1
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
2
|
Lee S, Eyer J, Letournel F, Boumil E, Hall G, Shea TB. Neurofilaments form flexible bundles during neuritogenesis in culture and in mature axons in situ. J Neurosci Res 2019; 97:1306-1318. [PMID: 31304612 DOI: 10.1002/jnr.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/07/2022]
Abstract
Neurofilaments (NFs) undergo cation-dependent phospho-mediated associations with each other and other cytoskeletal elements that support axonal outgrowth. Progressive NF-NF associations generate a resident, bundled population that undergoes exchange with transporting NFs. We examined the properties of bundled NFs. Bundles did not always display a fully linear profile but curved and twisted at various points along the neurite length. Bundles retracted faster than neurites and retracted bundles did not expand following extraction with Triton, indicating that they coiled passively rather than due to pressure from the cell. Bundles consisted of helically wound NFs, which may provide flexibility necessary for turning of growing axons during pathfinding. Interactions between NFs and other cytoskeletal elements may be disrupted en masse during neurite retraction or regionally during remodeling. It is suggested that bundles within long axons that cannot be fully retracted into the soma could provide maintain proximal support yet still allow more distal flexibility for remodeling and changing direction during pathfinding.
Collapse
Affiliation(s)
- Sangmook Lee
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Joel Eyer
- Institut de Biologie en Santé PBH-IRIS, Universitaire d'Angers, Angers, France
| | | | - Edward Boumil
- Center for Vision Research, SUNY Upstate, Syracuse, New York
| | - Garth Hall
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| |
Collapse
|
3
|
Woo BWK, Gott SC, Peck RA, Yan D, Rommelfanger MW, Rao MP. Ultrahigh Resolution Titanium Deep Reactive Ion Etching. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20161-20168. [PMID: 28534392 DOI: 10.1021/acsami.6b16518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Titanium (Ti) represents a promising new material for microelectromechanical systems (MEMS) because of its unique properties. Recently, this has been made possible with the advent of processes that enable deep reactive ion etching (DRIE) of high-aspect-ratio (HAR) structures in bulk Ti substrates. However, to date, these processes have been limited to minimum feature sizes (MFS) ≥750 nm. Although this is sufficient for many applications, MFS reduction to the deep submicrometer range opens potential for further device miniaturization and an opportunity for endowing devices with unique functionalities that are derived from precisely defined structures within this length scale regime. Herein, we report results from studies seeking to create means for realizing such opportunities through extension of Ti DRIE to the deep submicrometer scale. The effects of key process parameters on etch performance were investigated, and the understanding gained from these studies formed the development of a new ultrahigh resolution (UHR) Ti DRIE process. Using this process, we demonstrate, for the first time, fabrication of HAR structures in bulk Ti substrates with 150 nm MFS, smooth vertical sidewalls (88°), good etch rate (587 nm/min), and mask selectivity (11.1). This represents a fivefold or greater improvement in MFS relative to our previously reported processes and a 29-fold or greater improvement over more recent processes reported by others. As such, the UHR Ti DRIE process extends the state-of-the-art considerably, and it opens important new opportunities for Ti MEMS, particularly in the implantable medical device realm.
Collapse
Affiliation(s)
- Bryan W K Woo
- Department of Mechanical Engineering, ‡Center for Nanoscale Science and Engineering, §Central Facility for Advanced Microscopy and Microanalysis, ∥Department of Bioengineering, and ⊥Materials Science and Engineering Program, University of California, Riverside , Riverside, California 92521, United States
| | - Shannon C Gott
- Department of Mechanical Engineering, ‡Center for Nanoscale Science and Engineering, §Central Facility for Advanced Microscopy and Microanalysis, ∥Department of Bioengineering, and ⊥Materials Science and Engineering Program, University of California, Riverside , Riverside, California 92521, United States
| | - Ryan A Peck
- Department of Mechanical Engineering, ‡Center for Nanoscale Science and Engineering, §Central Facility for Advanced Microscopy and Microanalysis, ∥Department of Bioengineering, and ⊥Materials Science and Engineering Program, University of California, Riverside , Riverside, California 92521, United States
| | - Dong Yan
- Department of Mechanical Engineering, ‡Center for Nanoscale Science and Engineering, §Central Facility for Advanced Microscopy and Microanalysis, ∥Department of Bioengineering, and ⊥Materials Science and Engineering Program, University of California, Riverside , Riverside, California 92521, United States
| | - Mathias W Rommelfanger
- Department of Mechanical Engineering, ‡Center for Nanoscale Science and Engineering, §Central Facility for Advanced Microscopy and Microanalysis, ∥Department of Bioengineering, and ⊥Materials Science and Engineering Program, University of California, Riverside , Riverside, California 92521, United States
| | - Masaru P Rao
- Department of Mechanical Engineering, ‡Center for Nanoscale Science and Engineering, §Central Facility for Advanced Microscopy and Microanalysis, ∥Department of Bioengineering, and ⊥Materials Science and Engineering Program, University of California, Riverside , Riverside, California 92521, United States
| |
Collapse
|
4
|
Park CY, Jacobson DR, Nguyen DT, Willardson S, Saleh OA. A thin permeable-membrane device for single-molecule manipulation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:014301. [PMID: 26827332 DOI: 10.1063/1.4939197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-molecule manipulation instruments have unparalleled abilities to interrogate the structure and elasticity of single biomolecules. Key insights are derived by measuring the system response in varying solution conditions; yet, typical solution control strategies require imposing a direct fluid flow on the measured biomolecule that perturbs the high-sensitivity measurement and/or removes interacting molecules by advection. An alternate approach is to fabricate devices that permit solution changes by diffusion of the introduced species through permeable membranes, rather than by direct solution flow through the sensing region. Prior implementations of permeable-membrane devices are relatively thick, disallowing their use in apparatus that require the simultaneous close approach of external instrumentation from two sides, as occurs in single-molecule manipulation devices like the magnetic tweezer. Here, we describe the construction and use of a thin microfluidic device appropriate for single-molecule studies. We create a flow cell of only ∼500 μm total thickness by sandwiching glass coverslips around a thin plastic gasket and then create permeable walls between laterally separated channels in situ through photo-induced cross-linking of poly(ethylene glycol) diacrylate hydrogels. We show that these membranes permit passage of ions and small molecules (thus permitting solution equilibration in the absence of direct flow), but the membranes block the passage of larger biomolecules (thus retaining precious samples). Finally, we demonstrate the suitability of the device for high-resolution magnetic-tweezer experiments by measuring the salt-dependent folding of a single RNA hairpin under force.
Collapse
Affiliation(s)
- Chang-Young Park
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - David R Jacobson
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Dan T Nguyen
- BMSE Program, University of California, Santa Barbara, California 93106, USA
| | - Sam Willardson
- MCDB Department, University of California, Santa Barbara, California 93106, USA
| | - Omar A Saleh
- Materials Department and BMSE Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
5
|
Kornreich M, Malka-Gibor E, Laser-Azogui A, Doron O, Herrmann H, Beck R. Composite bottlebrush mechanics: α-internexin fine-tunes neurofilament network properties. SOFT MATTER 2015; 11:5839-5849. [PMID: 26100609 DOI: 10.1039/c5sm00662g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neuronal cytoplasmic intermediate filaments are principal structural and mechanical elements of the axon. Their expression during embryonic development follows a differential pattern, while their unregulated expression is correlated to neurodegenerative diseases. The largest neurofilament proteins of medium (NF-M) and high molecular weight (NF-H) were shown to modulate the axonal architecture and inter-filament spacing. However, the individual roles of the remaining α-internexin (α-Inx) and neurofilament of low molecular weight (NF-L) proteins in composite filaments remained elusive. In contrast to previous predictions, we show that when co-assembled with NF-M, the shortest and the least charged α-Inx protein increases inter-filament spacing. These findings suggest a novel structural explanation for the expression pattern of neurofilament proteins during embryonic development. We explain our results by an analysis of ionic cross-links between the disordered polyampholytic C-terminal tails and suggest that a collapsed conformation of the α-Inx tail domain interferes with tail cross-linking near the filament backbone.
Collapse
Affiliation(s)
- M Kornreich
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
6
|
Pregent S, Lichtenstein A, Avinery R, Laser-Azogui A, Patolsky F, Beck R. Probing the interactions of intrinsically disordered proteins using nanoparticle tags. NANO LETTERS 2015; 15:3080-3087. [PMID: 25822629 DOI: 10.1021/acs.nanolett.5b00073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural plasticity of intrinsically disordered proteins serves as a rich area for scientific inquiry. Such proteins lack a fix three-dimensional structure but can interact with multiple partners through numerous weak bonds. Nevertheless, this intrinsic plasticity possesses a challenging hurdle in their characterization. We underpin the intermolecular interactions between intrinsically disordered neurofilaments in various hydrated conditions, using grafted gold nanoparticle (NP) tags. Beyond its biological significance, this approach can be applied to modify the surface interaction of NPs for the creation of future tunable "smart" hybrid biomaterials.
Collapse
Affiliation(s)
- Stive Pregent
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Amir Lichtenstein
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ram Avinery
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Adi Laser-Azogui
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Fernando Patolsky
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Roy Beck
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Storm IM, Kornreich M, Hernandez-Garcia A, Voets IK, Beck R, Cohen Stuart MA, Leermakers FAM, de Vries R. Liquid crystals of self-assembled DNA bottlebrushes. J Phys Chem B 2015; 119:4084-92. [PMID: 25689450 DOI: 10.1021/jp511412t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Early theories for bottlebrush polymers have suggested that the so-called main-chain stiffening effect caused by the presence of a dense corona of side chains along a central main chain should lead to an increased ratio of effective persistence length (lp,eff) over the effective thickness (Deff) and, hence, ultimately to lyotropic liquid crystalline behavior. More recent theories and simulations suggest that lp,eff ∼ Deff, such that no liquid crystalline behavior is induced by bottlebrushes. In this paper we investigate experimentally how lyotropic liquid crystalline behavior of a semiflexible polymer is affected by a dense coating of side chains. We use semiflexible DNA as the main chain. A genetically engineered diblock protein polymer C4K12 is used to physically adsorb long side chains on the DNA. The C4K12 protein polymer consists of a positively charged binding block (12 lysines, K12) and a hydrophilic random coil block of 400 amino acids (C4). From light scattering we find that, at low ionic strength (10 mM Tris-HCl), the thickness of the self-assembled DNA bottlebrushes is on the order of 30 nm and the effective grafting density is 1 side chain per 2.7 nm of DNA main chain. We find these self-assembled DNA bottlebrushes form birefringent lyotropic liquid crystalline phases at DNA concentrations as low as 8 mg/mL, roughly 1 order of magnitude lower than for bare DNA. Using small-angle X-ray scattering (SAXS) we show that, at DNA concentrations of 12 mg/mL, there is a transition to a hexagonal phase. We also show that, while the effective persistence length increases due to the bottlebrush coating, the effective thickness of the bottlebrush increases even more, such that in our case the bottlebrush coating reduces the effective aspect ratio of the DNA. This is in agreement with theoretical estimates that show that, in most cases of practical interest, a bottlebrush coating will lead to a decrease of the effective aspect ratio, whereas, only for bottlebrushes with extremely long side chains at very high grafting densities, a bottlebrush coating may be expected to lead to an increase of the effective aspect ratio.
Collapse
Affiliation(s)
- Ingeborg M Storm
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University , 6703 HB Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kornreich M, Heymann M, Fraden S, Beck R. Cross polarization compatible dialysis chip. LAB ON A CHIP 2014; 14:3700-3704. [PMID: 25105977 DOI: 10.1039/c4lc00600c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We visualize birefringence in microliter sample volumes using a microfluidic dialysis chip optimized for cross polarization microscopy. The chip is composed of two overlapping polydimethylsiloxane (PDMS) channels separated by a commercial cellulose ester membrane. Buffer exchange in the sample chamber is achieved within minutes by dialyzing under continuous reservoir flow. Using fd virus as a birefringent model system, we monitor the fd virus isotropic to liquid crystal phase transition as a function of ionic strength. We show that the reorientation of the fd virus spans a few tens of seconds, indicative of fast ion exchange across the membrane. Complete phase separation reorganization takes minutes to hours as it involves diffusive virus mass transport within the storage chamber.
Collapse
Affiliation(s)
- Micha Kornreich
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv, Israel.
| | | | | | | |
Collapse
|
9
|
Anisotropic particles align perpendicular to the flow direction in narrow microchannels. Proc Natl Acad Sci U S A 2013; 110:6706-11. [PMID: 23569240 DOI: 10.1073/pnas.1219340110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The flow orientation of anisotropic particles through narrow channels is of importance in many fields, ranging from the spinning and molding of fibers to the flow of cells and proteins through thin capillaries. It is commonly assumed that anisotropic particles align parallel to the flow direction. When flowing through narrowed channel sections, one expects the increased flow rate to improve the parallel alignment. Here, we show by microfocus synchrotron X-ray scattering and polarized optical microscopy that anisotropic colloidal particles align perpendicular to the flow direction after passing a narrow channel section. We find this to be a general behavior of anisotropic colloids, which is also observed for disk-like particles. This perpendicular particle alignment is stable, extending downstream throughout the remaining part of the channel. We show by microparticle image velocimetry that the particle reorientation in the expansion zone after a narrow channel section occurs in a region with considerable extensional flow. This extensional flow is promoted by shear thinning, a typical property of complex fluids. Our discovery has important consequences when considering the flow orientation of polymers, micelles, fibers, proteins, or cells through narrow channels, pipes, or capillary sections. An immediate consequence for the production of fibers is the necessity for realignment by extension in the flow direction. For fibrous proteins, reorientation and stable plug flow are likely mechanisms for protein coagulation.
Collapse
|
10
|
Structures and interactions in 'bottlebrush' neurofilaments: the role of charged disordered proteins in forming hydrogel networks. Biochem Soc Trans 2013; 40:1027-31. [PMID: 22988859 DOI: 10.1042/bst20120101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NFs (neurofilaments), the major cytoskeletal constituent of myelinated axons in vertebrates, consist of three different molecular-mass subunit proteins, NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding intrinsically disordered C-terminal side-arms. Liquid crystal gel networks of side-arm-mediated NF assemblies play a key role in the mechanical stability of neuronal processes. Disruptions of the NF network, due to NF overaccumulation or incorrect side-arm interactions, are a hallmark of motor neuron diseases including amyotrophic lateral sclerosis. Using synchrotron small-angle X-ray scattering and various microscopy techniques, we have investigated the role of the peptide charges in the subunit side-arms on the structure and interaction of NFs. Our findings, which delineate the distinct roles of NF-M and NF-H in regulating NF interactions, shed light on possible mechanisms of disruption of optimal mechanical network properties.
Collapse
|
11
|
Safinya CR, Deek J, Beck R, Jones JB, Leal C, Ewert KK, Li Y. Liquid crystal assemblies in biologically inspired systems. LIQUID CRYSTALS 2013; 40:1748-1758. [PMID: 24558293 PMCID: PMC3927920 DOI: 10.1080/02678292.2013.846422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons. Synchrotron small-angle-x-ray scattering studies of NF-protein dilution experiments and NF hydrogels subjected to osmotic stress show that neurofilament networks are stabilized by competing long-range repulsion and attractions mediated by the neurofilament's polyampholytic sidearms. The attractions are present both at very large interfilament spacings, in the weak sidearm-interpenetrating regime, and at smaller interfilament spacings, in the strong sidearm-interpenetrating regime. A second series of experiments will describe the structure and properties of cationic liposomes (CLs) complexed with nucleic acids (NAs). CL-NA complexes form liquid crystalline phases, which interact in a structure-dependent manner with cellular membranes enabling the design of complexes for efficient delivery of nucleic acid (DNA, RNA) in therapeutic applications.
Collapse
Affiliation(s)
- Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA
| | - Joanna Deek
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, CA 93106, USA
| | - Roy Beck
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA
| | - Jayna B. Jones
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA
| | - Cecilia Leal
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA
| | - Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
12
|
Wu Z, Zhong Z. A theoretical model for striped patterns in nematic hydrogels. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Safinya CR, Raviv U, Needleman DJ, Zidovska A, Choi MC, Ojeda-Lopez MA, Ewert KK, Li Y, Miller HP, Quispe J, Carragher B, Potter CS, Kim MW, Feinstein SC, Wilson L. Nanoscale assembly in biological systems: from neuronal cytoskeletal proteins to curvature stabilizing lipids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:2260-70. [PMID: 21506171 PMCID: PMC3864889 DOI: 10.1002/adma.201004647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Indexed: 05/30/2023]
Abstract
The review will describe experiments inspired by the rich variety of bundles and networks of interacting microtubules (MT), neurofilaments, and filamentous-actin in neurons where the nature of the interactions, structures, and structure-function correlations remain poorly understood. We describe how three-dimensional (3D) MT bundles and 2D MT bundles may assemble, in cell free systems in the presence of counter-ions, revealing structures not predicted by polyelectrolyte theories. Interestingly, experiments reveal that the neuronal protein tau, an abundant MT-associated-protein in axons, modulates the MT diameter providing insight for the control of geometric parameters in bio- nanotechnology. In another set of experiments we describe lipid-protein-nanotubes, and lipid nano-tubes and rods, resulting from membrane shape evolution processes involving protein templates and curvature stabilizing lipids. Similar membrane shape changes, occurring in cells for the purpose of specific functions, are induced by interactions between membranes and proteins. The biological materials systems described have applications in bio-nanotechnology.
Collapse
Affiliation(s)
- Cyrus R Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California-Santa Barbara, CA 93106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Beck R, Deek J, Jones JB, Safinya CR. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements. NATURE MATERIALS 2010; 9:40-46. [PMID: 19915555 DOI: 10.1038/nmat2566] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Neurofilaments (NF)--the principal cytoskeletal constituent of myelinated axons in vertebrates--consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P > P(c) approximately 10 kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for P < P(c) and transition to the gel-condensed state at P > P(c). These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties.
Collapse
Affiliation(s)
- Roy Beck
- Materials Department, University of California Santa Barbara, California 93106, USA.
| | | | | | | |
Collapse
|