1
|
Rehman HU, Fornaciari B, Alves SR, Colquhoun A, de Oliveira Silva D. Diruthenium(II-III)-ibuprofen-loaded chitosan-based microparticles and nanoparticles systems: encapsulation, characterisation, anticancer activity of the nanoformulations against U87MG human glioma cells. J Microencapsul 2023; 40:549-565. [PMID: 37698449 DOI: 10.1080/02652048.2023.2258967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The aim of this work was to investigate novel formulations containing diruthenium(II-III)-ibuprofen (RuIbp) metallodrug encapsulated into the chitosan (CT) biopolymer. Microparticles (RuIbp/CT MPs, ∼ 1 µm) were prepared by spray-drying, and RuIbp/CT-crosslinked nanoparticles (NPs) by ionic gelation (RuIbp/CT-TPP, TPP = tripolyphosphate (1), RuIbp/CT-TPP-PEG, PEG = poly(ethyleneglycol (2)) or pre-gel/polyelectrolyte complex method (RuIbp/CT-ALG, ALG = alginate (3)). Ru analysis was conducted by energy dispersive x-ray fluorescence or inductively coupled plasma atomic emission spectroscopy, and physicochemical characterisation by powder x-ray diffraction, electronic absorption and FTIR spectroscopies, electrospray ionisation mass spectrometry, thermal analysis, scanning electron, transition electron and atomic force microscopies, and dynamic light scattering. The RuIbp-loaded nanosystems exhibited encapsulation efficiency ∼ 20-37%, drug loading∼ 10-20% (w/w), hydrodynamic diameter (nm): 103.2 ± 7.9 (1), 91.7 ± 12.6 (2), 270.2 ± 58.4 (3), zeta potential (mV): +(47.7 ± 2.8) (1), +(49.2 ± 3.6) (2), -(28.2 ± 2.0) (3). Nanoformulation (1) showed the highest cytotoxicity with increased efficacy in relation to the RuIbp free metallodrug against U87MG human glioma cells.
Collapse
Affiliation(s)
- Hanif-Ur- Rehman
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Bárbara Fornaciari
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Samara R Alves
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Denise de Oliveira Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
3
|
Côrte-Real L, Brás AR, Pilon A, Mendes N, Ribeiro AS, Martins TD, Farinha JPS, Oliveira MC, Gärtner F, Garcia MH, Preto A, Valente A. Biotinylated Polymer-Ruthenium Conjugates: In Vitro and In Vivo Studies in a Triple-Negative Breast Cancer Model. Pharmaceutics 2022; 14:1388. [PMID: 35890283 PMCID: PMC9315599 DOI: 10.3390/pharmaceutics14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The need for new therapeutic approaches for triple-negative breast cancer is a clinically relevant problem that needs to be solved. Using a multi-targeting approach to enhance cancer cell uptake, we synthesized a new family of ruthenium(II) organometallic complexes envisaging simultaneous active and passive targeting, using biotin and polylactide (PLA), respectively. All compounds with the general formula, [Ru(η5-CpR)(P)(2,2'-bipy-4,4'-PLA-biotin)][CF3SO3], where R is -H or -CH3 and P is P(C6H5)3, P(C6H4F)3 or P(C6H4OCH3)3, were tested against triple-negative breast cancer cells MDA-MB-231 showing IC50 values between 2.3-14.6 µM, much better than cisplatin, a classical chemotherapeutic drug, in the same experimental conditions. We selected compound 1 (where R is H and P is P(C6H5)3), for further studies as it was the one showing the best biological effect. In a competitive assay with biotin, we showed that cell uptake via SMVT receptors seems to be the main transport route into the cells for this compound, validating the strategy of including biotin in the design of the compound. The effects of the compound on the hallmarks of cancer show that the compound leads to apoptosis, interferes with proliferation by affecting the formation of cell colonies in a dose-dependent manner and disrupts the cell cytoskeleton. Preliminary in vivo assays in N: NIH(S)II-nu/nu mice show that the concentrations of compound 1 used in this experiment (maximum 4 mg/kg) are safe to use in vivo, although some signs of liver toxicity are already found. In addition, the new compound shows a tendency to control tumor growth, although not significantly. In sum, we showed that compound 1 shows promising anti-cancer effects, bringing a new avenue for triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
| | - Ana Rita Brás
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, Edifício 18, 4710-057 Braga, Portugal
| | - Adhan Pilon
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
| | - Nuno Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (N.M.); (A.S.R.); (F.G.)
| | - Ana Sofia Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (N.M.); (A.S.R.); (F.G.)
| | - Tiago D. Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.D.M.); (J.P.S.F.); (M.C.O.)
| | - José Paulo S. Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.D.M.); (J.P.S.F.); (M.C.O.)
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.D.M.); (J.P.S.F.); (M.C.O.)
| | - Fátima Gärtner
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (N.M.); (A.S.R.); (F.G.)
| | - M. Helena Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
| | - Ana Preto
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, Edifício 18, 4710-057 Braga, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (L.C.-R.); (A.R.B.); (A.P.); (M.H.G.)
| |
Collapse
|
4
|
|
5
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
De Luca S, Treny J, Chen F, Seal P, Stenzel MH, Smith SC. Enhancing Cationic Drug Delivery with Polymeric Carriers: The Coulomb‐pH Switch Approach. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sergio De Luca
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| | - Jennifer Treny
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Prasenjit Seal
- Department of Chemistry University of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sean C. Smith
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
7
|
Malali S, Chyba J, Knor M, Horní M, Nečas M, Novotný J, Marek R. Zwitterionic Ru(III) Complexes: Stability of Metal-Ligand Bond and Host-Guest Binding with Cucurbit[7]uril. Inorg Chem 2020; 59:10185-10196. [PMID: 32633504 DOI: 10.1021/acs.inorgchem.0c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A wide range of ruthenium-based coordination compounds have been reported to possess potential as metallodrugs with anticancer or antimetastatic activity. In this work, we synthesized a set of new zwitterionic Ru(III) compounds bearing ligands derived from N-alkyl (R) systems based on pyridine, 4,4'-bipyridine, or 1,4-diazabicyclo[2.2.2]octane (DABCO). The effects of the ligand(s) and their environment on the coordination stability have been investigated. Whereas the [DABCO-R]+ ligand is shown to be easily split out of a negative [RuCl4]- core, positively charged R-pyridine and R-bipyridine ligands form somewhat more stable Ru(III) complexes and can be used as supramolecular anchors for binding with macrocycles. Therefore, supramolecular host-guest assemblies between the stable zwitterionic Ru(III) guests and the cucurbit[7]uril host were investigated and characterized in detail by using NMR spectroscopy and single-crystal X-ray diffraction. Paramagnetic 1H NMR experiments supplemented by relativistic DFT calculations of the structure and hyperfine NMR shifts were performed to determine the host-guest binding modes in solution. In contrast to the intramolecular hyperfine shifts, dominated by the through-bond Fermi-contact mechanism, supramolecular hyperfine shifts were shown to depend on the "through-space" spin-dipole contributions with structural trends being satisfactorily reproduced by a simple point-dipole approximation.
Collapse
Affiliation(s)
- Sanaz Malali
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Knor
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Horní
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Marek Nečas
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
8
|
Alves SR, Colquhoun A, Wu XY, de Oliveira Silva D. Synthesis of terpolymer-lipid encapsulated diruthenium(II,III)-anti-inflammatory metallodrug nanoparticles to enhance activity against glioblastoma cancer cells. J Inorg Biochem 2019; 205:110984. [PMID: 31927403 DOI: 10.1016/j.jinorgbio.2019.110984] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 01/04/2023]
Abstract
Novel formulations of diruthenium(II,III)-NSAID (NSAID, non-steroidal anti-inflammatory drug) metallodrugs encapsulated into biocompatible terpolymer-lipid nanoparticles (TPLNs) to target glioblastoma cancer were developed. The nanoformulations of Ibuprofenate (RuIbp) and Naproxenate (RuNpx) metallodrugs were synthesized and characterized. The procedure rationally designed to avoid structural changes on the coordination sphere of the [Ru2(NSAID)4]+ paddlewheel unit succeeded in giving colloidally stable and nearly spherical shaped loaded [Ru2(NSAID)4]-TPLNs with appropriate parameters (~90% loading efficiency; drug loading around 10%; particle size ~130 nm; zeta potential around - 40 mV). The maintenance of the [Ru2(NSAID)4]+ framework was confirmed by spectroscopy and mass spectrometry. The encapsulation enhanced antiproliferative effects in U87MG cells for both metallodrugs. The RuIbp-TPLNs showed efficacy also against the cisplatin chemoresistant T98G cancer cells. Lack of significant effects for the loaded-Ibuprofen-TPLNs (HIbp-TPLNs) on both types of cells supports the key role of the dimetal core in the anticancer activity of the [Ru2(NSAID)4]+ metallodrugs. The high cell viability (>70%) found for both types of cells suggests activity associated mainly to antiproliferative effects. The blank-TPLNs internalized into U87MG cell cytoplasm mostly at the first 6 h, by energy-dependent mechanism. The cell uptake of the RuIbp-TPLNs occurred during the first 24 h and it was enhanced in relation to the non-encapsulated metallodrug. The development of these novel metallodrug-loaded TPLN nanoformulations, which exhibit colloidal stability suitable for intravenous injection and enhanced drug cellular uptake, expands the perspective for diruthenium(II,III)-NSAID metallodrugs targeting brain glioblastoma cancer.
Collapse
Affiliation(s)
- Samara Rodrigues Alves
- Laboratory for Synthetic and Structural Inorganic Chemistry - Bioinorganic and Metallodrugs, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, B2T, 05508-000, São Paulo, SP, Brazil; Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-000, São Paulo, SP, Brazil
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Denise de Oliveira Silva
- Laboratory for Synthetic and Structural Inorganic Chemistry - Bioinorganic and Metallodrugs, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, B2T, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Riccardi C, Musumeci D, Trifuoggi M, Irace C, Paduano L, Montesarchio D. Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity. Pharmaceuticals (Basel) 2019; 12:E146. [PMID: 31561546 PMCID: PMC6958509 DOI: 10.3390/ph12040146] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
10
|
D'Amora A, Cucciolito ME, Iannitti R, Morelli G, Palumbo R, Ruffo F, Tesauro D. Pyridine Ruthenium(III) complexes entrapped in liposomes with enhanced cytotoxic properties in PC-3 prostate cancer cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Pernar M, Kokan Z, Kralj J, Glasovac Z, Tumir LM, Piantanida I, Eljuga D, Turel I, Brozovic A, Kirin SI. Organometallic ruthenium(II)-arene complexes with triphenylphosphine amino acid bioconjugates: Synthesis, characterization and biological properties. Bioorg Chem 2019; 87:432-446. [DOI: 10.1016/j.bioorg.2019.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022]
|
12
|
Piloni A, Cao C, Garvey CJ, Walther A, Stenzel MH. Poly(4‐vinyl imidazole): A pH‐Responsive Trigger for Hierarchical Self‐Assembly of Multicompartment Micelles Based upon Triblock Terpolymers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alberto Piloni
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales UNSW Sydney NSW 2052 Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales UNSW Sydney NSW 2052 Australia
- Australia Nuclear Science and Technology Organisation ANSTO Lucas Heights NSW 2234 Australia
| | - Christopher J. Garvey
- Australia Nuclear Science and Technology Organisation ANSTO Lucas Heights NSW 2234 Australia
| | - Andreas Walther
- Institute for Macromolecular Chemistry University of Freiburg Stefan‐Meier‐Strasse 31 79104 Freiburg Germany
- Freiburg Materials Research Center University of Freiburg Stefan‐Meier‐Strasse 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
- Freiburg Institute for Advanced Studies University of Freiburg 79104 Freiburg Germany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales UNSW Sydney NSW 2052 Australia
| |
Collapse
|
13
|
Moreira T, Francisco R, Comsa E, Duban-Deweer S, Labas V, Teixeira-Gomes AP, Combes-Soia L, Marques F, Matos A, Favrelle A, Rousseau C, Zinck P, Falson P, Garcia MH, Preto A, Valente A. Polymer "ruthenium-cyclopentadienyl" conjugates - New emerging anti-cancer drugs. Eur J Med Chem 2019; 168:373-384. [PMID: 30826512 DOI: 10.1016/j.ejmech.2019.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
In this work, we aimed to understand the biological activity and the mechanism of action of three polymer-'ruthenium-cyclopentadienyl' conjugates (RuPMC) and a low molecular weight parental compound (Ru1) in cancer cells. Several biological assays were performed in ovarian (A2780) and breast (MCF7, MDA-MB-231) human cancer derived cell lines as well as in A2780cis, a cisplatin resistant cancer cell line. Our results show that all compounds have high activity towards cancer cells with low IC50 values in the micromolar range. We observed that all Ru-PMC compounds are mainly found inside the cells, in contrast with the parental low molecular weight compound Ru1 that was mainly found at the membrane. All compounds induced mitochondrial alterations. PMC3 and Ru1 caused F-actin cytoskeleton morphology changes and reduced the clonogenic ability of the cells. The conjugate PMC3 induced apoptosis at low concentrations comparing to cisplatin and could overcame the platinum resistance of A2780cis cancer cells. A proteomic analysis showed that these compounds induce alterations in several cellular proteins which are related to the phenotypic disorders induced by them. Our results suggest that PMC3 is foreseen as a lead candidate to future studies and acting through a different mechanism of action than cisplatin. Here we established the potential of these Ru compounds as new metallodrugs for cancer chemotherapy.
Collapse
Affiliation(s)
- Tiago Moreira
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Rita Francisco
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Elisabeta Comsa
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Sophie Duban-Deweer
- Laboratoire de la barrière hémato-encéphalique (LBHE), Plateau Spectrométrie de Masse de l'ARTois (SMART), Université d'Artois, EA 2465, Lens, F-62300, France
| | - Valérie Labas
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Lucie Combes-Soia
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066, Bobadela LRS, Portugal
| | - António Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal
| | - Audrey Favrelle
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Cyril Rousseau
- Unity of Catalysis and Solid State Chemistry, UMR CNRS 8181, University of Artois, 62000, Lens, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - M Helena Garcia
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
14
|
Diao J, Bai F, Wang Y, Han Q, Xu X, Zhang H, Luo Q, Wang Y. Engineering of pectin-dopamine nano-conjugates for carrying ruthenium complex: A potential tool for biomedical applications. J Inorg Biochem 2019; 191:135-142. [DOI: 10.1016/j.jinorgbio.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 11/27/2022]
|
15
|
Gouveia M, Figueira J, Jardim MG, Castro R, Tomás H, Rissanen K, Rodrigues J. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018; 23:1471. [PMID: 29914219 PMCID: PMC6100097 DOI: 10.3390/molecules23061471] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
Abstract
Here and for the first time, we show that the organometallic compound [Ru(η⁵-C₅H₅)(PPh₃)₂Cl] (RuCp) has potential to be used as a metallodrug in anticancer therapy, and further present a new approach for the cellular delivery of the [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ fragment via coordination on the periphery of low-generation poly(alkylidenimine) dendrimers through nitrile terminal groups. Importantly, both the RuCp and the dendrimers functionalized with [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ fragments present remarkable toxicity towards a wide set of cancer cells (Caco-2, MCF-7, CAL-72, and A2780 cells), including cisplatin-resistant human ovarian carcinoma cell lines (A2780cisR cells). Also, RuCp and the prepared metallodendrimers are active against human mesenchymal stem cells (hMSCs), which are often found in the tumor microenvironment where they seem to play a role in tumor progression and drug resistance.
Collapse
Affiliation(s)
- Marisol Gouveia
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - João Figueira
- Department of Chemistry, ScilifeLab, Umeå University, KBC-Building, Linnaeus väg 6, 90736 Umeå, Sweden.
| | - Manuel G Jardim
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Rita Castro
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box. 35, FI-40014 Jyväskylä, Finland.
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
16
|
Gouveia M, Figueira J, Jardim M, Castro R, Tomás H, Rissanen K, Rodrigues J. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018. [DOI: https://doi.org/10.3390/molecules23061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Kołoczek P, Skórska-Stania A, Cierniak A, Sebastian V, Komarnicka UK, Płotek M, Kyzioł A. Polymeric micelle-mediated delivery of half-sandwich ruthenium(II) complexes with phosphanes derived from fluoroloquinolones for lung adenocarcinoma treatment. Eur J Pharm Biopharm 2018; 128:69-81. [PMID: 29678734 DOI: 10.1016/j.ejpb.2018.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/08/2022]
Abstract
Novel half-sandwich ruthenium(II) complexes with aminomethyl(diphenyl)phosphine derived from fluoroloquinolones (RuPCp, RuPSf, RuPLm, RuPNr) were being investigated as alternatives to well-established metal-based chemotherapeutics. All compounds were characterized by elemental analysis, selected spectroscopic methods (i.e., absorption and fluorescence spectroscopies, ESI-MS, NMR, circular dichroizm), X-ray diffractometry, ICP-MS, and electrochemical techniques. To overcome low solubility, serious side effects connected with systemic cytotoxicity of ruthenium complexes, and acquiring the resistance of cancer cells, polymeric nanoformulations based on Pluronic P-123 micelles loaded with selected Ru(II) complexes were prepared and characterized. Resulting micelles (RuPCp_M, RuPNr_M) enabled efficient drug accumulation inside human lung adenocarcinoma (A549 tumor cell line), proved by confocal microscopy and ICP-MS analysis, allowing cytotoxic action. Studied complexes exhibited promising cytotoxicity in vitro with IC50 values significantly lower than the reference drug - cisplatin. The fluorescence spectroscopic data (CT-DNA titration, in vitro cell staining) together with analysis of DNA fragmentation (pBR322 plasmid, comet assay) provided clear evidence for the interaction with DNA inducing apoptotic cell death.
Collapse
Affiliation(s)
- Przemysław Kołoczek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | | | - Agnieszka Cierniak
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Victor Sebastian
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28-029 Madrid, Spain
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Michał Płotek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; Faculty of Conservation and Restoration of Works of Art, Jan Matejko Academy of Fine Arts in Krakow, Lea 27-29, 30-052 Krakow, Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
18
|
Gichumbi JM, Friedrich HB, Omondi B, Lazarus GG, Singh M, Chenia HY. Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/znb-2017-0145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The reaction of the ruthenium arene dimers [(η
6-arene)Ru(μ-Cl)Cl]2 (where arene=benzene or p-cymene) with the ligands 4-benzylidene-3,5-di(2′-pyridyl)-4-amino-1,2,4-triazole (L1
), 2-methoxybenzylidene-3,5-di(2′-pyridyl)-4-amino-1,2,4-triazole (L2
), 4-methylbenzylidene-3,5-di(2′-pyridyl)-4-amino-1,2,4-triazole (L3
) and indole-3-carbaldehyde-3,5-di(2′-pyridyl)-4-amino-1,2,4-triazole (L4
) in a 1:2 ratio gives the new complexes [(η
6-arene)RuCl(L)]+ [arene=C6H6 (with L=L1(1), L2(3), L4(7), with PF6
− as a counter ion, and L4 (6), with Cl− as a counter ion) or p-cymene with L=L1(2), L2(4), L3(5), L4(8) with PF6
− as a counter ion]. All complexes were fully characterized using 1H and 13C NMR, elemental analyses, UV/Vis and IR spectroscopy. The single crystal X-ray structures of ligand L2
and complex 1 have been determined. The structure of 1 has the Ru atom coordinated with the arene group and to the N,N′-bidentate ligand and to the Cl atom. The arene group occupies the apex, while the ligand and the Cl atom are at the base of a pseudo-octahedral three-legged piano stool. The cytotoxicity of these mononuclear complexes was established in the human epithelial colorectal adenocarcinoma cell line (Caco-2) and for selectivity in the non-cancerous human embryonic kidney cell line (HEK293), using 5-fluorouracil (5-FU) as the reference anticancer drug. Compounds 1 and 7 were relatively inactive toward the Caco-2 tumor cells (IC50>200), while complexes 2–5 showed moderate anti-proliferative properties (IC50>100–200). Compound 6, however, displayed better anti-proliferative properties with an IC50 value lower than that of the reference drug, 5-FU, and was therefore further investigated for its antimicrobial activity against six Gram-positive and four Gram-negative bacteria.
Collapse
Affiliation(s)
- Joel M. Gichumbi
- School of Chemistry and Physics , University of KwaZulu-Natal , Private Bag X54001 , Durban 4000 , South Africa
| | - Holger B. Friedrich
- School of Chemistry and Physics , University of KwaZulu-Natal , Private Bag X54001 , Durban 4000 , South Africa
| | - Bernard Omondi
- School of Chemistry and Physics , University of KwaZulu-Natal , Private Bag X54001 , Durban 4000 , South Africa
| | - Geraldine G. Lazarus
- School of Life Sciences , University of KwaZulu-Natal , Private Bag X54001 , Durban 4000 , South Africa
| | - Moganavelli Singh
- School of Life Sciences , University of KwaZulu-Natal , Private Bag X54001 , Durban 4000 , South Africa
| | - Hafizah Y. Chenia
- School of Life Sciences , University of KwaZulu-Natal , Private Bag X54001 , Durban 4000 , South Africa
| |
Collapse
|
19
|
Heteroleptic tris-chelate ruthenium(II) complexes of N,N-disubstituted-N′-acylthioureas: Synthesis, structural studies, cytotoxic activity and confocal microscopy studies. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Lipophilicity-antiproliferative activity relationship study leads to the preparation of a ruthenium(II) arene complex with considerable in vitro cytotoxicity against cancer cells and a lower in vivo toxicity in zebrafish embryos than clinically approved cis-platin. Eur J Med Chem 2017; 132:282-293. [PMID: 28371640 DOI: 10.1016/j.ejmech.2017.03.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 11/23/2022]
Abstract
Ru(II)-arene complexes are attracting increasing attention due to their considerable antitumoral activity. However, it is difficult to clearly establish a direct relationship between their structure and antiproliferative activity, as substantial structural changes might not only affect their anticancer activity but also tightly control their activation site(s) and/or their biological target(s). Herein, we describe the synthesis and characterization of four ruthenium(II) arene complexes bearing bidentate N,O-donor Schiff-base ligands ([Ru(η6-benzene)(N-O)Cl]) that display a significantly distinct antiproliferative activity against cancer cells, despite their close structural similarity. Furthermore, we suggest there is a link between their respective antiproliferative activity and their lipophilicity, as the latter affects their ability to accumulate into cancer cells. This lipophilicity-cytotoxicity relationship was exploited to design another structurally related ruthenium complex with a much higher antiproliferative activity (IC50 > 25.0 μM) against three different human cancer cell lines. Whereas this complex shows a slightly lower activity than that of clinically approved cis-platin against the same human cancer cell lines, it displays a lower toxicity in zebrafish (Danio rerio) embryos at concentrations up to 20 μM.
Collapse
|
21
|
Presa A, Barrios L, Cirera J, Korrodi-Gregório L, Pérez-Tomás R, Teat SJ, Gamez P. Non-Switching 1,2-Dithienylethene-based Diplatinum(II) Complex Showing High Cytotoxicity. Inorg Chem 2016; 55:5356-64. [PMID: 27152916 DOI: 10.1021/acs.inorgchem.6b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A diplatinum(II) complex was prepared from a new 1,2-dithienylethene-based ligand containing N-methylimidazole groups as metal-binding units. Reaction of the ligand 1,2-bis[2-methyl-5-(1-methyl-1H-imidazol-2-yl)-3-thienyl]-cyclopentene (L2(H)) with cis-dichlorobis(dimethylsulfoxido)platinum(II) generated the bimetallic complex trans-[Pt2Cl4(DMSO)2(L2(H))] (DMSO = dimethyl sulfoxide), whose DNA-interacting properties were investigated using different techniques. Cytotoxicity assays with various cancer cell lines showed that this compound is active, with IC50 values in the micromolar range. Surprisingly, the diplatinum(II) complex does not exhibit the anticipated photoswitching properties; indeed, UV irradiation does not lead to the photocyclization of the ligand L2(H) or of the metal complex. Computational studies were performed and revealed significant differences in the electronic structure of L2(H) compared with L1(H) (i.e., 1,2-bis[2-methyl-5-(4-pyridyl)-3-thienyl]-cyclopentene, which exhibits photoswitching properties), in terms of the relevant molecular orbitals involved in the UV-vis absorption features, which ultimately is responsible for the inertia of L2(H) toward photocyclization.
Collapse
Affiliation(s)
| | | | | | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona , Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain.,Department of Medical Sciences, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro , Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona , Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley California 94720, United States
| | - Patrick Gamez
- Catalan Institution for Research and Advanced Studies , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
22
|
Lu H, Blunden BM, Scarano W, Lu M, Stenzel MH. Anti-metastatic effects of RAPTA-C conjugated polymeric micelles on two-dimensional (2D) breast tumor cells and three-dimensional (3D) multicellular tumor spheroids. Acta Biomater 2016; 32:68-76. [PMID: 26689468 DOI: 10.1016/j.actbio.2015.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Macromolecular ruthenium (Ru) complexes are a promising avenue to better, and more selective, chemotherapeutics to treat metastatic cancers. In our previous research, amphiphilic block copolymeric micelles carrying RAPTA-C (RuCl2(p-cymene)(PTA)) were demonstrated to improve the cellular uptake and cytotoxicity of RAPTA-C (Blunden et al., 2013). However, the anti-metastatic effect of RAPTA-C conjugated polymeric micelles is yet to be established. In this work, we investigated the anti-metastatic effects of RAPTA-C conjugated micelles in both 2D and 3D in vitro breast tumor cell models in comparison with free RAPTA-C. RAPTA-C conjugated micelles showed an improved anti-metastatic effect compared with RAPTA-C for 2D cultured breast tumor cells. RAPTA-C micelles selectively targeted the metastatic tumor cells over the nontumorigenic CHO cells. 3D MCTS assays showed that RAPTA-C conjugated micelles showed a cell growth inhibition similar to that of ten times of the free drug. Further improvement of the RAPTA-C delivery vehicle may provide useful tools to harness ruthenium compounds for metastatic cancer therapy. STATEMENT OF SIGNIFICANCE The interest in ruthenium drugs stem from their anti-metastatic effect. In contrast to other metal-based drugs that inhibit the growth of tumor cells, ruthenium drugs seem less toxic, but have a pronounce effect on the migration of cancer cells. The ruthenium drug chosen here, RAPTA-C, is capable of inhibiting migration as shown in various assays here. In this publication, we could show for the first time that this effect is enhanced when the drug is delivered using micelles. Important in particular is that the effect is more pronounced in cancerous breast cancer cells while RAPTA-C delivered in micelles does not seem to show any effect on healthy cells. We believe that the presented micelles are suitable carriers for this anti-metastatic drug. The design of the micelle would also allow the encapsulation of other drugs in future studies creating a potentially powerful bullet.
Collapse
|
23
|
Fodor C, Gajewska B, Rifaie-Graham O, Apebende EA, Pollard J, Bruns N. Laccase-catalyzed controlled radical polymerization of N-vinylimidazole. Polym Chem 2016. [DOI: 10.1039/c6py01261b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Laccase from Trametes versicolor catalyzes the controlled radical polymerization of N-vinylimidazole, yielding narrowly dispersed, metal-free polymers.
Collapse
Affiliation(s)
- Csaba Fodor
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
- Institute of Materials and Environmental Chemistry
| | | | | | | | - Jonas Pollard
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| |
Collapse
|
24
|
Gupta G, Oggu GS, Nagesh N, Bokara KK, Therrien B. Anticancer activity of large metalla-assemblies built from half-sandwich complexes. CrystEngComm 2016. [DOI: 10.1039/c6ce00139d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Dragutan I, Dragutan V, Demonceau A. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015; 20:17244-74. [PMID: 26393560 PMCID: PMC6332046 DOI: 10.3390/molecules200917244] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
Recent trends in Ru complex chemistry are surveyed with emphasis on the development of anticancer drugs and applications in catalysis, polymers, materials science and nanotechnology.
Collapse
Affiliation(s)
- Ileana Dragutan
- Romanian Academy, Institute of Organic Chemistry "C.D. Nenitescu", Bucharest 060023, Romania.
| | - Valerian Dragutan
- Romanian Academy, Institute of Organic Chemistry "C.D. Nenitescu", Bucharest 060023, Romania.
| | - Albert Demonceau
- Department of Chemistry, University of Liège, Sart-Tilman (B.6a), Liège 4000, Belgium.
| |
Collapse
|
26
|
Xue X, Yang J, Huang W, Yang H, Jiang B, Li F, Jiang Y. Dual thermo- and light-responsive nanorods from self-assembly of the 4-propoxyazobenzene-terminated poly(N-isopropylacrylamide) in aqueous solution. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
1H HR-MAS NMR Based Metabolic Profiling of Cells in Response to Treatment with a Hexacationic Ruthenium Metallaprism as Potential Anticancer Drug. PLoS One 2015; 10:e0128478. [PMID: 26024484 PMCID: PMC4449131 DOI: 10.1371/journal.pone.0128478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/27/2015] [Indexed: 01/14/2023] Open
Abstract
(1)H high resolution magic angle spinning (HR-MAS) NMR spectroscopy was applied in combination with multivariate statistical analyses to study the metabolic response of whole cells to the treatment with a hexacationic ruthenium metallaprism [1](6+) as potential anticancer drug. Human ovarian cancer cells (A2780), the corresponding cisplatin resistant cells (A2780cisR), and human embryonic kidney cells (HEK-293) were each incubated for 24 h and 72 h with [1](6+) and compared to untreated cells. Different responses were obtained depending on the cell type and incubation time. Most pronounced changes were found for lipids, choline containing compounds, glutamate and glutathione, nucleotide sugars, lactate, and some amino acids. Possible contributions of these metabolites to physiologic processes are discussed. The time-dependent metabolic response patterns suggest that A2780 cells on one hand and HEK-293 cells and A2780cisR cells on the other hand may follow different cell death pathways and exist in different temporal stages thereof.
Collapse
|
28
|
Ayaz Ahmed KB, Reshma E, Mariappan M, Anbazhagan V. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:1292-1297. [PMID: 25306128 DOI: 10.1016/j.saa.2014.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2',3'-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 10(5) M(-1), which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.
Collapse
Affiliation(s)
- Khan Behlol Ayaz Ahmed
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudaram, Thanjavur, Tamil Nadu, India
| | - Elamvazhuthi Reshma
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudaram, Thanjavur, Tamil Nadu, India
| | - Mariappan Mariappan
- Department of Chemistry, SRM University, Kattankulathur, Chennai, Tamil Nadu, India
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudaram, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
29
|
Callari M, Aldrich-Wright JR, de Souza PL, Stenzel MH. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|