec H3C 3J7 , Canada
| | - Dong Woog Lee
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology , Ulsan 44919 , Republic of Korea
| | - Hilton B de Aguiar
- Département de Physique, Ecole Normale Supérieure/PSL , Research University , CNRS, 24 rue Lhomond , 75005 Paris , France
| | - Joshua D McGraw
- Département de Physique, Ecole Normale Supérieure/PSL , Research University , CNRS, 24 rue Lhomond , 75005 Paris , France
- Gulliver CNRS UMR 7083 , PSL Research University, ESPCI Paris , 10 rue Vauquelin , 75005 Paris , France
| | - George D Degen
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Jacob N Israelachvili
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
50
|
de Aguiar HB, McGraw JD, Donaldson SH. Interface-Sensitive Raman Microspectroscopy of Water via Confinement with a Multimodal Miniature Surface Forces Apparatus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15543-15551. [PMID: 31310142 DOI: 10.1021/acs.langmuir.9b01889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modern interfacial science is increasingly multidisciplinary. Unique insight into interfacial interactions requires new multimodal techniques for interrogating surfaces with simultaneous complementary physical and chemical measurements. Here, we describe the design and testing of a microscope that incorporates a miniature surface forces apparatus (μSFA) in sphere vs flat geometry for force-distance measurements, while simultaneously acquiring Raman spectra of the confined zone. The simple optical setup isolates independent optical paths for (i) the illumination and imaging of Newton's rings and (ii) Raman scattering excitation and efficient signal collection. We benchmark the methodology by examining Teflon thin films in asymmetric (Teflon-water-glass) and symmetric (Teflon-water-Teflon) configurations. Water is observed near the Teflon-glass interface with nanometer-scale sensitivity in both the distance and Raman signals. We perform chemically resolved, label-free imaging of confined contact regions between Teflon and glass surfaces immersed in water. Remarkably, we estimate that the combined approach enables vibrational spectroscopy with single water monolayer sensitivity within minutes. Altogether, the Raman-μSFA allows exploration of molecular confinement between surfaces with chemical selectivity and correlation with interaction forces.
Collapse
Affiliation(s)
- Hilton B de Aguiar
- Département de Physique , Ecole Normale Supérieure/PSL Research University, CNRS , 24 rue Lhomond , 75005 Paris , France
| | - Joshua D McGraw
- Département de Physique , Ecole Normale Supérieure/PSL Research University, CNRS , 24 rue Lhomond , 75005 Paris , France
- Gulliver CNRS UMR 7083 , PSL Research University, ESPCI Paris , 10 rue Vauquelin , 75005 Paris , France
| | - Stephen H Donaldson
- Département de Physique , Ecole Normale Supérieure/PSL Research University, CNRS , 24 rue Lhomond , 75005 Paris , France
| |
Collapse
|