1
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
2
|
Liyanage S, Raviranga NGH, Ryan JG, Shell SS, Ramström O, Kalscheuer R, Yan M. Azide-Masked Fluorescence Turn-On Probe for Imaging Mycobacteria. JACS AU 2023; 3:1017-1028. [PMID: 37124305 PMCID: PMC10131213 DOI: 10.1021/jacsau.2c00449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
A fluorescence turn-on probe, an azide-masked and trehalose-derivatized carbazole (Tre-Cz), was developed to image mycobacteria. The fluorescence turn-on is achieved by photoactivation of the azide, which generates a fluorescent product through an efficient intramolecular C-H insertion reaction. The probe is highly specific for mycobacteria and could image mycobacteria in the presence of other Gram-positive and Gram-negative bacteria. Both the photoactivation and detection can be accomplished using a handheld UV lamp, giving a limit of detection of 103 CFU/mL, which can be visualized by the naked eye. The probe was also able to image mycobacteria spiked in sputum samples, although the detection sensitivity was lower. Studies using heat-killed, stationary-phase, and isoniazid-treated mycobacteria showed that metabolically active bacteria are required for the uptake of Tre-Cz. The uptake decreased in the presence of trehalose in a concentration-dependent manner, indicating that Tre-Cz hijacked the trehalose uptake pathway. Mechanistic studies demonstrated that the trehalose transporter LpqY-SugABC was the primary pathway for the uptake of Tre-Cz. The uptake decreased in the LpqY-SugABC deletion mutants ΔlpqY, ΔsugA, ΔsugB, and ΔsugC and fully recovered in the complemented strain of ΔsugC. For the mycolyl transferase antigen 85 complex (Ag85), however, only a slight reduction of uptake was observed in the Ag85 deletion mutant ΔAg85C, and no incorporation of Tre-Cz into the outer membrane was observed. The unique intracellular incorporation mechanism of Tre-Cz through the LpqY-SugABC transporter, which differs from other trehalose-based fluorescence probes, unlocks potential opportunities to bring molecular cargoes to mycobacteria for both fundamental studies and theranostic applications.
Collapse
Affiliation(s)
- Sajani
H. Liyanage
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - N. G. Hasitha Raviranga
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Julia G. Ryan
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Scarlet S. Shell
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Olof Ramström
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-39182 Kalmar, Sweden
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Mingdi Yan
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
3
|
Lu X. Simulation of infrared spectra of trace impurities in silicon wafers based on the multiple transmission-reflection infrared method. Sci Rep 2021; 11:1254. [PMID: 33441942 PMCID: PMC7806787 DOI: 10.1038/s41598-020-80883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/29/2020] [Indexed: 11/11/2022] Open
Abstract
The content of trace impurities, such as interstitial oxygen and substitutional carbon, in silicon is crucial in determining the mechanical and physical characteristics of silicon wafers. The traditional infrared (IR) method is adopted as a normal means to analyse their concentration at home and abroad, but there are two problems. The first problem is the poor representativeness of a single local sampling point because the impurity distribution in a solid sample is not as uniform as that in a liquid sample. The second problem is that interference fringes appear in the infrared spectra of the sample due to the thin wafer (≤ 300 μm thick). Based on this, controversial issues existed regarding the measured trace impurity concentrations between wafer manufacturers and solar cell assembly businessmen who used silicon sheets made by the former. Therefore, multiple transmission-reflection (MTR) infrared (IR) spectroscopy was proposed to solve the problems mentioned above. In the MTR setup, because light passes through different parts of the silicon chip several times, multiple sampling points make the final result more representative. Moreover, the optical path is lengthened, and the corresponding absorbance is enhanced. In addition to amplification of weak signals, the MTR-IR method can eliminate interference fringes via the integrating sphere effect of its special configuration. The signal-to-noise ratio of the corresponding spectrum is considerably improved due to the aforementioned dual effects. Thus, the accuracy and sensitivity of the detection method for trace impurities in silicon chips are greatly increased. In this study, silicon wafers were placed in the MTR setup, and then, their relative properties at room temperature were investigated. The corresponding theoretical calculation and simulation of infrared spectra of silicon chips were provided. This affords an optional method for the semiconductor material industry to analyse trace impurities in their chips.
Collapse
Affiliation(s)
- Xiaobin Lu
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, China.
| |
Collapse
|
4
|
Site-Selective Functionalization of Polydopamine Films via Aryl Azide-Based Photochemical Reaction. Macromol Res 2020. [DOI: 10.1007/s13233-020-8083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Sundhoro M, Park J, Wu B, Yan M. Synthesis of Polyphosphazenes by a Fast Perfluoroaryl Azide-Mediated Staudinger Reaction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Madanodaya Sundhoro
- University of
Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| | - Jaehyeung Park
- University of
Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea
| | - Bin Wu
- University of
Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- University of
Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, United States
| |
Collapse
|
6
|
Siegmann K, Inauen J, Sterchi R, Winkler M. Spectroscopy on photografted polyethylene surfaces using a perfluorophenyl azide: Evidence for covalent attachment. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Konstantin Siegmann
- Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE); Zurich University of Applied Sciences (ZHAW); Technikumstrasse 9 CH-8401 Winterthur Switzerland
| | - Jan Inauen
- Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE); Zurich University of Applied Sciences (ZHAW); Technikumstrasse 9 CH-8401 Winterthur Switzerland
| | - Robert Sterchi
- Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE); Zurich University of Applied Sciences (ZHAW); Technikumstrasse 9 CH-8401 Winterthur Switzerland
| | - Martin Winkler
- Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE); Zurich University of Applied Sciences (ZHAW); Technikumstrasse 9 CH-8401 Winterthur Switzerland
| |
Collapse
|
7
|
|
8
|
Exploring the flexible chemistry of 4-fluoro-3-nitrophenyl azide for biomolecule immobilization and bioconjugation. Anal Bioanal Chem 2016; 408:6945-56. [PMID: 27485627 DOI: 10.1007/s00216-016-9803-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/08/2016] [Accepted: 07/16/2016] [Indexed: 01/22/2023]
Abstract
Bioconjugation and functionalization of polymer surfaces are two major tasks in materials chemistry which are accomplished using a variety of coupling agents. Immobilization of biomolecules onto polymer surfaces and the construction of bioconjugates are essential requirements of many biochemical assays and chemical syntheses. Different linkers with a variety of functional groups are used for these purposes. Among them, the benzophenones, aryldiazirines, and arylazides represent the most commonly used photolinker to produce the desired chemical linkage upon their photo-irradiation. In this review, we describe the versatile applications of 4-fluoro-3-nitrophenyl azide, one of the oldest photolinkers used for photoaffinity labeling in the late 1960s. Surprisingly, this photolinker, historically known as 1-fluoro-2-nitro-4-azidobenzene (FNAB), has remained unexplored for a long time because of apprehension that FNAB forms ring-expanded dehydroazepine as a major product and hence cannot activate an inert polymer. The first evidence of photochemical activation of an inert surface by FNAB through nitrene insertion reaction was reported in 2001, and the FNAB-activated surface was found to conjugate a biomolecule without any catalyst, reagent, or modification. FNAB has distinct advantages over perfluorophenyl azide derivatives, which are contemporary nitrene-generating photolinkers, because of its simple, single-step preparation and ease of thermochemical and photochemical reactions with versatile polymers and biomolecules. Covering these aspects, the present review highlights the flexible chemistry of FNAB and its applications in the field of surface engineering, immobilization of biomolecules such as antibodies, enzymes, cells, carbohydrates, oligonucleotides, and DNA aptamers, and rapid diagnostics. Graphical Abstract An overview of the FNAB-engineered activated polymer surfaces for covalent ligation of versatile biomolecules.
Collapse
|
9
|
Alvarez-Lorenzo C, Garcia-Gonzalez CA, Bucio E, Concheiro A. Stimuli-responsive polymers for antimicrobial therapy: drug targeting, contact-killing surfaces and competitive release. Expert Opin Drug Deliv 2016; 13:1109-19. [PMID: 27074830 DOI: 10.1080/17425247.2016.1178719] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Polymers can be designed to modify their features as a function of the level and nature of the surrounding microorganisms. Such responsive polymers can endow drug delivery systems and drug-medical device combination products with improved performance against intracellular infections and biofilms. AREAS COVERED Knowledge on microorganism growth environment outside and inside cells and formation of biofilm communities on biological and synthetic surfaces, together with advances in materials science and drug delivery are prompting strategies with improved efficacy and safety compared to traditional systemic administration of antimicrobial agents. This review deals with antimicrobial strategies that rely on: (i) polymers that disintegrate or undergo phase-transitions in response to changes in enzymes, pH and pO2 associated to microorganism growth; (ii) stimuli-responsive polymers that expose contact-killing groups when microorganisms try to adhere; and (iii) bioinspired polymers that recognize microorganisms for triggered (competitive/affinity-driven) drug release. EXPERT OPINION Prophylaxis and treatment of infections may benefit from polymers that are responsive to the unique changes that microbial growth causes in the surrounding environment or that even recognize the microorganism itself or its quorum sensing signals. These polymers may offer novel tools for the design of macrophage-, bacteria- and/or biofilm-targeted nanocarriers as well as of medical devices with switchable antibiofouling properties.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- a Departamento de Farmacia y Tecnología Farmacéutica , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Carlos A Garcia-Gonzalez
- a Departamento de Farmacia y Tecnología Farmacéutica , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Emilio Bucio
- b Departamento de Química de Radiaciones y Radioquímica , Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria , México DF , Mexico
| | - Angel Concheiro
- a Departamento de Farmacia y Tecnología Farmacéutica , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|
10
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
11
|
|
12
|
Kong N, Zhou J, Park J, Xie S, Ramström O, Yan M. Quantitative Fluorine NMR To Determine Carbohydrate Density on Glyconanomaterials Synthesized from Perfluorophenyl Azide-Functionalized Silica Nanoparticles by Click Reaction. Anal Chem 2015; 87:9451-8. [DOI: 10.1021/acs.analchem.5b02507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Na Kong
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Juan Zhou
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - JaeHyeung Park
- Department
of Chemistry, University of Massachusetts Lowell, 1 University
Ave., Lowell, Massachusetts 01854, United States
| | - Sheng Xie
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Mingdi Yan
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
- Department
of Chemistry, University of Massachusetts Lowell, 1 University
Ave., Lowell, Massachusetts 01854, United States
| |
Collapse
|
13
|
Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases 2015; 10:029505. [DOI: 10.1116/1.4913376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Park J, Jayawardena HSN, Chen X, Jayawardana KW, Sundhoro M, Ada E, Yan M. A general method for the fabrication of graphene-nanoparticle hybrid material. Chem Commun (Camb) 2015; 51:2882-5. [PMID: 25582387 DOI: 10.1039/c4cc07936a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe a simple and general approach to conjugate nanoparticles on pristine graphene. The method takes advantage of the high reactivity of perfluorophenyl nitrene towards the C[double bond, length as m-dash]C bonds in graphene, where perfluorophenyl azide-functionalized nanoparticles are conjugated to pristine graphene through the [2+1] cycloaddition reaction by a fast photoactivation.
Collapse
Affiliation(s)
- Jaehyeung Park
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zorn G, Castner DG, Tyagi A, Wang X, Wang H, Yan M. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY. A, VACUUM, SURFACES, AND FILMS : AN OFFICIAL JOURNAL OF THE AMERICAN VACUUM SOCIETY 2015; 33:021407. [PMID: 25759511 PMCID: PMC4327916 DOI: 10.1116/1.4907924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.
Collapse
Affiliation(s)
- Gilad Zorn
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington , Box 351653, Seattle, Washington 98195-1653
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington , Box 351653, Seattle, Washington 98195-1653
| | - Anuradha Tyagi
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751
| | - Xin Wang
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751
| | - Hui Wang
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751
| | - Mingdi Yan
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751
| |
Collapse
|
16
|
Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 2014; 78:14-27. [PMID: 25450262 DOI: 10.1016/j.addr.2014.10.027] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 12/16/2022]
Abstract
With multidrug resistant bacteria on the rise, new antibiotic approaches are required. Although a number of new small molecule antibiotics are currently in the development pipeline with many more in preclinical development, the clinical options and practices for infection control must be expanded. Biologics and non-antibiotic adjuvants offer this opportunity for expansion. Nevertheless, to avoid known mechanisms of resistance, intelligent combination approaches for multiple simultaneous and complimentary therapies must be designed. Combination approaches should extend beyond biologically active molecules to include smart controlled delivery strategies. Infection control must integrate antimicrobial stewardship, new antibiotic molecules, biologics, and delivery strategies into effective combination therapies designed to 1) fight the infection, 2) avoid resistance, and 3) protect the natural microbiome. This review explores these developing strategies in the context of circumventing current mechanisms of resistance.
Collapse
Affiliation(s)
| | - Amanda E Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND58108, USA.
| |
Collapse
|
17
|
Zorn G, Liu LH, Árnadóttir L, Wang H, Gamble LJ, Castner DG, Yan M. X-Ray Photoelectron Spectroscopy Investigation of the Nitrogen Species in Photoactive Perfluorophenylazide-Modified Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2014; 118:376-383. [PMID: 24535931 PMCID: PMC3923990 DOI: 10.1021/jp409338y] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
X-ray Photoelectron Spectroscopy (XPS) was used to characterize the nitrogen species in perfluorophenylazide (PFPA) self-assembled monolayers. PFPA chemistry is a novel immobilization method for tailoring the surface properties of materials. It is a simple route for the efficient immobilization of graphene, proteins, carbohydrates and synthetic polymers onto a variety of surfaces. Upon light irradiation, the azido group in PFPA is converted to a highly reactive singlet nitrene species that readily undergoes CH insertion and C=C addition reactions. Here, the challenge of characterizing the PFPA modified surfaces was addressed by detailed XPS experimental analyses. The three nitrogen peaks detected in the XPS N1s spectra were assigned to amine/amide (400.5 eV) and azide (402.1 and 405.6 eV) species. The observed 2:1 ratio of the areas from the 402.1 eV to 405.6 eV peaks suggests the assignment of the peak at 402.1 eV to the two outer nitrogen atoms in the azido group and assignment of the peak at 405.6 eV to the central nitrogen atom in the azido group. The azide decomposition as the function of x-ray exposure was also determined. Finally, XPS analyses were conducted on patterned graphene to investigate the covalent bond formation between the PFPA and graphene. This study provides strong evidence for the formation of covalent bonds during the PFPA photocoupling process.
Collapse
Affiliation(s)
- Gilad Zorn
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, WA 98195-165
| | - Li-Hong Liu
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Líney Árnadóttir
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, WA 98195-165
| | - Hui Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Lara J. Gamble
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, WA 98195-165
| | - David G. Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, WA 98195-165
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| |
Collapse
|
18
|
Tan M, Wang H, Wang Y, Chen G, Yuan L, Chen H. Recyclable antibacterial material: silicon grafted with 3,6-O-sulfated chitosan and specifically bound by lysozyme. J Mater Chem B 2014; 2:569-576. [DOI: 10.1039/c3tb21358g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
|
20
|
Tasdelen MA, Yagci Y. Light-Induced Click Reactions. Angew Chem Int Ed Engl 2013; 52:5930-8. [DOI: 10.1002/anie.201208741] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/06/2013] [Indexed: 01/28/2023]
|
21
|
Hasan J, Crawford RJ, Ivanova EP. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 2013; 31:295-304. [DOI: 10.1016/j.tibtech.2013.01.017] [Citation(s) in RCA: 544] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/12/2022]
|
22
|
Yang P, Yang W. Surface Chemoselective Phototransformation of C–H Bonds on Organic Polymeric Materials and Related High-Tech Applications. Chem Rev 2013; 113:5547-94. [PMID: 23614481 DOI: 10.1021/cr300246p] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Yang
- Key Laboratory
of Applied Surface
and Colloid Chemistry, Ministry of Education, College of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Wantai Yang
- The State Key Laboratory of
Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| |
Collapse
|
23
|
El Zubir O, Barlow I, Ul-Haq E, Tajuddin HA, Williams NH, Leggett GJ. Generic methods for micrometer- and nanometer-scale surface derivatization based on photochemical coupling of primary amines to monolayers of aryl azides on gold and aluminum oxide surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1083-1092. [PMID: 23244178 DOI: 10.1021/la303746e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A series of aryl azide terminated thiols and phosphonic acids has been synthesized, and used to prepare self-assembled monolayers on (respectively) gold and aluminum oxide surfaces. The rates of photoactivation were determined using contact angle measurement and X-ray photoelectron spectroscopy (XPS). The behavior of a diazirine functionalized aryl thiol was also studied. The rates of activation were found to be similar for all five adsorbates. However, the extent of photochemical coupling of a primary amine was significantly greater for the aryl azides than for the diazirine. A range of primary amines was successfully coupled to all of the azides with high yield. Little difference in reactivity was observed following perfluorination of the aromatic ring. Micrometer-scale patterns were fabricated by carrying out exposures of the aryl azide terminated SAMs through a mask submerged under a film of primary amine. Contrasting amines could be introduced to unreacted regions in a subsequent maskless step. A scanning near-field optical microscope was used to fabricate nanopatterns. Exposure of the azides to irradiation at 325 nm in air enabled selective deactivation of azides. The surrounding surface was functionalized with a primary amine in a maskless process; when a protein-resistant oligo(ethylene glycol) functionalized amine was used it was possible to produce protein nanopatterns, by adsorbing protein to features defined using near-field exposure.
Collapse
Affiliation(s)
- Osama El Zubir
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations warrant comprehensive studies. The availability of well-defined pristine graphene starting materials in large quantities remains a key obstacle to the advancement of synthetic graphene chemistry.
Collapse
Affiliation(s)
- Jaehyeung Park
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
25
|
Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 2012; 8:1670-84. [PMID: 22289644 DOI: 10.1016/j.actbio.2012.01.011] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 11/16/2022]
Abstract
Prevention of bacterial adhesion and biofilm formation on the surfaces of materials is a topic of major medical and societal importance. Various synthetic approaches based on immobilization or release of bactericidal substances such as metal derivatives, polyammonium salts and antibiotics were extensively explored to produce antibacterial coatings. Although providing encouraging results, these approaches suffer from the use of active agents which may be associated with side-effects such as cytotoxicity, hypersensibility, inflammatory responses or the progressive alarming phenomenon of antibiotic resistance. In addition to these synthetic approaches, living organisms, e.g. animals and plants, have developed fascinating strategies over millions of years to prevent efficiently the colonization of their surfaces by pathogens. These strategies have been recently mimicked to create a new generation of bio-inspired biofilm-resistant surfaces. In this review, we discuss some of these bio-inspired methods devoted to the development of antibiofilm surfaces. We describe the elaboration of antibacterial coatings based on natural bactericidal substances produced by living organisms such as antimicrobial peptides, bacteriolytic enzymes and essential oils. We discuss also the development of layers mimicking algae surfaces and based on anti-quorum-sensing molecules which affect cell-to-cell communication. Finally, we report on very recent strategies directly inspired from marine animal life and based on surface microstructuring.
Collapse
Affiliation(s)
- K Glinel
- Institute of Condensed Matter and Nanosciences (Bio- and Soft Matter), Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | | | |
Collapse
|
26
|
Zhao Y, Xu Z, Wang X, Lin T. Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6328-6335. [PMID: 22462539 DOI: 10.1021/la300281q] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, we report the functionalization of silica nanoparticles with highly photoreactive phenyl azido groups and their utility as a negatively charged building block for layer-by-layer (LbL) electrostatic assembly to produce a stable silica nanoparticle coating. Azido-terminated silica nanoparticles were prepared by the functionalization of bare silica nanoparticles with 3-aminopropyltrimethoxysilane followed by the reaction with 4-azidobenzoic acid. The azido functionalization was confirmed by FTIR and XPS. Poly(allylamine hydrochloride) was also grafted with phenyl azido groups and used as photoreactive polycations for LbL assembly. For the photoreactive silica nanoparticle/polycation multilayers, UV irradiation can induce the covalent cross-linking within the multilayers as well as the anchoring of the multilayer film onto the organic substrate, through azido photochemical reactions including C-H insertion/abstraction reactions with surrounding molecules and dimerization of azido groups. Our results show that the stability of the silica nanoparticle/polycation multilayer film was greatly improved after UV irradiation. Combined with a fluoroalkylsilane post-treatment, the photoreactive LbL multilayers were used as a coating for superhydrophobic modification of cotton fabrics. Herein the LbL assembly method enables us to tailor the number of the coated silica nanoparticles through the assembly cycles. The superhydrophobicity of cotton fabrics was durable against acids, bases, and organic solvents, as well as repeated machine wash. Because of the unique azido photochemistry, the approach used here to anchor silica nanoparticles is applicable to almost any organic substrate.
Collapse
Affiliation(s)
- Yan Zhao
- Australian Future Fibres Research and Innovation Centre, Deakin University, Geelong VIC 3217, Australia
| | | | | | | |
Collapse
|
27
|
Kubo T, Wang X, Tong Q, Yan M. Polymer-based photocoupling agent for the efficient immobilization of nanomaterials and small molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9372-8. [PMID: 21699222 PMCID: PMC3148948 DOI: 10.1021/la201324h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A highly efficient photocoupling agent, based on perfluorophenylazide (PFPA)-conjugated polyallylamine (PAAm), was developed for the efficient immobilization of polymers, nanoparticles, graphene, and small molecules. The conjugate, PAAm-PFPA, was synthesized, and the percentage of the photoactive moiety, PFPA, can be controlled by the ratio of the two components in the synthesis. By treating epoxy-functionalized wafers with PAAm-PFPA, photoactive surfaces were generated. Compared with the PFPA surface, these polymer-based photocoupling matrix resulted in significantly enhanced immobilization efficiencies, especially for nanomaterials and small molecules. Thus, polystyrene nanoparticles (PS NPs) and alkyl-functionalized silica nanoparticles (SNPs) were successfully immobilized on the PAAm-PFPA surface, resulting in a high material density. Graphene flakes patterned on the PAAm-PFPA surface showed improved feature resolution in addition to a higher material density compared to that of flakes immobilized on the PFPA surface. Furthermore, 2-O-α-D-mannopyranosyl-D-mannopyranose (Man2) immobilized on the PAAm-PFPA surface exhibited significantly enhanced signals when treated with lectin concanavalin A (Con A).
Collapse
Affiliation(s)
- Takuya Kubo
- Department of Chemistry, Portland State University, 1719 SW 10th Ave. Portland, OR 97201
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aobaku, Sendai 9808579, Japan
| | - Xin Wang
- Department of Chemistry, Portland State University, 1719 SW 10th Ave. Portland, OR 97201
| | - Qi Tong
- Department of Chemistry, Portland State University, 1719 SW 10th Ave. Portland, OR 97201
| | - Mingdi Yan
- Department of Chemistry, Portland State University, 1719 SW 10th Ave. Portland, OR 97201
| |
Collapse
|
28
|
Liu LH, Yan M. Functionalization of pristine graphene with perfluorophenyl azides. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02765k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Liu LH, Yan M. Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc Chem Res 2010; 43:1434-43. [PMID: 20690606 PMCID: PMC2982936 DOI: 10.1021/ar100066t] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A major challenge in materials science is the ongoing search for coupling agents that are readily synthesized, capable of versatile chemistry, able to easily functionalize materials and surfaces, and efficient in covalently linking organic and inorganic entities. A decade ago, we began a research program investigating perfluorophenylazides (PFPA) as the coupling agents in surface functionalization and nanomaterial synthesis. The p-substituted PFPAs are attractive heterobifunctional coupling agents because of their two distinct and synthetically distinguishable reactive centers: (i) the fluorinated phenylazide, which is capable of forming stable covalent adducts, and (ii) the functional group R, which can be tailored through synthesis. Two approaches have been undertaken for material synthesis and surface functionalization. The first method involves synthesizing PFPA bearing the first molecule or material with a functional linker R and then attaching the resulting PFPA to the second material by activating the azido group. In the second approach, the material surface is first functionalized with PFPA via functional center R, and coupling of the second molecule or material is achieved with the surface azido groups. In this Account, we review the design and protocols of the two approaches, providing examples in which PFPA derivatives were successfully used in material surface functionalization, ligand conjugation, and the synthesis of hybrid nanomaterials. The methods developed have proved to be general and versatile, and they are applicable to a wide range of materials (especially those that lack reactive functional groups or are difficult to derivatize) and to various substrates of polymers, oxides, carbon materials, and metal films. The coupling chemistry can be initiated by light, heat, and electrons. Patterned structures can be generated by selectively activating the areas of interest. Furthermore, the process is easy to perform, and light activation occurs in minutes, greatly facilitating the efficiency of the reaction. PFPAs indeed demonstrate many benefits as versatile surface coupling agents and offer opportunities for further exploration.
Collapse
Affiliation(s)
- Li-Hong Liu
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
| |
Collapse
|
30
|
Wang X, Ramström O, Yan M. Glyconanomaterials: synthesis, characterization, and ligand presentation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:1946-53. [PMID: 20301131 PMCID: PMC2940833 DOI: 10.1002/adma.200903908] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glyconanomaterials, nanomaterials carrying surface-tethered carbohydrate ligands, have emerged and demonstrated increasing potential in biomedical imaging, therapeutics, and diagnostics. These materials combine the unique properties of nanometer-scale objects with the ability to present multiple copies of carbohydrate ligands, greatly enhancing the weak affinity of individual ligands to their binding partners. Critical to the performance of glyconanomaterials is the proper display of carbohydrate ligands, taking into consideration of the coupling chemistry, the type and length of the spacer linkage, and the ligand density. This article provides an overview of the coupling chemistry for attaching carbohydrate ligands to nanomaterials, and discusses the need for thorough characterization of glyconanomaterials, especially quantitative analyses of the ligand density and binding affinities. Using glyconanoparticles synthesized by a versatile photocoupling chemistry, methods for determining the ligand density by colorimetry and the binding affinity with lectins by a fluorescence competition assay are determined. The results show that the multivalent presentation of carbohydrate ligands significantly enhances the binding affinity by several orders of magnitude in comparison to the free ligands in solution. The effect is sizeable even at low surface ligand density. The type and length of the spacer linkage also affect the binding affinity, with the longer linkage promoting the association of bound ligands with the corresponding lectins.
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon, 97207-0751 (USA)
| | - Olof Ramström
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon, 97207-0751 (USA)
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, Stockholm, S-10044 (Sweden)
| | - Mingdi Yan
- Department of Chemistry Portland State University, P.O. Box 751, Portland, Oregon, 97207-0751 (USA)
| |
Collapse
|
31
|
Abstract
We present a simple and efficient method to immobilize graphene on silicon wafers using perfluorophenylazide (PFPA) as the coupling agent. Graphene sheets were covalently attached to PFPA-functionalized wafer surface by a simple heat treatment under ambient conditions. The formation of single and multiple layers of graphene were confirmed by Raman spectroscopy and optical and atomic force microscopy. Evidence of covalent bond formation between graphene and PFPA decorated silicon wafer was given by X-ray photoelectron spectroscopy and sonication treatment.
Collapse
Affiliation(s)
- Li-Hong Liu
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
| |
Collapse
|