1
|
Ramírez Marrero I, Kaiser N, von Vacano B, Konradi R, Crosby AJ, Perry SL. Brittle-to-Ductile Transitions of Polyelectrolyte Complexes: Humidity, Temperature, and Salt. Macromolecules 2025; 58:2925-2938. [PMID: 40160992 PMCID: PMC11949119 DOI: 10.1021/acs.macromol.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Polyelectrolyte complexation is an entropically driven, associative phase separation that results in a polymer-rich polyelectrolyte complex (PEC) and a polymer-poor supernatant. PECs show promise as a new class of sustainable materials since they can be processed using aqueous solutions rather than organic solvents. Previous reports have looked at the mechanical properties and glass transitions of PECs as a function of temperature, relative humidity (rH), and salt concentration (CS), but establishing a universal understanding of how these parameters affect PEC mechanics has yet to be achieved. We examined the effects of temperature, rH, and CS on the mechanical properties of PECs formed from poly(methacrylic acid) and poly(trimethyl aminoethyl methacrylate) with a goal of establishing design rules for their mechanical response. Relative humidity was shown to have the most dramatic effect on the mechanical properties, with temperature and salt concentration having far less of an impact. Furthermore, we observed that the glass transition of PECs is tied to both temperature and relative humidity, creating a glass transition rHg/T g line that can be modulated by added salt. Finally, we looked at the thermodynamics behind the glass transition of PECs, which yielded similar energies as the condensation of water. We propose the use of water and/or salt as a low energy and efficient method of processing PECs for various applications.
Collapse
Affiliation(s)
- Isaac
A. Ramírez Marrero
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nadine Kaiser
- BASF
SE, Group Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany
| | | | - Rupert Konradi
- BASF
SE, Group Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany
| | - Alfred J. Crosby
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Yuan J, Tanaka H. Network-forming phase separation of oppositely charged polyelectrolytes forming coacervates in a solvent. Nat Commun 2025; 16:1517. [PMID: 39952921 PMCID: PMC11828884 DOI: 10.1038/s41467-025-56583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
The formation of coacervates through phase separation of oppositely charged polyelectrolytes (PEs) is critical for understanding biological condensates and developing responsive materials. Traditionally, coacervates are viewed as spherical droplets with growth dynamics resembling liquid-liquid phase separation. However, our fluid particle dynamics simulations incorporating hydrodynamic and electrostatic interactions challenge this perspective. Here, we find that oppositely charged PEs form a percolated network even in semi-dilute solutions, coarsening with a unique growth law, ℓ ∝ t1/2. This self-similarity, absent for neutral polymers in poor solvents, arises because PEs in good solvents exhibit weaker, longer-range attractions due to spatial charge inhomogeneity under global charge neutrality. This results in a lower density of the PEs-rich phase and reduced interfacial tension. Increased charge asymmetry further slows network coarsening. Additionally, coacervate droplets initially display irregular shapes due to weak interfacial tension, transitioning slowly to spherical forms. Our research provides new insights into coacervate morphology and coarsening dynamics.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha District, Guangzhou, 511453, China
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
3
|
Fisher RS, Obermeyer AC. Viscoelasticity of globular protein-based biomolecular condensates. Chem Sci 2024; 15:19795-19804. [PMID: 39568893 PMCID: PMC11575591 DOI: 10.1039/d4sc03564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
The phase separation of biomolecules into biomolecular condensates has emerged as a ubiquitous cellular process. Understanding how intrinsically disordered protein sequence controls condensate formation and material properties has provided fundamental biological insights and led to the development of functional synthetic condensates. While these studies provide a valuable framework to understand subcellular organization via phase separation they have largely ignored the presence of folded domains and their impact on condensate properties. We set out to determine how the distribution of sticker interactions across a globular protein contributes to rheological properties of condensates and to what extent globular protein-containing condensates differ from those formed from two disordered components. We designed three variants of green fluorescent protein with different charge patterning and used dynamic light scattering microrheology to measure the viscoelastic spectrum of coacervates formed with poly-lysine over a timescale of 10-6 to 10 seconds, elucidating the response of protein condensates in this range for the first time. We further showed that the phase behavior and rheological characteristics of the condensates varied as a function of both protein charge distribution and polymer/protein ratio, behavior that was distinct to condensates formed with folded domains. Together, this work enhances our fundamental understanding of dynamic condensed biomaterials across biologically relevant length- and time-scales.
Collapse
Affiliation(s)
- Rachel S Fisher
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1315
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1315
| |
Collapse
|
4
|
Landfield H, Wang M. Diffusive Trends in Concentrated Oppositely-Charged Polyelectrolyte Solutions and Onset of Glassy Dynamics. ACS Macro Lett 2024; 13:1164-1170. [PMID: 39159010 DOI: 10.1021/acsmacrolett.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We utilize single particle tracking studies to investigate the diffusion of polylysine through concentrated matrices of cationic polylysine and anionic polyglutamic acid with no added salts. These studies show that diffusivity has a strong apparently exponential dependence on concentration in crowded systems that does not appear to be a function of the charge sign. These trends are consistent in both single-phase systems prepared at concentrated conditions and polymer-rich coacervate phases formed from dilute phase-separating systems. The likely origin of this behavior is the onset of glassy dynamics spurred by a decrease in plasticization by water and the large excluded volume associated with charge-bearing species. This effect can be contextualized through free volume-based theories such as the Vrentas-Duda model. Overall, we obtain dynamic behavior that is distinctly different from behavior observed in more dilute systems and warrants further investigation.
Collapse
Affiliation(s)
- Harrison Landfield
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Stevens KC, Tirrell MV. Impact of a Lightly Branched Star Polyelectrolyte Architecture on Polyelectrolyte Complexes. ACS Macro Lett 2024; 13:688-694. [PMID: 38780149 DOI: 10.1021/acsmacrolett.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The effect of charge density in blocky and statistical linear polyelectrolytes on polyelectrolyte complex (PEC) properties has been studied with the finding that increased charge density in a polyelectrolyte tends to increase the salt resistance and modulus of a PEC across various polyelectrolyte pairs. Here, we demonstrate the ability to orthogonally alter PEC salt resistance while maintaining rheological properties and internal structure by going from linear to lightly branched architectures with similar total degrees of polymerization. Using a model system built around glycidyl methacrylate (GMA) and thiol-epoxy "click" functionalization, we create a library of homologous linear, 4-armed, 6-armed, and 8-armed star polyelectrolytes. The PECs formed from these model polyelectrolyte pairs are then characterized via optical microscopy, rheology, and small-angle X-ray scattering to evaluate their salt resistance, mechanical properties, and internal structure. We argue that our results are due to the difference between linear charge density or charge per unit length along backbone segments for each polyelectrolyte and spatial charge density, the number of charges per unit volume of the polyelectrolyte prior to complexation. Our findings suggest that linear charge density is the dominant factor in determining intermolecular interactions of the complex, leading to identical rheological and structural behavior, whereas the spatial charge density primarily influences the stability of the complexes. These distinct mechanisms for altering various sought-after PEC properties offer greater potential applications in precision design of polyelectrolyte complex materials.
Collapse
Affiliation(s)
- Kaden C Stevens
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
van Haren MHI, Visser BS, Spruijt E. Probing the surface charge of condensates using microelectrophoresis. Nat Commun 2024; 15:3564. [PMID: 38670952 PMCID: PMC11053090 DOI: 10.1038/s41467-024-47885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Biomolecular condensates play an important role in cellular organization. Coacervates are commonly used models that mimic the physicochemical properties of biomolecular condensates. The surface of condensates plays a key role in governing molecular exchange between condensates, accumulation of species at the interface, and the stability of condensates against coalescence. However, most important surface properties, including the surface charge and zeta potential, remain poorly characterized and understood. The zeta potential of coacervates is often measured using laser doppler electrophoresis, which assumes a size-independent electrophoretic mobility. Here, we show that this assumption is incorrect for liquid-like condensates and present an alternative method to study the electrophoretic mobility of coacervates and in vitro condensate models by microelectrophoresis and single-particle tracking. Coacervates have a size-dependent electrophoretic mobility, originating from their fluid nature, from which a well-defined zeta potential is calculated. Interestingly, microelectrophoresis measurements reveal that polylysine chains are enriched at the surface of polylysine/polyaspartic acid complex coacervates, which causes the negatively charged protein ɑ-synuclein to adsorb and accumulate at the interface. Addition of ATP inverts the surface charge, displaces ɑ-synuclein from the surface and may help to suppress its interface-catalyzed aggregation. Together, these findings show how condensate surface charge can be measured and altered, making this microelectrophoresis platform combined with automated single-particle tracking a promising characterization technique for both biomolecular condensates and coacervate protocells.
Collapse
Affiliation(s)
- Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523, AJ, Nijmegen, The Netherlands
| | - Brent S Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523, AJ, Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523, AJ, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Es Sayed J, Mukherjee A, El Aani S, Vengallur N, Koch M, Giuntoli A, Kamperman M. Structure-Property Relationships of Granular Hybrid Hydrogels Formed through Polyelectrolyte Complexation. Macromolecules 2024; 57:3190-3201. [PMID: 38616812 PMCID: PMC11008357 DOI: 10.1021/acs.macromol.3c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Hybrid hydrogels are hydrogels that exhibit heterogeneity in the network architecture by means of chemical composition and/or microstructure. The different types of interactions, together with structural heterogeneity, which can be created on different length scales, determine the mechanical properties of the final material to a large extent. In this work, the microstructure-mechanical property relationships for a hybrid hydrogel that contains both electrostatic and covalent interactions are investigated. The hybrid hydrogel is composed of a microphase-separated polyelectrolyte complex network (PEC) made of poly(4-styrenesulfonate) and poly(diallyldimethylammonium chloride) within a soft and elastic polyacrylamide hydrogel network. The system exhibits a granular structure, which is attributed to the liquid-liquid phase separation into complex coacervate droplets induced by the polymerization and the subsequent crowding effect of the polyacrylamide chains. The coacervate droplets are further hardened into PEC granules upon desalting the hydrogel. The structure formation is confirmed by a combination of electron microscopic imaging and molecular dynamics simulations. The interpenetration of both networks is shown to enhance the toughness of the resulting hydrogels due to the dissipative behavior of the PEC through the rupture of electrostatic interactions. Upon cyclic loading-unloading, the hydrogels show recovery of up to 80% of their original dissipative behavior in less than 300 s of rest with limited plasticity. The granular architecture and the tough and self-recoverable properties of the designed hybrid networks make them good candidates for applications, such as shape-memory materials, actuators, biological tissue mimics, and elastic substrates for soft sensors.
Collapse
Affiliation(s)
- Julien Es Sayed
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Adrivit Mukherjee
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Engineering
and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siham El Aani
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nayan Vengallur
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcus Koch
- INM
− Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Andrea Giuntoli
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
9
|
Doshi N, Guo W, Chen F, Venema P, Shum HC, de Vries R, Li X. Simple and complex coacervation in systems involving plant proteins. SOFT MATTER 2024; 20:1966-1977. [PMID: 38334990 DOI: 10.1039/d3sm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Plant-based foods are gaining popularity as alternatives to meat and dairy products due to sustainability and health concerns. As a consequence, there is a renewed interest in the phase behaviour of plant proteins and of mixtures of plant proteins and polysaccharides, in particular in the cases where coacervation is found to occur, i.e., liquid-liquid phase separation (LLPS) into two phases, one of which is rich in biopolymers and one of which is poor in biopolymer. Here we review recent research into both simple and complex coacervation in systems involving plant proteins, and their applications in food- as well as other technologies, such as microencapsulation, microgel production, adhesives, biopolymer films, and more.
Collapse
Affiliation(s)
- Nirzar Doshi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Wei Guo
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feipeng Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul Venema
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
10
|
Alshareedah I, Singh A, Yang S, Ramachandran V, Quinn A, Potoyan DA, Banerjee PR. Determinants of viscoelasticity and flow activation energy in biomolecular condensates. SCIENCE ADVANCES 2024; 10:eadi6539. [PMID: 38363841 PMCID: PMC10871536 DOI: 10.1126/sciadv.adi6539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
The form and function of biomolecular condensates are intimately linked to their material properties. Here, we integrate microrheology with molecular simulations to dissect the physical determinants of condensate fluid phase dynamics. By quantifying the timescales and energetics of network relaxation in a series of heterotypic viscoelastic condensates, we uncover distinctive roles of sticker motifs, binding energy, and chain length in dictating condensate dynamical properties. We find that the mechanical relaxation times of condensate-spanning networks are determined by both intermolecular interactions and chain length. We demonstrate, however, that the energy barrier for network reconfiguration, termed flow activation energy, is independent of chain length and only varies with the strengths of intermolecular interactions. Biomolecular diffusion in the dense phase depends on a complex interplay between viscoelasticity and flow activation energy. Our results illuminate distinctive roles of chain length and sequence-specific multivalent interactions underlying the complex material and transport properties of biomolecular condensates.
Collapse
Affiliation(s)
| | - Anurag Singh
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Sean Yang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | - Alexander Quinn
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
11
|
Joshi P, Decker C, Zeng X, Sathyavageeswaran A, Perry SL, Heldt CL. Design Rules for the Sequestration of Viruses into Polypeptide Complex Coacervates. Biomacromolecules 2024; 25:741-753. [PMID: 38103178 PMCID: PMC10866146 DOI: 10.1021/acs.biomac.3c00938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Encapsulation is a strategy that has been used to facilitate the delivery and increase the stability of proteins and viruses. Here, we investigate the encapsulation of viruses via complex coacervation, which is a liquid-liquid phase separation resulting from the complexation of oppositely charged polymers. In particular, we utilized polypeptide-based coacervates and explored the effects of peptide chemistry, chain length, charge patterning, and hydrophobicity to better understand the effects of the coacervating polypeptides on virus incorporation. Our study utilized two nonenveloped viruses, porcine parvovirus (PPV) and human rhinovirus (HRV). PPV has a higher charge density than HRV, and they both appear to be relatively hydrophobic. These viruses were compared to characterize how the charge, hydrophobicity, and patterning of chemistry on the surface of the virus capsid affects encapsulation. Consistent with the electrostatic nature of complex coacervation, our results suggest that electrostatic effects associated with the net charge of both the virus and polypeptide dominated the potential for incorporating the virus into a coacervate, with clustering of charges also playing a significant role. Additionally, the hydrophobicity of a virus appears to determine the degree to which increasing the hydrophobicity of the coacervating peptides can enhance virus uptake. Nonintuitive trends in uptake were observed with regard to both charge patterning and polypeptide chain length, with these parameters having a significant effect on the range of coacervate compositions over which virus incorporation was observed. These results provide insights into biophysical mechanisms, where sequence effects can control the uptake of proteins or viruses into biological condensates and provide insights for use in formulation strategies.
Collapse
Affiliation(s)
- Pratik
U. Joshi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Claire Decker
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Xianci Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arvind Sathyavageeswaran
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Institute
for Applied Life Sciences, University of
Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Caryn L. Heldt
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| |
Collapse
|
12
|
van Westerveld L, Pelras T, Hofman AH, Loos K, Kamperman M, Es Sayed J. Effect of Polyelectrolyte Charge Density on the Linear Viscoelastic Behavior and Processing of Complex Coacervate Adhesives. Macromolecules 2024; 57:652-663. [PMID: 38283122 PMCID: PMC10810003 DOI: 10.1021/acs.macromol.3c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
It is well-known that the phase behavior and physicochemical and adhesive properties of complex coacervates are readily tuneable with the salt concentration of the medium. For toxicity reasons, however, the maximum applicable salt concentration in biomedical applications is typically low. Consequently, other strategies must be implemented in order to optimize the properties of the resulting complex coacervates. In this work, the effect of the charge density of a strong polyanion on the properties of complex coacervates was studied. To control this charge density, statistical anionic/charge-neutral hydrophilic copolymers were synthesized by means of an elegant protection/deprotection strategy and subsequently complexed with a strong polycation. The resulting complexes were observed to have an increasing water content as well as faster relaxation dynamics, with either increasing salt concentration or decreasing charge density. Time-salt and time-salt-charge density superpositions could be performed and showed that the relaxation mechanism of the complex coacervates remained unchanged. When the charge density was decreased, lower salt concentration complexes became suitable for viscoelastic adhesion with improved injectability. Such complex coacervates are promising candidates for injectable biomedical adhesives.
Collapse
Affiliation(s)
- Larissa van Westerveld
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Théophile Pelras
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Anton H. Hofman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| | - Julien Es Sayed
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh
4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
13
|
van Westerveld L, Es Sayed J, de Graaf M, Hofman AH, Kamperman M, Parisi D. Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesives. SOFT MATTER 2023; 19:8832-8848. [PMID: 37947361 DOI: 10.1039/d3sm01114c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The rheology of complex coacervates can be elegantly tuned via the design and control of specific non-covalent hydrophobic interactions between the complexed polymer chains. The well-controlled balance between elasticity and energy dissipation makes complex coacervates perfect candidates for pressure-sensitive adhesives (PSAs). In this work, the polyanion poly(3-sulfopropyl methacrylate) (PSPMA) and the polycation quaternized poly(4-vinylpyridine) (QP4VP) were used to prepare complex coacervates in water. Progressive increase of hydrophobicity is introduced to the polyanion via partial deprotection of the protected precursor. Hence, the polymer chains in the complex coacervates can interact via both electrostatic (controlled by the amount of salt) and hydrophobic (controlled by the deprotection degree) interactions. It was observed that: (i) a rheological time-salt-hydrophobicity superposition principle is applicable, and can be used as a predictive tool for rheology, (ii) the slowdown of the stress relaxation dynamics, due to the increase of hydrophobic stickers (lower deprotection degree), can be captured by the sticky-Rouse model, and (iii) the systematic variation of hydrophobic stickers, amount of salt, and molecular weight of the polymers, enables the identification of optimizing parameters to design aqueous PSA systems. The presented results offer new pathways to control the rheology of complex coacervates and their applicability as PSAs.
Collapse
Affiliation(s)
- Larissa van Westerveld
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Julien Es Sayed
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Marijn de Graaf
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Anton H Hofman
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Marleen Kamperman
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Daniele Parisi
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
14
|
Li H, Lalwani SM, Eneh CI, Braide T, Batys P, Sammalkorpi M, Lutkenhaus JL. A Perspective on the Glass Transition and the Dynamics of Polyelectrolyte Multilayers and Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14823-14839. [PMID: 37819874 PMCID: PMC10863056 DOI: 10.1021/acs.langmuir.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Polyelectrolyte multilayers (PEMs) or polyelectrolyte complexes (PECs), formed by layer-by-layer assembly or the mixing of oppositely charged polyelectrolytes (PEs) in aqueous solution, respectively, have potential applications in health, energy, and the environment. PEMs and PECs are very tunable because their structure and properties are influenced by factors such as pH, ionic strength, salt type, humidity, and temperature. Therefore, it is increasingly important to understand how these factors affect PECs and PEMs on a molecular level. In this Feature Article, we summarize our contributions to the field in the development of approaches to quantify the swelling, thermal properties, and dynamic mechanical properties of PEMs and PECs. First, the role of water as a plasticizer and in the glass-transition temperature (Tg) in both strong poly(diallyldimethylammonium)/poly(sodium 4-styrenesulfonate) (PDADMA/PSS) and weak poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) systems is presented. Then, factors influencing the dynamics of PECs and PEMs are discussed. We also reflect on the swelling of PEMs in response to different salts and solvent additives. Last, the nature of water's microenvironment in PEMs/PECs is discussed. A special emphasis is placed on experimental techniques, along with molecular simulations. Taken together, this review presents an outlook and offers recommendations for future research directions, such as studying the additional effects of hydrogen-bonding hydrophobic interactions.
Collapse
Affiliation(s)
- Hongwei Li
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Suvesh Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Chikaodinaka I. Eneh
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Tamunoemi Braide
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77840, United States
| |
Collapse
|
15
|
Coria-Oriundo LL, Debais G, Apuzzo E, Herrera SE, Ceolín M, Azzaroni O, Battaglini F, Tagliazucchi M. Phase Behavior and Electrochemical Properties of Highly Asymmetric Redox Coacervates. J Phys Chem B 2023; 127:7636-7647. [PMID: 37639479 DOI: 10.1021/acs.jpcb.3c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.
Collapse
Affiliation(s)
- Lucy L Coria-Oriundo
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Debais
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Santiago E Herrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Fernando Battaglini
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
16
|
Es Sayed J, Caïto C, Arunachalam A, Amirsadeghi A, van Westerveld L, Maret D, Mohamed Yunus RA, Calicchia E, Dittberner O, Portale G, Parisi D, Kamperman M. Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervates. Macromolecules 2023; 56:5891-5904. [PMID: 37576476 PMCID: PMC10413963 DOI: 10.1021/acs.macromol.3c00269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Complex coacervates make up a class of versatile materials formed as a result of the electrostatic associations between oppositely charged polyelectrolytes. It is well-known that the viscoelastic properties of these materials can be easily altered with the ionic strength of the medium, resulting in a range of materials from free-flowing liquids to gel-like solids. However, in addition to electrostatics, several other noncovalent interactions could influence the formation of the coacervate phase depending on the chemical nature of the polymers involved. Here, the importance of intermolecular hydrogen bonds on the phase behavior, microstructure, and viscoelasticity of hyaluronic acid (HA)-chitosan (CHI) complex coacervates is revealed. The density of intermolecular hydrogen bonds between CHI units increases with increasing pH of coacervation, which results in dynamically arrested regions within the complex coacervate, leading to elastic gel-like behavior. This pH-dependent behavior may be very relevant for the controlled solidification of complex coacervates and thus for polyelectrolyte material design.
Collapse
Affiliation(s)
- Julien Es Sayed
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Clément Caïto
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Abinaya Arunachalam
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Armin Amirsadeghi
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Larissa van Westerveld
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Denise Maret
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Roshan Akdar Mohamed Yunus
- Engineering
and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Eleonora Calicchia
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department
of Nanomedicine & Drug Targeting, Groningen Research Institute
of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olivia Dittberner
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Giuseppe Portale
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Daniele Parisi
- Engineering
and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
17
|
Digby ZA, Chen Y, Akkaoui K, Schlenoff JB. Bulk Biopolyelectrolyte Complexes from Homopolypeptides: Solid "Salt Bridges". Biomacromolecules 2023; 24:1453-1462. [PMID: 36753621 DOI: 10.1021/acs.biomac.2c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Salt bridges, pairings between oppositely charged amino acids, are dispersed throughout proteins to assist folding and interactions. Biopolyelectrolyte complexes (BioPECs) were made between the homopolypeptides poly-l-arginine (PLR) and poly-l-lysine (PLK) with sodium triphosphate (STPP), as well as from polypeptide-only combinations. Viscoelastic measurements on these high salt bridge density materials showed many were solid, even glassy, in nature. Although the polypeptide-phosphate complexes had similar moduli at room temperature, the PLR-STPP complex displayed an unusual melting event above 70 °C not seen in PLK-STPP. This event was supported with differential scanning calorimetry. Infrared spectroscopy showed the PLK-STPP system contained β-sheets, while PLR-STPP did not. Stoichiometric, macroscopic BioPECs of PLR and PLK with poly-l-aspartic acid (PLD) and poly-l-glutamic acid (PLE) were made. PLR-PLD was found to undergo a melting event similar to that in PLR-STPP. ATR-FTIR studies showed that BioPECs made with PLD do not contain β-sheets, while those composed of PLE do. This work illustrates an expanded palette of unique properties from these biomaterials, such as strong viscoelastic differences between PECs containing PLE and PLD, even though they differ by only one carbon on the side chain.
Collapse
Affiliation(s)
- Zachary A Digby
- Department of Chemistry and Biochemistry The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Yuhui Chen
- Department of Chemistry and Biochemistry The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Khalil Akkaoui
- Department of Chemistry and Biochemistry The Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry The Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
18
|
Avazverdi E, Mirzadeh H, Ehsani M, Bagheri-Khoulenjani S. Polysaccharide-based polyampholyte complex formation: Investigating the role of intra-chain interactions. Carbohydr Polym 2023; 313:120836. [PMID: 37182945 DOI: 10.1016/j.carbpol.2023.120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
The difference in inter-chain and intra-chain electrostatic attraction was investigated in polyelectrolyte and polyampholyte electrostatic complex formation. Three polymers with similar backbone molecular structures including chitosan (Ch) polycation, carboxymethyl cellulose (CMCe) polyanion, and carboxymethyl chitosan (CMCh) polyampholyte were used for this purpose. The turbidimetric, water content, and rheological measurements for polyampholyte self-complex showed more dependence on the ionic strength rather than the polyelectrolyte one. The degree of dissociation (α), dissociation constant (pKa), and intrinsic persistence length were calculated by applying the Katchalsky-Lifson model to potentiometric data. We studied the gyration radii as a function of Debye length and observed the polyampholyte chain contractions due to the intra-chain electrostatic attractions, which minimize the entropic gain of the inter-chain complex formation. This is in accordance with the decrease in pKa by αc for CMCh which is the opposite of that for the Ch and CMCe samples. We also found that the polyampholyte has less intrinsic and electrostatic persistence length compared with both polyanion and polycation with similar chain structures indicating the impact of the inter-chain electrostatic interaction on the complex properties. This study deepens our insight about the behavior of CMCh and the nature of difference between CMCh and Ch/CMCe electrostatic complexes.
Collapse
|
19
|
Vahdati M, Hourdet D, Creton C. Soft Underwater Adhesives based on Weak Molecular Interactions. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Rheology and Gelation of Hyaluronic Acid/Chitosan Coacervates. Biomolecules 2022; 12:biom12121817. [PMID: 36551245 PMCID: PMC9775361 DOI: 10.3390/biom12121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hyaluronic acid (HA) and chitosan (CHI) are biopolyelectrolytes which are interesting for both the medical and polymer physics communities due to their biocompatibility and semi-flexibility, respectively. In this work, we demonstrate by rheology experiments that the linear viscoelasticity of HA/CHI coacervates depends strongly on the molecular weight of the polymers. Moduli for coacervates were found significantly higher than those of individual HA and CHI physical gels. A remarkable 1.5-fold increase in moduli was noted when catechol-conjugated HA and CHI were used instead. This was attributed to the conversion of coacervates to chemical gels by oxidation of 3,4-dihydroxyphenylalanine (DOPA) groups in HA and CHI to di-DOPA crosslinks. These rheological results put HA/CHI coacervates in the category of strong candidates as injectable tissue scaffolds or medical adhesives.
Collapse
|
21
|
Pitch GM, Matsushima LN, Kraemer Y, Dailing EA, Ayzner AL. Energy Transfer in Aqueous Light Harvesting Antennae Based on Brush-like Inter-Conjugated Polyelectrolyte Complexes. Macromolecules 2022; 55:10302-10311. [DOI: 10.1021/acs.macromol.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory M. Pitch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Yannick Kraemer
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Eric A. Dailing
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| |
Collapse
|
22
|
Kim S, Lee WB, de Souza NR, Choi SH. QENS study on local segmental dynamics of polyelectrolytes in complex coacervates. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Li X, der Gucht J, Erni P, Vries R. Active Microrheology of Protein Condensates Using Colloidal Probe-AFM. J Colloid Interface Sci 2022; 632:357-366. [DOI: 10.1016/j.jcis.2022.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
24
|
Liu Y, Hu J, Xiao Z, Jin X, Jiang C, Yin P, Tang L, Sun T. Dynamic behavior of tough polyelectrolyte complex hydrogels from chitosan and sodium hyaluronate. Carbohydr Polym 2022; 288:119403. [DOI: 10.1016/j.carbpol.2022.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/02/2022]
|
25
|
Yang M, Digby ZA, Chen Y, Schlenoff JB. Valence-induced jumps in coacervate properties. SCIENCE ADVANCES 2022; 8:eabm4783. [PMID: 35584213 PMCID: PMC9116606 DOI: 10.1126/sciadv.abm4783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Spontaneous phase separation, or coacervation, of oppositely charged macromolecules is a powerful and ubiquitous mechanism for the assembly of natural and synthetic materials. Two critical triggering phenomena in coacervation science and technology are highlighted here. The first is the transition from one (mixed) to two (separated) phases of polyelectrolytes coacervated with small molecules upon the addition of one or two charges per molecule. The second is a large jump in coacervate modulus and viscosity mediated by the addition of just one additional charge to a three-charged system. This previously unknown viscoelastic transition is relevant to those aspects of disease states that are characterized by abnormal mechanical properties and irreversible assembly.
Collapse
|
26
|
Liang H, de Pablo JJ. A Coarse-Grained Molecular Dynamics Study of Strongly Charged Polyelectrolyte Coacervates: Interfacial, Structural, and Dynamical Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Luo Y, Gu M, Edwards CER, Valentine MT, Helgeson ME. High-throughput microscopy to determine morphology, microrheology, and phase boundaries applied to phase separating coacervates. SOFT MATTER 2022; 18:3063-3075. [PMID: 35363236 DOI: 10.1039/d1sm01763b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Evolution of composition, rheology, and morphology during phase separation in complex fluids is highly coupled to rheological and mass transport processes within the emerging phases, and understanding this coupling is critical for materials design of multiphase complex fluids. Characterizing these dependencies typically requires careful measurement of a large number of equilibrium and transport properties that are difficult to measure in situ as phase separation proceeds. Here, we propose and demonstrate a high-throughput microscopy platform to achieve simultaneous, in situ mapping of time-evolving morphology and microrheology in phase separating complex fluids over a large compositional space. The method was applied to a canonical example of polyelectrolyte complex coacervation, whereby mixing of oppositely charged species leads to liquid-liquid phase separation into distinct solute-dense and dilute phases. Morphology and rheology were measured simultaneously and kinetically after mixing to track the progression of phase separation. Once equilibrated, the dense phase viscosity was determined to high compositional accuracy using passive probe microrheology, and the results were used to derive empirical relationships between the composition and viscosity. These relationships were inverted to reconstruct the dense phase boundary itself, and further extended to other mixture compositions. The resulting predictions were validated by independent equilibrium compositional measurements. This platform paves the way for rapid screening and formulation of complex fluids and (bio)macromolecular materials, and serves as a critical link between formulation and rheology for multi-phase material discovery.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Chemical Engineering, University of California, Santa Barbara 93106, USA.
- Department of Mechanical Engineering, University of California, Santa Barbara, USA.
| | - Mengyang Gu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, USA
| | - Chelsea E R Edwards
- Department of Chemical Engineering, University of California, Santa Barbara 93106, USA.
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, USA.
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara 93106, USA.
| |
Collapse
|
28
|
Bos I, Brink E, Michels L, Sprakel J. DNA dynamics in complex coacervate droplets and micelles. SOFT MATTER 2022; 18:2012-2027. [PMID: 35191449 PMCID: PMC8905490 DOI: 10.1039/d1sm01787j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Single stranded DNA (ssDNA), or another polyanion, can be mixed with polycations to form liquid-like complex coacervates. When the polycations are replaced by cationic-neutral diblock copolymers, complex coacervate core micelles (C3Ms) can be formed instead. In both complex coacervates and C3Ms, dynamics plays an important role. Yet, to date, the effect of chain length on the dynamics effect is still not fully understood. The DNA complexes provide a versatile platform to further elucidate these chain length effects because the DNA is monodisperse and its length can be easily adapted. Therefore, we study in this paper the dynamics of fluorescently labelled ssDNA in both complex coacervate droplets and micelles. The DNA dynamics in the complex coacervate droplets is probed by fluorescence recovery after photobleaching (FRAP). We observe that the DNA diffusion coefficient depends more strongly on the DNA length than predicted by the sticky Rouse model and we show that this can be partly explained by changes in complex coacervate density, but that also other factors might play a role. We measure the molecular exchange of C3Ms by making use of Förster resonance energy transfer (FRET) and complement these measurements with Langevin dynamics simulations. We conclude that chain length polydispersity is the main cause of a broad distribution of exchange rates. We hypothesise that the different exchange rates that we observe for the monodisperse DNA are mainly caused by differences in dye interactions and show that the dye can indeed have a large effect on the C3M exchange. In addition, we show that a new description of the C3M molecular exchange is required that accounts among others for the effect of the length of the oppositely charged core species. Together our findings can help to better understand the dynamics in both specific DNA systems and in complex coacervate droplets and micelles in general.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Eline Brink
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Lucile Michels
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Zheng J, Gao Q, Ge G, Wu J, Tang CH, Zhao M, Sun W. Dynamic equilibrium of β-conglycinin/lysozyme heteroprotein complex coacervates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Bobbili SV, Milner ST. Closed-Loop Phase Behavior of Nonstoichiometric Coacervates in Coarse-Grained Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sai Vineeth Bobbili
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
31
|
Gong Z, Zacharia NS, Vogt BD. Sodium dodecyl sulfate modulates the structure and rheological properties of Pluronic F108-poly(acrylic acid) coacervates). SOFT MATTER 2022; 18:340-350. [PMID: 34882160 DOI: 10.1039/d1sm01273h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micelles formed within coacervate phases can impart functional properties, but it is unclear if this micellization provides mechanical reinforcement of the coacervate whereby the micelles act as high functionality crosslinkers. Here, we examine how sodium dodecyl sulfate (SDS) influences the structure and properties of Pluronic F108-polyacrylic acid (PAA) coacervates as SDS is known to decrease the aggregation number of Pluronic micelles. Increasing the SDS concentration leads to larger water content in the coacervate and an increase in the relative concentration of PAA to the other solids. Rheological characterization with small angle oscillatory shear (SAOS) demonstrates that these coacervates are viscoelastic liquids with the moduli decreasing with the addition of the SDS. The loss factor (tan δ) initially increases linearly with the addition of SDS, but a step function increase in the loss factor occurs near the reported CMC of SDS. However, this change in rheological properties does not appear to be correlated with any large scale structural differences in the coacervate as determined by small angle X-ray scattering (SAXS) with no signature of Pluronic micelles in the coacervate when SDS concentration is >4 mM during formation of the coacervate, which is less than that observed (6 mM SDS) in initial Pluronic F108 solution despite the higher polymer concentration in the coacervate. These results suggest that the mechanical properties of polyelectrolyte-non-ionic surfactant coacervates are driven by the efficicacy of binding between the complexing species driving the coacervate, which can be disrupted by competitive binding of the SDS to the Pluronic.
Collapse
Affiliation(s)
- Ziyuan Gong
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Bryan D Vogt
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
32
|
Hastings DE, Bozelli JC, Epand RM, Stöver HDH. Investigating the Effects of Charge Arrangement in Stimuli-Responsive Polyelectrolytes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Derrick E. Hastings
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton L8S 4M1, Ontario, Canada
| | - José C. Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4M1, Ontario, Canada
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4M1, Ontario, Canada
| | - Harald D. H. Stöver
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton L8S 4M1, Ontario, Canada
| |
Collapse
|
33
|
Alshareedah I, Moosa MM, Pham M, Potoyan DA, Banerjee PR. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nat Commun 2021; 12:6620. [PMID: 34785657 PMCID: PMC8595643 DOI: 10.1038/s41467-021-26733-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Liquid-liquid phase separation of multivalent proteins and RNAs drives the formation of biomolecular condensates that facilitate membrane-free compartmentalization of subcellular processes. With recent advances, it is becoming increasingly clear that biomolecular condensates are network fluids with time-dependent material properties. Here, employing microrheology with optical tweezers, we reveal molecular determinants that govern the viscoelastic behavior of condensates formed by multivalent Arg/Gly-rich sticker-spacer polypeptides and RNA. These condensates behave as Maxwell fluids with an elastically-dominant rheological response at shorter timescales and a liquid-like behavior at longer timescales. The viscous and elastic regimes of these condensates can be tuned by the polypeptide and RNA sequences as well as their mixture compositions. Our results establish a quantitative link between the sequence- and structure-encoded biomolecular interactions at the microscopic scale and the rheological properties of the resulting condensates at the mesoscale, enabling a route to systematically probe and rationally engineer biomolecular condensates with programmable mechanics.
Collapse
Affiliation(s)
| | | | - Matthew Pham
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
34
|
Influence of divalent ions on composition and viscoelasticity of polyelectrolyte complexes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Bobbili SV, Milner ST. A simple simulation model for complex coacervates. SOFT MATTER 2021; 17:9181-9188. [PMID: 34585705 DOI: 10.1039/d1sm00881a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When oppositely charged polyelectrolytes mix in an aqueous solution, associative phase separation gives rise to coacervates. Experiments reveal the phase diagram for such coacervates, and determine the impact of charge density, chain length and added salt. Simulations often use hybrid MC-MD methods to produce such phase diagrams, in support of experimental observations. We propose an idealized model and a simple simulation technique to investigate coacervate phase behavior. We model coacervate systems by charged bead-spring chains and counterions with short-range repulsions, of size equal to the Bjerrum length. We determine phase behavior by equilibrating a slab of concentrated coacervate with respect to swelling into a dilute phase of counterions. At salt concentrations below the critical point, the counterion concentration in the coacervate and dilute phases are nearly the same. At high salt concentrations, we find a one-phase region. Along the phase boundary, the total concentration of beads in the coacervate phase is nearly constant, corresponding to a "Bjerrum liquid''. This result can be extended to experimental phase diagrams by assigning appropriate volumes to monomers and salts.
Collapse
Affiliation(s)
- Sai Vineeth Bobbili
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Scott T Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
36
|
Chen Y, Yang M, Shaheen SA, Schlenoff JB. Influence of Nonstoichiometry on the Viscoelastic Properties of a Polyelectrolyte Complex. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhui Chen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee 32306, Florida, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee 32306, Florida, United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee 32306, Florida, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee 32306, Florida, United States
| |
Collapse
|
37
|
Lalwani SM, Batys P, Sammalkorpi M, Lutkenhaus JL. Relaxation Times of Solid-like Polyelectrolyte Complexes of Varying pH and Water Content. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suvesh M. Lalwani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16100, FI-00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Huang J, Laaser JE. Charge Density and Hydrophobicity-Dominated Regimes in the Phase Behavior of Complex Coacervates. ACS Macro Lett 2021; 10:1029-1034. [PMID: 35549116 DOI: 10.1021/acsmacrolett.1c00382] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of hydrophobicity, and particularly of nonionic hydrophobic comonomers, in the phase behavior of polyelectrolyte complex coacervates is not well-understood. Here, we address this problem by synthesizing a library of polymers with a wide range of charge densities and nonionic hydrophobic side chain lengths, and characterizing their phase behavior by optical turbidity. The polymers were prepared by postpolymerization modification of poly(N-acryloxy succinimide), targeting charge densities between 40 and 100% and nonionic aliphatic side chains with lengths from 0 to 12 carbons long. Turbidity measurements on pairs of polycations and polyanions with matched charge densities and nonionic side chain lengths revealed a complex salt response with distinct charge density-dominated and hydrophobicity-dominated regimes. The polymer solubilities were not directly correlated with the phase behavior of the coacervates, indicating the difficulty of understanding the coacervate phase behavior in terms of the polymer-water interaction parameter. This result suggests that there is significant room for further work to understand the mechanisms by which specific molecular-scale interactions moderate the phase behavior of complex coacervates.
Collapse
Affiliation(s)
- Jun Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E. Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
39
|
Dinic J, Marciel AB, Tirrell MV. Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Tan Y, Song J. Independent and Synergistic Modulations of Viscoelasticity and Stiffness of Dynamically Cross-Linked Cell-Encapsulating ClickGels by Covalently Tethered Polymer Brushes. Biomacromolecules 2021; 22:3408-3415. [PMID: 34292720 DOI: 10.1021/acs.biomac.1c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report independent and synergistic modulations of the stiffness and viscoelasticity of ClickGels, formed by a combination of the bio-orthogonal covalent and dynamic noncovalent cross-linking, by covalently incorporating nonionic, zwitterionic, or anionic polymer brushes. Tethering nonionic and zwitterionic brushes at the cost of noncovalent cross-linking increased stiffness and slowed stress relaxation, respectively, without altering the other properties. Meanwhile, tethering anionic brushes significantly increased ClickGel stiffness, while also slowing its stress relaxation. ClickGels with faster stress relaxation, not reduced stiffness, promoted short-term (24 h) viability and YAP/TAZ nuclear localization of encapsulated bone marrow-derived stromal cells (BMSCs). In contrast, ClickGel stiffness, not viscoelasticity, inversely correlated to the short-term dehydrogenase activity of encapsulated BMSCs. This work highlights the role of the ionic state of polymer brushes in modulating the hydrogel elastic modulus and viscoelasticity and establishes the brush-modified ClickGel as a facile and reproducible tool for manipulating mechanical cues of the synthetic cellular niche.
Collapse
Affiliation(s)
- Yu Tan
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
41
|
Kim S, Lee M, Lee WB, Choi SH. Ionic-Group Dependence of Polyelectrolyte Coacervate Phase Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sojeong Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Minhwan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
42
|
Muñoz‐López C, St Thomas C, García‐Cerda LA, Rivera‐Vallejo C, Jiménez‐Regalado E. Impact of additives on the rheological properties of associating water‐soluble multiblock polyelectrolytes. J Appl Polym Sci 2021. [DOI: 10.1002/app.51270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- César Muñoz‐López
- Departamento de Procesos de Polimerización Centro de Investigación en Química Aplicada (CIQA) Saltillo México
| | - Claude St Thomas
- Departamento de Procesos de Polimerización Centro de Investigación en Química Aplicada (CIQA) Saltillo México
- CONACYT‐Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA) Saltillo México
| | - Luis Alfonso García‐Cerda
- Departamento de Procesos de Polimerización Centro de Investigación en Química Aplicada (CIQA) Saltillo México
| | - Claudia Rivera‐Vallejo
- Departamento de Procesos de Polimerización Centro de Investigación en Química Aplicada (CIQA) Saltillo México
| | - Enrique Jiménez‐Regalado
- Departamento de Procesos de Polimerización Centro de Investigación en Química Aplicada (CIQA) Saltillo México
| |
Collapse
|
43
|
Audus DJ, Ali S, Ma Y, Prabhu VM, Rumyantsev AM, de Pablo JJ. Molecular Mass Dependence of Interfacial Tension in Complex Coacervation. PHYSICAL REVIEW LETTERS 2021; 126:237801. [PMID: 34170179 PMCID: PMC10168025 DOI: 10.1103/physrevlett.126.237801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 05/11/2023]
Abstract
The interfacial tension of coacervates, the liquidlike phase composed of oppositely charged polymers that coexists at equilibrium with a supernatant, forms the basis for multiple technologies. Here we present a comprehensive set of experiments and molecular dynamics simulations to probe the effect of molecular mass on interfacial tension γ, far from the critical point, and derive γ=γ_{∞}(1-h/N), where N is the degree of polymerization, γ_{∞} is the infinite molecular mass limit, and h is a constant that physically corresponds to the number of monomers of one chain within the coacervate correlation volume.
Collapse
Affiliation(s)
| | | | - Yuanchi Ma
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD
| | - Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | | |
Collapse
|
44
|
Meng X, Du Y, Liu Y, Coughlin EB, Perry SL, Schiffman JD. Electrospinning Fibers from Oligomeric Complex Coacervates: No Chain Entanglements Needed. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiangxi Meng
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yifeng Du
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yalin Liu
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - E. Bryan Coughlin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| |
Collapse
|
45
|
Kim HJ, Pyun JH, Park TY, Yoon SG, Maeng SW, Choi HS, Joo KI, Kang SH, Cha HJ. Preclinical evaluation of a regenerative immiscible bioglue for vesico-vaginal fistula. Acta Biomater 2021; 125:183-196. [PMID: 33652167 DOI: 10.1016/j.actbio.2021.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Currently, there are no clinically available tissue adhesives that work effectively in the fluid-rich and highly dynamic environments of the human body, such as the urinary system. This is especially relevant to the management of vesico-vaginal fistula, and developing a high-performance tissue adhesive for this purpose could vastly expand urologists' surgical repertoire and dramatically reduce patient discomfort. Herein, we developed a water-immiscible mussel protein-based bioadhesive (imWIMBA) with significantly improved properties in all clinical respects, allowing it to achieve rapid and strong underwater adhesion with tunable rheological properties. We evaluated in vivo potential of imWIMBA for sealing thermally injured fistula tracts between the bladder and vagina. Importantly, the use of imWIMBA in the presence of prolonged bladder drainage resulted in perfect closure of the vesico-vaginal fistula in operated pigs. Thus, imWIMBA could be successfully used for many surgical applications and improve treatment efficacy when combined with conventional surgical methods. STATEMENT OF SIGNIFICANCE: Vesico-vaginal fistula (VVF) is an abnormal opening between the bladder and the vagina, which is a stigmatized disease in many developing countries. Leakage of urine into internal organs can induce serious complications and delay wound repair. Conventional VVF treatment requires skillful suturing to provide a tension-free and watertight closure. In addition, there is no clinically approved surgical glue that works in wet and highly dynamic environments such as the urinary system. In this work, for potential clinical VVF closure and regeneration, we developed an advanced immiscible mussel protein-based bioglue with fast, strong, wet adhesion and tunable rheological properties. This regenerative immiscible bioglue could be successfully used for sealing fistulas and further diverse surgical applications as an adjuvant for conventional suture methods.
Collapse
|
46
|
Alshareedah I, Thurston GM, Banerjee PR. Quantifying viscosity and surface tension of multicomponent protein-nucleic acid condensates. Biophys J 2021; 120:1161-1169. [PMID: 33453268 PMCID: PMC8059090 DOI: 10.1016/j.bpj.2021.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 01/08/2023] Open
Abstract
Living cells organize their internal space into dynamic condensates through liquid-liquid phase separation of multivalent proteins in association with cellular nucleic acids. Here, we study how variations in nucleic acid (NA)-to-protein stoichiometry modulate the condensed phase organization and fluid dynamics in a model system of multicomponent heterotypic condensates. Employing a multiparametric approach comprised of video particle tracking microscopy and optical tweezer-induced droplet fusion, we show that the interfacial tension, but not viscosity, of protein-NA condensates is controlled by the NA/protein ratio across the two-phase regime. In parallel, we utilize fluorescence correlation spectroscopy to quantify protein and NA diffusion in the condensed phase. Fluorescence correlation spectroscopy measurements reveal that the diffusion of the component protein and NA within the condensate core is governed by the viscosity, and hence, also remains insensitive to the changes in NA-to-protein stoichiometry. Collectively, our results provide insights into the regulation of multicomponent heterotypic liquid condensates, reflecting how the bulk mixture composition affects their core versus surface organization and dynamical properties.
Collapse
Affiliation(s)
| | - George M Thurston
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York
| | - Priya R Banerjee
- Department of Physics, University at Buffalo SUNY, Buffalo, New York.
| |
Collapse
|
47
|
Yewdall NA, André AA, Lu T, Spruijt E. Coacervates as models of membraneless organelles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101416] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
|
49
|
Filippov AD, Sprakel J, Kamperman M. Complex coacervation and metal-ligand bonding as synergistic design elements for aqueous viscoelastic materials. SOFT MATTER 2021; 17:3294-3305. [PMID: 33655283 DOI: 10.1039/d0sm02236e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The application of complex coacervates in promising areas such as coatings and surgical glues requires a tight control of their viscous and elastic behaviour, and a keen understanding of the corresponding microscopic mechanisms. While the viscous, or dissipative, aspect is crucial at pre-setting times and in preventing detachment, elasticity at long waiting times and low strain rates is crucial to sustain a load-bearing joints. The independent tailoring of dissipative and elastic properties proves to be a major challenge that can not be addressed adequately by the complex coacervate motif by itself. We propose a versatile model of complex coacervates with customizable rheological fates by functionalization of polyelectrolytes with terpyridines, which provide transient crosslinks through complexation with metals. We show that the rheology of the hybrid complexes shows distinct footprints of both metal-ligand and coacervate dynamics, the former as a contribution very close to pure Maxwell viscoelasticity, the latter approaching a sticky Rouse fluid. Strikingly, when the contribution of metal-ligand bonds is dominant at long times, the relaxation of the overall complex is much slower than either the "native" coacervate relaxation time or the dissociation time of a comparable non-coacervate polyelectrolyte-metal-ligand complex. We recognize this slowing-down of transient bonds as a synergistic effect that has important implications for the use of complementary transient bonding in coacervate complexes.
Collapse
Affiliation(s)
- Alexei D Filippov
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | | | | |
Collapse
|
50
|
Ricarte RG, Shanbhag S. Unentangled Vitrimer Melts: Interplay between Chain Relaxation and Cross-link Exchange Controls Linear Rheology. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02530] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ralm G. Ricarte
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Sachin Shanbhag
- Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|